
Research and Applications

Reducing drug prescription errors and adverse drug

events by application of a probabilistic, machine-learning

based clinical decision support system in an inpatient

setting

G Segal ,1 A Segev,1 A Brom,1 Y Lifshitz,1 Y Wasserstrum,1 and E Zimlichman2

1Internal Medicine “T,” Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Sackler Faculty of Medicine, Tel Aviv University,

Tel Aviv, Israel and 2Management Wing, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Sackler Faculty of Medicine,

Tel Aviv University, Tel Aviv, Israel

Corresponding Author: Gad Segal, MD, Internal Medicine “T,” Tel-Hashomer, 2 Sheba Road, Ramat Gan 5265601, Israel

(gad.segal@sheba.health.gov.il)

Received 18 December 2018; Revised 4 June 2019; Accepted 10 July 2019

ABSTRACT

Background: Drug prescription errors are made, worldwide, on a daily basis, resulting in a high burden of mor-

bidity and mortality. Existing rule-based systems for prevention of such errors are unsuccessful and associated

with substantial burden of false alerts.

Objective: In this prospective study, we evaluated the accuracy, validity, and clinical usefulness of medication

error alerts generated by a novel system using outlier detection screening algorithms, used on top of a legacy

standard system, in a real-life inpatient setting.

Materials and Methods: We integrated a novel outlier system into an existing electronic medical record system,

in a single medical ward in a tertiary medical center. The system monitored all drug prescriptions written during

16 months. The department’s staff assessed all alerts for accuracy, clinical validity, and usefulness. We recorded

all physician’s real-time responses to alerts generated.

Results: The alert burden generated by the system was low, with alerts generated for 0.4% of all medication

orders. Sixty percent of the alerts were flagged after the medication was already dispensed following changes

in patients’ status which necessitated medication changes (eg, changes in vital signs). Eighty-five percent of the

alerts were confirmed clinically valid, and 80% were considered clinically useful. Forty-three percent of the

alerts caused changes in subsequent medical orders.

Conclusion: A clinical decision support system that used a probabilistic, machine-learning approach based on

statistically derived outliers to detect medication errors generated clinically useful alerts. The system had high

accuracy, low alert burden and low false-positive rate, and led to changes in subsequent orders.
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INTRODUCTION

Preventable prescription errors and adverse drug events (ADEs) are

estimated to account for 1 out of 131 outpatient deaths and 1 out of

854 inpatient deaths in the US,1 with a direct cost of more than $20

billion and liability cost of more than $13 billion.2–4 It is recognized

that while prescription errors and ADEs are ultimately caused by

errors made by individuals, they are failures in computerized health

information systems.5
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Current approaches to minimize such errors include various clin-

ical decision support (CDS) alerting systems, but they often identify

only a small fraction of the errors and suffer from high incidence of

false alerts, resulting in “alert fatigue,” inevitably disrupting work-

flows.6–8 In addition, being based on a predetermined database and

rules, such CDS systems (CDSS) inherently miss error types that

have not been anticipated or programmed into the decision support

software rules.9 Moreover, in contrast to rule-based CDSS that mon-

itor the actual instance of drug prescription and no longer affect the

ongoing treatment of patients, there is a need for systems that could

actively monitor and identify emerging ADEs along the evolution of

the hospitalization to enable early intervention and reduce harm.10

The dynamic nature of patient status during hospitalization, due to

either clinical improvement or deterioration, raises a need for more

dynamic CDSS in order to better ensure patient safety.

MedAware (Raanana, Israel) is a commercial software screening

system developed for identification and prevention of prescription

errors. It uses machine-learning algorithms to identify and intercept

potential medication prescription errors. In a previous study per-

formed on retrospective clinical data extracted from an electronic

health system, the system generated alerts that might otherwise be

missed with existing CDS systems. The majority (75%) of these

alerts were found to be clinically useful.11

In this study, we evaluated the system’s performance in a real-

life setting, identifying medication errors and ADEs in a 38-bed in-

patient department of internal medicine in a tertiary medical center.

The system was operating on top of a legacy standard CDSS.12 The

metrics measured were: 1) alert burden, 2) alert accuracy and clini-

cal relevance, and 3) physician’s response to the alerts.

MATERIALS AND METHODS

The computerized decision support system
The CDSS studied in this study uses machine-learning algorithms to

identify and intercept potential medication prescription errors in

real time. After analyzing historical electronic medical records, the

system automatically generates, for each medication, a computa-

tional model that captures the population of patients that are most

likely to be prescribed a certain medication and the clinical environ-

ment and temporal circumstances in which it is likely to be pre-

scribed. This model can then be used to identify prescriptions that

are significant statistical outliers given patients’ clinical situations.

Examples for such outliers are medications rarely or never pre-

scribed to patients in certain situations, such as birth control pills to

a baby boy, or an oral hypoglycemic medication to a patient without

diabetes. Such prescriptions are flagged by the system as potential

medication errors during real-time prescribing events. The system

intervenes at 2 points in the physician’s workflow: 1) synchronous

alerts—the alert pops up during the prescribing process if the physi-

cian chooses a medication which is an outlier to the patient’s clinical

general characteristic and current clinical situation, and 2) asynchro-

nous alerts—generated after the medication order was already en-

tered into the system following a relevant change in the patient’s

profile (eg, new laboratory test results or a change in vital signs that

have rendered 1 of the active medications an outlier).

Synchronous alert types include:

• Time-dependent irregularities (synchronous): an alert flagged

when existing data in the patient’s profile render the prescribed

medication inappropriate or dangerous (eg, prescribing an anti-

hypertensive medication to a patient in septic shock).

• Clinical outliers: an alert flagged when a certain medication does

not fit the patient’s clinical profile (eg, when a hypoglycemic

drug prescribed to a patient without a diagnosis of diabetes

mellitus nor indices indicative of such a disease [such as hyper-

glycemia or previous hypoglycemic drugs]).
• Dosage outliers: an alert flagged when a certain medication dos-

age is considered as an outlier with respect to the machine-

learned dosage distribution of that medication in the population

and/or the patient’s own history (eg, rare dose, rare dosage unit,

rare frequency, rare route).
• Drug overlap: an alert flagged when parallel treatment with 2

medications of the same group (or the same indication) pre-

scribed in circumstances that defy the usage of such regimens (eg,

2 types of statins).

Asynchronous alert types include:

• Time-dependent irregularities (asynchronous): an alert flagged

when changes in the patient’s profile occur after the prescription

was made, rendering a certain medication as inappropriate or

dangerous to continue (eg, when the blood pressure drops and

continuation of anti-hypertensive medications becomes poten-

tially harmful).

Study setting and patient population
In April 2016, after Sheba Medical Center’s ethics committee ap-

proved this study, the system was installed in a single 38-bed inter-

nal medicine department at Sheba Medical Center, a 1800-bed

academic medical center in Israel. Initially, the system operated in a

“silent mode” for several months. During this period, drug prescrip-

tions were monitored, patients’ profiles analyzed, outliers detected,

and appropriate alerts generated. Still, alerts were not evident to the

department’s physicians. Once performance level was acceptable, in

July 1 2016, the system switched to live mode, and the physicians

started receiving the alerts in the electronic health record (EHR) en-

vironment (Chameleon by Elad Systems, Tel Aviv, Israel) and could

respond to them (ie, accept or reject both synchronous and asyn-

chronous scenarios).

The first 6 months of live operation were considered a “run-in”

period, in which data consistency problems were identified and han-

dled. These included identification of abnormal laboratory results

due to technical issues such as a hemolytic blood samples and ana-

lytics of bodily fluids other than blood (eg, pleural and peritoneal

fluids), identification, and temporarily overlooking of medications

on “hold”. Following the “run-in” period, the system was declared

operational and has been active ever since. For this study, data were

collected and analyzed from all inpatient EHR files for patients ad-

mitted to Internal Medicine “T” in Sheba Medical Center, Israel, be-

tween July 1, 2016 and April 30, 2018 (Figure 1).

Types of alerts and their process of validation
Data on the alert types, alert burden, and physicians’ responses,

were extracted from the system’s database. Assessment of the alerts’

accuracy and clinical relevance were based on the physician’s

Figure 1. Study duration.
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response to the alerts in real time and then validated in biweekly

interviews with the clinical champion (GS) in the medical depart-

ment, in which all alerts were manually reviewed and ranked

according to their:

• Accuracy—were there any data-related issues that caused a false

alarm? If yes, then accuracy ¼ zero; if not, accuracy ¼ one. For

example, initially, antiplatelet agents were flagged as inappropri-

ate after thrombocytopenia was detected in fluids other than

blood (accuracy ¼ 0, validity ¼ 0, usefulness ¼ 0). Such accuracy

issues were handled by assimilating the difference between differ-

ent origins of laboratory samples into the CDSS algorithms. As a

result, such inaccuracies diminished significantly.
• Clinical Validity—was there clinical justification, as docu-

mented in the medical record, for this medication to be pre-

scribed to the patient? If yes, then validity ¼ zero; if not (ie, the

medication had no clinical justification and, hence, is a likely

error), then validity ¼ one. For example, anti-thyroid medica-

tions prescribed to a patient without any documentation of thy-

roid disease and flagged as inappropriate (accuracy ¼ 1,

validity ¼ 1, usefulness ¼ 2).
• Clinical Usefulness—was the alert clinically useful to the physi-

cian? (Zero ¼ alert irrelevant to this patient; 1 ¼ no clinical rele-

vance; 2 ¼ clinically relevant alert even if physician overrides it;

3 ¼ clinically relevant alert and the physician should modify

treatment accordingly). For example, many patients who suffer

from chronic lung diseases have a high partial pressure of CO2 in

their blood. For such patients, sedative medications are poten-

tially harmful since they might worsen respiratory failure. In

many instances, the warning against using such medications in

the face of high CO2 was considered valid and clinically relevant

but still overridden by the attending physician who considered

the medication’s effects to be safely tolerated (accuracy ¼ 1,

validity ¼ 1, usefulness ¼ 2).

Thus, each alert received 3 scores (ie, [accuracy ¼ one, validity ¼
zero, usefulness ¼ zero] ¼ no data issues were found; however, we

found a justification for the medication in the patient records. For

example, an alert on a new prescription for anticoagulation, while a

physician’s note states that the patient has atrial fibrillation: [Accu-

racy ¼ 1, validity ¼ 1, usefulness ¼ 3] ¼ a clinically relevant alert,

for example, a drug name mix-up resulting in prescribing chemo-

therapy to a healthy individual).

To accurately rank the algorithm-generated alerts, the patient’s

complete longitudinal electronic medical record, was manually

reviewed by the clinical champion, including structured data as

well as unstructured data, such as physician’s notes, textual

problem list, etc.

Data analysis and statistical methods
Patient IDs were anonymized: a random number was generated for

each ID and a conversion table saved in a secured location on Sheba

Medical Center’s servers. The anonymized file was then subjected to

statistical analysis, including 1) distribution of the number of alerts

per type (time-dependent, dosage, etc), 2) alert accuracy and clinical

relevance, calculated according to the clinical champion’s classifica-

tion of each alert; 3) physician’s response to the alert assessed by an-

alyzing changes in prescription (hold/stop/dosage change)

immediately following synchronous alerts and within a few hours

following asynchronous alerts.

RESULTS

Alert timing and burden
During the period of this study, there were 4533 admissions of 3160

patients, all of whom were included in the study. Physicians pre-

scribed 78 017 medication orders. The alert burden generated by the

system throughout the duration of the study was low with 315 alerts

on 282 prescriptions, which were 0.4% of all prescriptions or an av-

erage of 4.5 alerts every week for the whole department.

Of the alerts generated, 40% were flagged synchronously during

the medication order process, and 60% were flagged later during

the monitoring phase, after the medication orders were already ac-

tive, following a change in the patient clinical state (ie, new lab re-

sult, vital signs, etc).

Time-dependent alerts were the most common (64.8%), fol-

lowed by dosage outliers (30.2%), clinical outliers (3.8%), and drug

overlap (1.3%). A detailed list of the synchronous and asynchronous

alerts is presented in Tables 1 and 2, respectively. It is notable that

clinical outlier alerts were generated on a wide range of medications,

without a “common alert.”

Alert accuracy and clinical relevance
Of the alerts generated during the study period, 89% were accurate

(EHR data support the alert), 85% were clinically valid (no justifica-

tion found in the EHR to support the medication), and 80% were

clinically useful (alert clinically justified).

Physician’s response to the alerts
During the 16-month duration of the study, 135 medication orders

(48% of the accurate alerts) were stopped or modified within a short

time (median of 1 hour, interquartile range: [0.07, 4] hours) follow-

ing alert generation by MedAware’s system. Of these, 39% of the er-

roneous medication orders were modified during the order of the

medication (synchronous flags), and 61% were modified during

monitoring phase (asynchronous flags) following a change in labora-

tory results or vital signs.

The most common alerts causing a change in physician’s behav-

ior (ie, alerted medication stopped or modified) were dosage

alerts—followed by time-dependent alerts triggered by bradycardia,

elevated liver function tests, and hypotension (Table 3).

Comparison to the medical center’s legacy CDSS
The performance of Sheba Medical Center’s legacy CDSS was

assessed in a recent study by Zenziper Straichman et al.12 The legacy

CDSS alerts mostly on drug-to-drug interactions, dosage, and drug

overlap. Compared to the legacy CDSS, the system generated almost

a 100 times fewer alerts, which were 5 times more clinically relevant

and caused more than 8 times as many changes in prescribing

(Table 4).

The legacy CDSS generated a high alert burden (37% of pre-

scriptions were flagged) with a high dismissal rate by physicians

(�95% of the alerts were ignored). Most of the alerts generated by

the legacy CDSS were related to drug-to-drug interactions and dos-

ages. The MedAware system was deployed as an add-on to the leg-

acy CDSS (ie, the system’s alerts were displayed in addition to the

legacy CDS system’s, they did not replace them) and differentiated

itself from the legacy system by using a different look-and-feel user

interface. As the system’s alerts did not relate to drug-drug interac-

tions, there was minimal overlap between the systems involving only

high-dosage alerts. In these few cases, physicians received 2 alerts on

the same prescription.
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There were no conflicts between the systems as each reflected

different knowledge types: the legacy system reflected what is de-

scribed in the drug leaflet, and MedAware reflected the statistics

based on physician’s practice.

DISCUSSION

Prescription errors and ADEs are associated with substantial mor-

bidity and mortality and with a significant preventable wasteful

health care cost. Currently available CDS systems targeted to ad-

dress this problem suffer from several flaws: 1) low coverage (ie,

they identify only a small predefined subset of errors, such as drug

interactions and allergies); 2) high alert burden (flagging more than

10% of prescriptions in best cases); and 3) high false-alarm rate,

Table 1. Synchronous alert distribution

Alert Type Most common Clinical scenario Most common medications flagged Percent

Time dependent alerts (synchronous) 47%

Hypercarbia Respiratory failure, sedation Sedatives, opioid narcotics 22%

Hyponatremia SIADH thiazide diuretics and SSRI’s 5%

Disrupted liver function Hepatitis, Sepsis and septic shock Statins 3%

Bradycardia Cardiac arrhythmia Beta blockers, calcium channel blockers 3%

Hyperkalemia Acute kidney injury Potassium sparing diuretics, Angiotensin-

Converting-Enzyme inhibitors

3%

Thrombocytopenia Sepsis and DIC Anticoagulants, anti-aggregates 3%

Hypotension Sepsis and septic shock, sedation Vasodilators 3%

Disrupted coagulation

tests (prolonged PT/INR)

sepsis Anticoagulants 2%

Hypokalemia sepsis Diuretics, potassium associating resins 2%

Hypoglycemia Sepsis and septic shock Insulin, oral hypoglycemic drugs 1%

Dosage alerts 42%

High dosage 23%

Low dosage 18%

Rare unit 1%

Clinical alerts 11%

Abbreviations: DIC, disseminated intravascular coagulation; SIADH, syndrome of inappropriate antidiuretic hormone secretion; SSRI, selective serotonin reup-

take inhibitor.

Table 2. Asynchronous time-dependent alert distribution

Time-Dependent Alert Typea Most common Clinical scenario Most common medications flagged Percent

Hypercarbia Respiratory failure, sedation Sedatives, opioid narcotics 11.52%

Bradycardia Cardiac arrhythmia Beta blockers, calcium channel blockers 10.29%

Hypotension Sepsis and septic shock, sedation Vasodilators 4.90%

Thrombocytopenia Sepsis and DIC Anticoagulants, anti-aggregates 4.66%

Disrupted liver function Hepatitis, sepsis, and septic shock Statins 4.41%

Hypoglycemia Sepsis and septic shock Insulin, oral hypoglycemic drugs 4.17%

Hyperkalemia Acute kidney injury Potassium sparing diuretics, Angiotensin-

Converting-Enzyme inhibitors

2.94%

Disrupted coagulation

tests (prolonged PT/INR)

Sepsis Anticoagulants 2.45%

Hypokalemia Sepsis Diuretics, potassium associating resins 1.72%

Hyponatremia SIADH Thiazide diuretics and SSRI’s 0.49%

Acute kidney injury

(elevated creatinine)

Sepsis and septic shock Angiotensin-Converting-Enzyme inhibitors 0.25%

Hypercalcemia Malignancy calcium and vitamin D derivatives 0.25%

Elevated CPK levels Hepatitis, convulsions, rhabdomyolysis Statins 0.25%

Abbreviations: DIC, disseminated intravascular coagulation; SIADH, syndrome of inappropriate antidiuretic hormone secretion; SSRI, selective serotonin reup-

take inhibitor.
aAsynchronous event/change in the patient’s profile necessitating certain medications to be flagged.

Table 3. Most common alerts causing physician behavior change

Alert Type Most common

Clinical scenario

Most common

medications flagged

Percent

High dosage 26%

Low dosage 18%

Bradycardia Cardiac

arrhythmia

Beta blockers 9%

Disrupted

liver

function

Hepatitis, sepsis

and septic

shock

Statins 8%

Hypotension Sepsis and septic

shock, sedation

Vasodilators 8%
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exceeding 90% in most cases.12–14 These result in “alert fatigue,”

causing physicians to ignore these alerts altogether.12,13 Moreover,

most systems focus on identifying the potential errors at the pre-

scribing event but fail to identify ADEs that occur in ongoing active

prescriptions due to the frequent changes, which are characteristic

of patients during their in-hospital stay.

Indeed, research has shown that a wide variability exists regarding

the ability of common vendor-developed computerized physician or-

der entry systems with CDS to flag errors in medication prescriptions.

One study used a simulation tool designed to assess how well safety

decision support worked when applied to medication orders in com-

puterized order entry.15 The researchers found a large variability in

performance both between vendor systems and between hospitals us-

ing similar vendor systems—ranging from an ability to flag 80% of

errors to some systems being able to flag only 10%. In another study,

researchers found that, in community hospitals implementing com-

puterized physician order entry with some level of CDS, only a mod-

est decrease in ADEs with an increase in potential ADEs (errors that

did not cause harm) occurred.16 A return on investment analysis done

for these hospitals did not show significant financial returns.17

MedAware is a CDSS that uses statistically derived outliers to

detect potential medication errors and ADEs. Here, for the first

time, we describe the performance of such a system in a live inpa-

tient setting following integration with the local EHR. This novel

approach targets the challenges of current CDS systems: 1) Wider

span/coverage of potential errors flagged: the system is not limited

to predefined types of errors and identifies a wide range of outliers,

including unanticipated types of errors;11 2) Reduced burden of

alerts: the system was associated with a very low alert burden and

flagged 0.4% of medical orders as potentially dangerous prescrip-

tion errors; 3) Decreased false-alarm rate: 80% of alerts were con-

sidered clinically justified by the physicians, and only 20% were

regarded as false alarms. In subsequent analysis, most of the errors

related to data acquisition issues; 4) Diminished alert fatigue: due to

its low alert burden and low false-alarm rate, physicians heeded

alerts provided by the system (evidently, they differentiated between

such alerts and alerts flagged by the legacy system that continued

working in the background). This is evident by the fact that prescrib-

ing physicians changed their behavior and modified/stopped the

medical orders following 43% of the alerts; 5) Surveillance of post

prescribing events: the system monitors changes in the patient record

to identify potentially emerging ADEs which may be associated with

an active medication. This resulted in 60% of the alerts generated

after the medication was already prescribed. As most current sys-

tems do not flag already active prescriptions, they would likely not

have identified these ADEs.

As the system is based on probabilistic outliers, and, as most of

the alerts generated by the system are unique and not addressed by

legacy CDS systems, it is difficult to estimate its sensitivity (ie, what

errors are missed by the system). We assume that not a few errors

are missed and there is no “perfect” system that can catch all, but

our belief is that getting physicians to pay attention to the alerts is

key to reducing harm—even at the cost of missing a few relevant

alerts. Moreover, the system does not currently intend to replace the

legacy systems but be an add-on to current CDS systems, adding an

additional layer of safety.

We anticipate that the main unique impact of the system in addi-

tion to the legacy CDSS will mostly be in:

1. Addition of clinical outlier alerts (ie, wrong drug to the wrong

patient)

2. Postprescribing surveillance (ie, continuously evaluating the risk

of a medication after the medication was ordered, following a

change in the patient’s lab profile, vitals, etc)

3. Optimization of the alerts, resulting in low alert burden, high

clinical relevance, and physician response

Moreover, we anticipate that probabilistic analysis will be imple-

mented in the next-generation rule-based systems to optimize and

personalize their alerts based on their performance on large-scale

real-time clinical data.

Our study is limited in scope as it was conducted in a single in-

ternal medicine department in 1 hospital. In addition, the clinical ac-

curacy of alerts was determined by a single “clinical champion,” a

potential drawback of the validation process. Moreover, the legacy

CDSS was assessed in a different study using different methodolo-

gies, which might influence the results of the comparison between

them. Further analysis of this CDS system’s potential should be

sought after deployment in other departments and several hospitals.

CONCLUSION

To conclude, in this study we have shown that outlier detection,

based on machine learning and statistical methods, generates clini-

cally relevant alerts with good physician response and low alert fa-

tigue in a live, busy, hospital inpatient setting.
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