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ABSTRACT

Objective: To use unsupervised topic modeling to evaluate heterogeneity in sepsis treatment patterns con-
tained within granular data of electronic health records.

Materials and Methods: A multicenter, retrospective cohort study of 29 253 hospitalized adult sepsis patients
between 2010 and 2013 in Northern California. We applied an unsupervised machine learning method, Latent
Dirichlet Allocation, to the orders, medications, and procedures recorded in the electronic health record within
the first 24 hours of each patient’s hospitalization to uncover empiric treatment topics across the cohort and to
develop computable clinical signatures for each patient based on proportions of these topics. We evaluated
how these topics correlated with common sepsis treatment and outcome metrics including inpatient mortality,
time to first antibiotic, and fluids given within 24 hours.

Results: Mean age was 70 = 17 years with hospital mortality of 9.6%. We empirically identified 42 clinically rec-
ognizable treatment topics (eg, pneumonia, cellulitis, wound care, shock). Only 43.1% of hospitalizations had a
single dominant topic, and a small minority (7.3%) had a single topic comprising at least 80% of their overall
clinical signature. Across the entire sepsis cohort, clinical signatures were highly variable.

Discussion: Heterogeneity in sepsis is a major barrier to improving targeted treatments, yet existing
approaches to characterizing clinical heterogeneity are narrowly defined. A machine learning approach cap-
tured substantial patient- and population-level heterogeneity in treatment during early sepsis hospitalization.
Conclusion: Using topic modeling based on treatment patterns may enable more precise clinical characteriza-
tion in sepsis and better understanding of variability in sepsis presentation and outcomes.
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INTRODUCTION

Sepsis, the life-threatening organ dysfunction arising from a dysregu-
lated host response to infection, is a condition with tremendous
global impact.! Sepsis affects at least 30 million patients worldwide
and results in 5 million deaths each year.? It is also a major contribu-
tor to hospital and postdischarge mortality, morbidity, and health
care utilization.>™® Survival in sepsis has steadily improved over

time, owing to standardized care focused on heightening early iden-
tification and delivery of antibiotics.”!' However, sepsis protocols
are built using a “one-size-fits- all” approach and do not target spe-
cific treatments to patients with differences in underlying illness or
acute presentation—except within the simplest groupings, like
shock.'>!® Underlying heterogeneity in sepsis is universally cited as
the major barrier to future improvements in treatment and is an
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issue of particular salience for a condition in which no new
effective pharmacologic treatment has been identified in the past 50
years.lz_”

While heterogeneity in sepsis is widely acknowledged both by
researchers and clinicians, few studies have attempted to compre-
hensively quantify its characteristics. This gap is partly explained
by the varied sources of heterogeneity in sepsis including clinical
factors, genetic predisposition, host-pathogen interactions, acute
disease mechanisms, immune system responses, treatment re-
ceived, and temporal trajectories of disease progression.'® %
However, even within just the «clinical domain, existing
approaches to characterize sepsis rely on relatively narrow
criteria-based or laboratory groupings.!®*>~%° For example, the
Systemic Inflammatory Response Syndrome criteria, which were
used as a foundation for sepsis definitions in prior decades, in-
clude only 4 variables.?” A more contemporary schema, the PIRO
(Predisposition, Infection, Response, Organ dysfunction) model,*°
similarly uses a limited set of variables that are poorly representa-
tive of the true heterogeneity that clinicians witness in treating
sepsis on a daily basis. Recent work evaluating clinical sepsis sub-
groups in observational and prospective clinical trial data relied
on a circumscribed set of 29 vital sign, laboratory, and demo-
graphic parameters.*?

Heterogeneity also impacts how sepsis care quality is mea-
sured. The past several years have seen new guidelines and man-
dates emerge at the state, federal, and national levels that require
protocolized care in all sepsis patients within highly constrained
timelines (ie, within 6, 3, or even 1 hours).""**3! However, these
guidelines similarly fail to account for the variability in patient
presentation and how these differences impact the timeliness of
care. For example, antibiotic administration is measured against
the same timeline whether a patient presents with obvious infec-
tious symptoms of cough, fever, and purulent sputum or with
more uncertain infectious symptoms, like diffuse abdominal pain
and vomiting.'®> Thus, characterizing clinical heterogeneity with
greater depth is an essential first step toward understanding how
to measure the adherence to and benefits of current treatment
paradigms.

Clinical heterogeneity is a significant limitation to the develop-
ment of new treatments and to accurately assessing sepsis quality
of care and, yet, no current methods are available to quantify that
heterogeneity with a computable, non-rules-based approach using
comprehensive electronic health record (EHR) data. Machine
learning methods have proven highly successful in empirically
identifying groupings within large, complex data. In particular, a
number of unsupervised learning approaches can successfully gen-
erate computable subgroups with high clinical relevance. While a
diversity of methods currently exists (eg, clustering, neural
network-based), prior work has shown that probabilistic topic
modeling, for example, that based on the Latent Dirichlet Alloca-
tion (LDA) algorithm, can uncover relevant themes within com-
plex EHR data.>*=3” Using a library of books as a conceptual
example, LDA assesses the frequency and co-occurrence of words
within individual books to identify the topics represented across
the entire library. Based on the words they contain, individual
books can also be represented as proportions of separate topics.
Importantly, these statistical approaches allow the development of
a computable phenotype or subgroup that captures greater com-
plexity of patients, rather than assigning a single label based only
on simple and limited rules.

OBJECTIVE

In this study, we used an unsupervised topic modeling approach to
assess treatment heterogeneity during the first 24 hours of sepsis
hospitalization and to develop computable clinical signatures based
on these topics that describe overall treatment patterns for each pa-
tient. By applying LDA to a heterogeneous set of EHR data from the
first 24 hours of sepsis treatment, we sought to empirically describe
topics early in sepsis that would reflect underlying heterogeneity in
sepsis presentation based on the diversity of treatment needs. We
assessed how the resulting LDA-derived topics were distributed
across the entire sepsis population as well as within individual
patients. Finally, we assessed how these topics impacted common
quality metrics of sepsis care to evaluate how their use could impact
clinical practice and quality of care.

MATERIALS AND METHODS

Overall approach and cohort
This study was approved by the Kaiser Permanente Northern Cali-
fornia (KPNC) Institutional Review Board.

Figure 1 provides an overview of our study’s approach to charac-
terizing early clinical treatment heterogeneity among sepsis patients
by applying topic modeling to granular EHR data. Table 1 defines
the terminology used throughout this article. Our cohort was drawn
from 35 000 adult sepsis hospitalizations occurring within the 21
hospitals of KPNC between 2010 and 2013.3% Sepsis was defined
based on the Sepsis-2 framework prevalent during that period and
all patients were admitted through the emergency department and
given antibiotics within 6 hours of triage. We included the first sep-
sis hospitalization for each patient (=29 253).

EHR data items

We extracted EHR items indicating clinician actions within the first
24 hours of a sepsis hospitalization including electronic orders
(n=3 478 677), administered medications (7 =452 193), and pro-
cedures (n=17 806; Table 2). We aggregated individual orders into
order sets if they were part of the same established order set and had
the same time stamp. We grouped medications by EHR subclasses
(eg, glucocorticoids, glycopeptides), as classified in Epic Clarity
EHR systems. We excluded any EHR item that appeared only once
(n=537), producing an EHR count matrix of 1 891 198 total and
2521 unique items. Supplementary Appendix Table 1 lists the most
frequent EHR items identified.

EHR item count matrix and topics
To reduce the influence of frequently occurring EHR items found
across many hospitalizations (eg, saline preparations), we applied a
“term frequency-inverse document frequency” algorithm and scaled
the resulting EHR item count matrix so that each value was an inte-
ger (Figure 1).>° We then used LDA to surface latent treatment
topics within each patient record.>*3> The LDA implementation
generates a topic matrix which represents a probability distribution
of EHR items within each topic, which can be used to identify which
EHR items are most associated with each treatment topic (Figure 1).
It also generates a patient matrix which describes the composition of
topics that describe each patient’s computable clinical signature.
Because LDA lacks prior specification about the latent topics be-
ing modeled, users must define k£ number of topics. To determine the
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Step 1. Identify Electronic Health Record (EHR) data of clinician action

For each patient in the sepsis cohort, we identified and extracted EHR-based data related to clinician action, focusing on
orders, given medications, and procedures occurring within the first 24 hours after hospitalization. We collapsed orders that
were part of an orderset and had the same timestamp into once instance of that orderset. We grouped medications by EHR-

defined subclasses (where available, or by generic name if unavailable). We assigned an item code to each unique EHR item.

Patient ID EHR item Item Code

N 123 Glucocorticoid m267
/;;/?/;/:/5)\ 123 Non-narcotic analgesic m439
c— \ 123 Inpatient admission OS 0s12
\(@ \ — 123 Spinal tap P88
§§§\\ - 123 Blood culture 0601

N 562 Glucocorticoid m267

- 562 Pneumonia OS 0s48

562 Glucocorticoid m267

Step 2. Generate a patient and EHR item count matrix

We tallied instances of each unique EHR item (columns) within each
lpatuen} EHR record (rows), removing EHR items that only occurred a Reweighted EHR item count matrix
single time. We used the term frequency — inverse document frequency )
(TF-iDF) approach (shown below) to reweight item counts and scaled the EHR item
resulting matrix so that each value was an integer. § g ;‘5 § ;;; § §
123/ 1 |4]1]3]0]|0]2
() = 05 405 — T4 se2[ 2 |2 1|7 [1]1]4
max| foq i t' -
S 27[3|6|0f0f0|1]3
I’ )= log —0 T 783
1£(t, D) 1,,w_ R S of{of|1]o]|1]o0]o0
420 fo0|1]|2]|1]|1]0
thidf(t, d, D) = ti(t, d) - idf(t, D)
Step 3. Select an optimal number of Latent Dirchlet Allocation (LDA) topics
To define an optimal number of treatment topics for the LDA models, we used —
50 random seeds and, for each seed, varied the topic number (k) from 25 to 8]
75. We then used the topic distributions for each patient in multivariable logistic i .
regression models of hospital mortality. We chose the optimal number of topics ] - B

based on the minimum median Bayesian Information Criteria (BIC) value (red).

m) = a+ B,(age) + B,(gender) + B;(care directive) +

B,(directICU) + B5(COPS2 score) + B;(LAPS2 score) + 3
B, (topicl) + Bg(topic2) + By(topic3) + - + Bgy(topic42).

( mortality
n

(R packages utilized included “Ida” and “doParallel.”) et oA S

4. Generate topic and patient matrices using LDA method (k=42)

We used LDA to generate a Topic Matrix (left) and a Patient Matrix (right) where the sum across rows adds up to 1.0. The

Topic Matrix describes the probability of each EHR item occurring given membership in that topic. The Patient Matrix describes

the probability of each topic occurring given that patient. We used ‘computable clinical signature’ to describe the summary
probability of topics across a single patient.

Topic Matrix (P(Item,|Topic)) | | Patient Matrix P(Topic|Patient,) |
§ & L“EIT e s 12 3% 5
§ § 58 & ¢ § .

123 | o [005] o [o.06]0.32 0.02
1]0:11/0.00]016/0.02]0.19| 0.08) 0.03] .. 562 | 042|007 |017| 0 |003| .. | © Dominant
2| 0.0 [0.04[0.00{0.19]0.00|0.02{ 0.04 2 2700 ] 0 o osslozz| .. [o1s] Topic

‘S 3[0.00{0.13]0.00|0.00|0.00]0.010.07 % 783 [030] 0 | o | o o] ..
S 40.01]0.21|0.01[0.14|0.00(0.00{0.10| ... 8 432 (072| o 0 0 o002« | o Clinical
5(0.08]0.00[0.02[0.01 | 0.01| 0.01| 0.03 82 [[0.08 | 0.01] 002 | 0.03 [0.78] ... |0.05 | « Signature

Figure 1. Schematic overview of EHR data extraction and LDA implementation in hospitalized sepsis patients.

Abbreviations: EHR, electronic health record; LDA, Latent Dirichlet Allocation.
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Table 1. Terms used in describing the approach and results, and their meaning

Term Description

Latent Dirichlet Allocation

Unsupervised topic modeling approach that derives topics based on the frequency and co-occurrence of EHR items
in hospitalizations, allowing treatment themes within individual hospitalizations to be represented by propor-

Granular data objects drawn from the EHR within the first 24 hours of hospitalization. These items represent treat-

ment decisions, including orders placed, medications given, and procedures ordered.

(LDA)
tions of those topics.
EHR Items
Topic
all of the hospitalizations.
Topic Label

each topic.
Computable Clinical Signature
Dominant Topic

The 42 latent treatment patterns derived from LDA based on the frequency and co-occurrence of EHR items across
Summary clinical interpretation based on post hoc consensus interpretation of the highest weighted EHR items in

The overall treatment profile for each patient based on proportions of each of the 42 topics.
The topic comprising the greatest proportion of each patient’s computable clinical signature.

Abbreviations: EHR, electronic health record; LDA, Latent Dirichlet Allocation.

Table 2. Total volume of EHR data related to clinician action for patients in the sepsis cohort within the first 24 hours after ED triage. Total
items represent each instance of any EHR item while unique items represent the different types of items (eg, hospital admission order set,
serum potassium, glycopeptide antibiotic). The table shows the total number of items and unique items initially extracted from the EHR
(left), those removed for appearing only a single time (middle italics), and those ultimately included (right) in the count matrix for LDA im-
plementation. Of the 3 478 677 total orders drawn from the EHR, 2 305 061 were part of an established order set and were included together
with other orders that were part of the same order set and had the same time stamp as 1 instance of that order set, resulting in 248 120 total

order sets.

Items initially extracted from EHR

Items removed (appearing only once)

Items included in LDA count matrix

EHR item type Total Unique Unique Total Unique
Orders
Individual 1173 616 1657 236 1173380 1421
Order sets 248 120 238 24 248 096 214
Medications given 452193 699 89 452104 610
Procedures 17 806 464 188 17 618 276
Total 1891735 3058 537 1891198 2521

Abbreviations: EHR, electronic health record; LDA, Latent Dirichlet Allocation.

optimal k, we defined k ranging from 25 to 75. We chose the opti-
mal value of k& based on the minimum median Bayesian Information
Criterion (BIC) from multivariable logistic regression models with
an outcome of hospital mortality based on 50 random iterations for
each £.*° The models demonstrated a BIC minimum and inflection
point at k =42 (Supplementary Appendix Figure 1).

While LDA empirically surfaces latent treatment topics based on
EHR items, these topics require human interpretation. Therefore,
our study team applied a post hoc clinical label to each topic (ie, ap-
plying labels including pneumonia, gastrointestinal bleeding, and
mechanical ventilation) based on consensus interpretation of the
highest weighted items represented in the topic matrix for each topic
(Supplementary Appendix Table 2). Topics with at least 4 antibiotic
or microbe culture items in the top 10 highest-weighted EHR items
were considered treatment for infection. We also grouped these 42
topics within 11 broader organ- or treatment-based categories (eg,
respiratory, gastrointestinal, and critical care).

Assessing clinical heterogeneity within and between
sepsis patients

We used the LDA output to generate sepsis clinical signatures: com-
putable and visualizable patient-level profiles showing the propor-
tional composition of each topic within individual patients. Within
each patient’s computable clinical signature, we identified their

dominant topic—the single topic which comprised the largest pro-
portion of their signature—as well as the second largest topic to as-
sess how often sepsis hospitalizations could be defined by a
small number of main treatment topics. To demonstrate how a com-
putable clinical signature could help identify relevant subgroups
within a highly heterogeneous population, we compared visual signa-
tures of 9 randomly selected sepsis patients with 9 of those selected
by specific treatment topic co-occurrence. To visualize treatment het-
erogeneity between patients, we used a chord plot to visualize domi-
nant topic co-occurrence across the entire cohort. In each plot,
individual patients are represented once with a line connecting their
dominant and second largest topic within their clinical signature.

Evaluating the role of heterogeneity in sepsis measures
We assessed the 42 treatment topics across 8 common measures used
to characterize sepsis patients, treatments, and outcomes including (1)
the time from emergency department triage to the first antibiotic;*®
(2) the total volume of intravenous fluid administered within the first
24 hours*'**%; (3) hospital mortality>*%; and (4) the maximum Sepsis-
related Organ Failure Assessment Score (SOFA) during hospitaliza-
tion”**; (5) age; (6) acute severity of illness (based on Laboratory
Acute Physiology Score, LAPS2)***3=*%; (7) chronic comorbid disease
burden (Comorbidity Point Score, COPS2)*>*5~*8; and (8) length of
stay, based on established methods. In these comparisons, patients
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were included only once and grouped by their dominant topic. We
used scatterplots to display antibiotic timing and fluid administration
amounts as well as comorbid disease burden and hospital mortality to
characterize how treatment topic heterogeneity modifies commonly
used outcome and quality reporting metrics.

Data are reported as number (%), mean *+ standard deviation,
or median (interquartile range). We conducted analyses STATA/SE
14.2 and R version 3.4.2 including packages “dplyr,”*’ “lda,”°
“doParallel,”*! and “circlize.”>* The R code used in this study is in-
cluded in the Supplementary Appendix.

RESULTS

Our cohort included 29 253 patients with a mean (= SD) age of
70 = 17 years (Supplementary Appendix Table 3); hospital mortality
was 9.6%. Based on Sepsis-2 strata, 10 212 (34.9%) had sepsis,
15 059 (51.5%) had severe sepsis, and 3982 (13.6%) had septic
shock. The median time to antibiotics was 2.1 hours (interquartile
range: 1.4-3.1).

Labeling LDA-generated treatment topics

Table 3 and Supplementary Appendix Table 2 show the most highly
weighted EHR items within each of the 42 treatment topics. In most
cases, topics were clinically recognizable representing specific infec-
tions or treatment needs. For example, the top 5 items of latent topic
22 were: Clostridium difficile panel; contact plus isolation; stool cul-
ture; stool white blood cell count; and metronidazole. We labeled
this topic “diarrhea.” Topic 3 (“congestive heart failure”) included
congestive heart failure order set, troponin I, loop diuretic, B-type
natriuretic peptide, and electrocardiogram. Topic 26 (labeled
“anemia”) included iron and TIBC, ferritin, vitamin B12, folic acid
serum, reticulocyte count, and transferrin.

Figure 2 shows the overall occurrence of each treatment topic
across the entire study cohort with the most prevalent topics attrib-
utable to “diabetes” (6.0%), (5.4%),
“pneumonia” (4.8%), and “urinary tract infection” (4.7%). Evalu-

“viral pneumonia”
ating the composition of topics across the entire cohort, only 39.1%
of treatments were directly for infections, while the majority of
treatment was for noninfectious causes of hospitalization.

Computable clinical signatures and heterogeneity
within sepsis patients
Clinical signatures are the proportional representation of treatment
topics within individual patients and facilitate computable
approaches to describing heterogeneity within each patient. In our
cohort, we found that 56.9% of hospitalizations did not have a single
dominant topic which accounted for more than half of their overall
clinical signature, demonstrating that most sepsis patients’ treat-
ments could not be defined only by a single label (Supplementary Ap-
pendix Figure 2). Only a small minority (7.3%) of patients had a
single dominant topic that comprised >80% of their clinical signa-
ture, quantifying the clinically familiar scenario in which most sepsis
patients are treated concurrently for multiple co-existing conditions.
Figure 3 compares the visual representation of clinical signatures
of 9 randomly assigned sepsis patients (left) with another 9 ran-
domly chosen but based on 3 specific pairings of treatment topics
(cellulitis and pneumonia; complex care and diarrhea; and heart fail-
ure and urinary tract infection) on the right. The left panel displays
the heterogeneity present among randomly assigned patients with
diverse combinations of treatment topics, yet all were defined as

“sepsis” patients. The computable signature approach allows for
sepsis patients to be defined by key dominant topics that can be used
to identify similar subgroups within the overall sepsis population, as
shown on the right, where signatures are similar across patients.

Heterogeneity in treatment was present not only within individual
patients, but also across the entire sepsis population. Figure 4 displays
the aggregate frequency of topic co-occurrence with each link represent-
ing a single hospitalization and exhibits the tremendous diversity in
topics across the cohort. Of a total of 29 253 co-occurrence topics, even
the most common ones were relatively rare, including: abdominal pain
and biliary disease (7 =254, 0.9%), chronic obstructive pulmonary dis-
ease and diabetes (=222, 0.8%), diabetes and cellulitis (=217,
0.8%), and viral pneumonia with acute coronary syndrome (7= 165,
0.6%). The circle plot confirms that sepsis patients are highly diverse in
their clinical signatures in a way that would not be easily characterized
by a simple set of criteria.

Evaluating treatment topics and sepsis measures

The heterogeneity revealed in the clinical signatures and circle plot
also had significant impact on commonly used sepsis measures of
care processes and outcomes. For example, Figure 5a displays the
variation in commonly measured sepsis care processes (antibiotic
timing and fluid resuscitation) across the population when patients
were grouped by their dominant topics. Among an overall cohort
that all received antibiotics within a very compressed emergency de-
partment timeline, the mean time to antibiotics was shorter (<2.2
hours) for conditions in which patient presentation was much more
clear, including those requiring intensive care (ventilation, critical
illness, shock) and with clinically obvious infections (ie, cellulitis, os-
teomyelitis, pneumonia). In contrast, among patients who had more
uncertain presentations like weakness or abdominal pathology (ab-
dominal pain, diarrhea, hepatitis, liver disease), the time to antibiot-
ics was considerably longer on average.

Similarly, large fluid volumes (>3 liters) were given to patients
requiring intensive care and to other conditions that commonly re-
quire substantial fluid resuscitation (diabetic, coagulopathy). In con-
trast, small fluid volumes (<1.6 liters) were given to patients on
dialysis or with heart failure, who are at increased risk of fluid over-
load, reflecting clinically familiar patterns. When antibiotic timing
and fluid resuscitation were arrayed against one another, the LDA-
based groupings revealed the challenge of using a “one-size-fits-all”
approach to measuring adequacy in early sepsis treatment.

Figure 5b also shows considerable variability in comorbid dis-
ease burden and hospital mortality in sepsis when patients were
grouped by their dominant treatment topics. Not surprisingly,
patients with very high inpatient mortality (>20%) included not
only those with critical illness, but also those with end-of-life care
needs and coagulopathy. On the other hand, even patients with a
very high presepsis burden of illness often exhibited low hospital
mortality. For example, among those with substantial preexisting
disease and with dominant topics of atrial fibrillation, end-stage kid-
ney disease, or wound care, mortality was relatively low at <8%.
Supplementary Appendix Table 4 and Supplementary Appendix
Figure 3 similarly show wide variability in the characteristics and
outcomes across the 42 topics.

DISCUSSION

In a multicenter cohort of sepsis patients treated with early antibiot-
ics, we used machine learning to empirically identify EHR-based
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Figure 2. Aggregate representation of each of 42 statistically generated treat-
ment topics based on electronic health record data, with post hoc assigned
clinical labels (top) and categories (bottom and color bars). The width of each
individual colored bar represents the proportion of that treatment topic within
the sepsis cohort. The highest aggregate proportions are attributable to
“diabetes,” “viral pneumonia” (viral PNA), “pneumonia,” and “urinary tract
infection” (UTI).

Abbreviations: Cardio, cardiovascular; COPD, chronic obstructive pulmonary
disease; Gl, gastrointestinal; Heme, hematologic; MSK, musculoskeletal;
Neuro, neurologic; PNA, pneumonia; UTI, urinary tract infection.

topics and develop computable clinical signatures to quantify the
treatment heterogeneity present in early sepsis. Applying an unsu-
pervised approach to nearly 2 million EHR items and 30 000
patients, we uncovered 42 treatment patterns or topics that were
clinically recognizable and displayed the breadth and diversity of
treatments used in the early part of hospitalization. Our findings
highlighted the fact that, while all these patients were “septic,” their
actual clinical signatures—the composition of treatment topics
within a single patient—belied easy characterization by any single
label. Only a minority of patients were even found to have had a

single dominant topic that explained most of their hospitalization.
Thus, our findings quantitatively demonstrate that singular or nar-
rowly defined sepsis groupings fail to capture the true clinical and
treatment diversity that comprises early sepsis. Similarly, when we
assessed treatment topics across the entire cohort, we found tremen-
dous heterogeneity. Further, because we were able to quantify the
contribution of different topics throughout the population, we
found that only 39.1% of overall treatments were definitively for in-
fection. In sum, our study describes a computable and empiric ap-
proach to display and characterize the profound clinical
heterogeneity of early sepsis treatment within individual sepsis hos-
pitalizations and across the entire sepsis population.

While heterogeneity is universally cited as a key barrier to prog-
ress in sepsis research and treatment, to our knowledge, this is the
first study that actually quantifies this treatment heterogeneity in the
clinical domain and uses computable clinical signatures as a means
for identifying diverse subgroups of patients.'*™"® Traditional
approaches to characterizing the clinical dimensions of sepsis rely

10,24-29,53,54

on rules- or criteria-based frameworks and have shown

value for identifying high-risk patients,'*>>**

24,55,56

standardizing treat-

10,27
ment protocols, %

and enabling outcomes comparisons.
However, they categorize patients across very narrow dimensions
and, because of their significant limitations in capturing the diversity
that is recognized clinically in sepsis, are rarely used. Rather than re-
lying on a proscriptive approach that would require extensive clini-
cal labeling and data curation, we sought to leverage machine
learning approaches that would surface treatment subgroups with-
out preexisting bias. We also chose to focus on clinician actions me-
diated through the EHR, because these digital artifacts would
simultaneously capture underlying patient characteristics and
clinician judgment in a way that common EHR data models might
not. Finally, we chose to focus on the first 24 hours of hospitaliza-
tion in order to describe sepsis heterogeneity during the most dy-
namic interval of inpatient care.

Our findings confirm the clinical reality that traditional
approaches which rely on single labels to characterize a hospitaliza-
tion—*“this patient has pneumonia”—routinely fail to capture the
diversity of coexisting clinical conditions present in early sepsis. In-
deed, we found that for nearly half of patients with a main treatment
topic of “pneumonia,” the majority of their overall clinical signature
was explained by non-“pneumonia” topics. Our findings have im-
portant implications on future research in sepsis, which is currently
at a crossroads when it comes to identifying clinically actionable
subgroups that will be similarly responsive to treatment.'132%:23:57
This is of particular salience because sepsis has seen every novel
therapy fail in randomized trials over the prior § decades. Heteroge-
neity is now universally identified as the major barrier to progress;
however, no other methods are currently available to empirically
quantify and characterize this clinical treatment diversity. Thus,
even while clinicians recognize the conundrum of applying a “one-
size-fits-all” treatment to highly variable patients—a commonly
recounted scenario is that the same approach is taken for a young
healthy patient with pneumonia as for a chronically ill elderly pa-
tient with immunosuppression and urosepsis—the lack of comput-
able approaches means that this blunt approach to sepsis care
continues to persist.'*

Our findings also have important implications for current met-
rics that are used to assess and report quality of care in sepsis. Sepsis
was recently recognized by the World Health Organization as a
global health priority and is the subject of many public health

awareness campaigns.' This highly recognized status has also
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Random sample of 9 sepsis
clinical signatures
Main Topics
Diarrhea, electrolytes,
heart failure

Abdominal pain, electrolytes,
complex care

Pneumonia, biliary, anemia,
abdominal pain

End of life care,
electrolytes

Life support, pyelonephritis,
abdominal pain

Would care, diabetes,
abdominal pain, biliary

Biliary, shock, Gl bleeding,
abdominal pain

Pyelonephritis, shock,
biliary, ventilation

End of life, complex care,
biliary, shock

il

Random sample of 9 clinical
signatures, by dominant topics

Dominant Topics
(I |
(| (I | Cellulitis & Pneumonia
I | [—
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I 00 ] Complex Care & Diarthea
L |
| I— |
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| | ]

Figure 3. Computable clinical signatures of individual patients based on the LDA topic modeling approach. Each bar color represents a different topic as displayed
in Figure 2 and the width of the color bar represents the proportion of the clinical signature that topic composes. On the left are 9 randomly selected sepsis
patients, including 3 each from sepsis (top), severe sepsis (middle), and septic shock (bottom) severity strata. On the right are 9 sepsis patients randomly chosen
but based on 3 specific pairings of treatment topics (overall clinical signature comprised of at least 0.33 from both cellulitis and pneumonia; complex care and di-

arrhea; and heart failure and urinary tract infection).

spurred the development of national and international standards
and guidelines that use compliance with timed bundles to grade hos-
pitals on their sepsis performance.”**! However, as we show in this
study, there is tremendous variation in the timing of antibiotics and
the volume of fluid resuscitation that is attributable to the comple-
ment of coexisting clinical conditions within each patient. On aver-
age, patients with abdominal pathology received antibiotics the
latest, reflecting the uncertainty of confirming infection as the rea-
son for symptoms in these patients. Similarly, patients with condi-
tions marked by a high risk for fluid overload—congestive heart
failure and kidney disease with dialysis—received the lowest volume
of resuscitation. Again, a “one-size-fits-all” approach for measuring
sepsis care quality ignores the reality of underlying diversity that is
revealed when computable clinical signatures can be used to quanti-
tatively describe sepsis clinical heterogeneity.

There are several potential future applications and refinements
to our approach that can facilitate improved scientific discovery and
clinical treatment in sepsis. First, this method can be applied to
existing randomized controlled trial or observational data to under-
stand how patients’ clinical signatures modify their response to
treatment. For example, recent landmark trials compared various
protocolized treatment approaches in sepsis and found no differen-
ces in outcomes between patients.’® Quantifying the clinical signa-
tures of individual patients has begun to show promise for revealing
subgroups within the overall study population who responded dif-
ferentially to protocolized care.”> We have provided our code so
that our approach is easily reproducible in any EHR-based data set.
Second, quantifying the clinical heterogeneity in sepsis patients can
help ensure that public reporting sepsis metrics are applied to the
right population. For example, the timing of antibiotic administra-

tion should account for differences in early treatment when infec-
tions are easily identifiable (eg, cellulitis, pneumonia) versus when
they are more challenging (eg, abdominal symptoms, weakness). Fi-
nally, identifying clinical subgroups in real-time could help enhance
medical recommender systems,>”

care.”

resource allocation, and targeted

It is essential to note that, in this study, we examined early sepsis
heterogeneity by focusing on treatment patterns captured with clini-
cal EHR data. However, sepsis heterogeneity arises from several
sources including genetic factors, host-pathogen interactions, im-
mune system responses, pathophysiologic disease mechanisms, and
temporal trajectories of illness.!?>>*° What remains unknown is
the degree to which the treatment heterogeneity we observed corre-
lates with these other dimensions. For example, it may be that sepsis
endotypes''»?* (subgroups that capture similarity across disease
mechanisms or host responses) can cluster patients together who
exhibited highly disparate computable clinical signatures but would
respond positively to the same treatment. What is also unknown is
the extent to which the treatment heterogeneity we observed among
sepsis patients is common to other inpatients. For example, is the
hallmark of heterogeneity in sepsis treatment substantially greater
than that present in other acute, high-impact conditions like heart
failure?

The primary strength of our study was the careful use of an em-
piric data-driven approach to identify treatment topics and clinical
signatures without specifying any preexisting categorization or crite-
ria. We evaluated the statistically-generated topics against clinical
documentation and further compared them across a set of common
sepsis measures. These comparisons confirmed wide variability in
treatment topics and outcomes belying the population means. Our



Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12

1475

Ssa\meeN\
uoisnjued

O

0
’ﬂbw

Cﬁ‘ﬁcafca,e

m Y

l Dialysis

:‘-; Pyelo

- =
= =
s %
: 3
B
Y

Figure 4. “Dominant topic” chord plot representing the co-occurrence of EHR topics within individual computable clinical signatures. The 42 topics are arrayed
on the periphery with the width of each band representing the number of patients with that topic being their dominant or second topic in the clinical signature.
Each line represents a single hospitalization connecting a dominant topic (bands around the periphery and lines arising from the bands of the same color) to the
next topic (endpoint of the line with different color than the adjacent band). The width of the lines represents the number of hospitalizations with that same co-oc-

currence as the dominant and second topics in their clinical signature.

Abbreviations: AbdPain, abdominal pain; ACS, acute coronary syndrome; AFib, atrial fibrillation; AKI, acute kidney injury; CHF, congestive heart failure; COPD,
chronic obstructive pulmonary disease; DKA, diabetic ketoacidosis; FTT, failure to thrive; GIBleed, gastrointestinal bleeding; NIPPV, non-invasive ventilation;

Osteo, osteomyelitis; PNA, pneumonia; UTI, urinary tract infection.

study thus demonstrates the potential value of this approach for pre-
cisely quantifying and comparing clinical heterogeneity within and
between populations using treatment topics within granular EHR
data.

The main limitation of our study is that it was designed for hy-
pothesis generation; thus, future studies are needed to confirm that
these topics and computable clinical signatures reliably distinguish
clinical subgroups that are responsive to differential treatments. Sec-
ond, our study was conducted within a single health care system
which may impact the generalizability of our findings. Third, we
could not account for potential heterogeneity arising from individ-
ual clinical practice which could impact the reliability of topic gener-
ation. It is possible that some of the heterogeneity we captured
actually arises from differences in practice rather than differences
among sepsis patients. Fourth, while we assigned summary clinical
labels to the treatment topics to improve recognition, the labels
should be viewed as only approximations. Similarly, we used an em-
pirical approach for identifying the optimal number of topics based
on the findings of prior studies; however, it is possible that we cap-
tured only a local minima for BIC in our data. Finally, we limited
ourselves to a single interval in hospitalization which does not fully

capture the preceding and subsequent trajectory of illness. We also
did not incorporate the longitudinal sequencing of EHR items.

In summary, in a multicenter cohort of sepsis patients, we applied
machine learning to generate computable EHR-based clinical signatures
that quantified treatment topics and, therefore, clinical heterogeneity in
early sepsis care. Our findings confirmed that substantial treatment het-
erogeneity in sepsis manifests at both the patient- and population-level.
Future research is needed to establish whether the profound heterogene-
ity we uncovered can drive improvements in the targeted and personal-
ized care of sepsis patients.
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Figure 5. Clinical sepsis measures, stratified by dominant treatment topic of each patient’s computable clinical signatures during sepsis hospitalization. a) Mean
time to first antibiotic from emergency department triage in relation to mean amount of intravenous fluid administered in the first 24 hours of hospitalization; b)
Mean hospital mortality in relation to mean chronic comorbid disease burden (COPS2) score.
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