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ABSTRACT

Objective: Geriatric syndromes such as functional disability and lack of social support are often not encoded in

electronic health records (EHRs), thus obscuring the identification of vulnerable older adults in need of addi-

tional medical and social services. In this study, we automatically identify vulnerable older adult patients with

geriatric syndrome based on clinical notes extracted from an EHR system, and demonstrate how contextual in-

formation can improve the process.

Materials and Methods: We propose a novel end-to-end neural architecture to identify sentences that contain

geriatric syndromes. Our model learns a representation of the sentence and augments it with contextual infor-

mation: surrounding sentences, the entire clinical document, and the diagnosis codes associated with the docu-

ment. We trained our system on annotated notes from 85 patients, tuned the model on another 50 patients, and

evaluated its performance on the rest, 50 patients.

Results: Contextual information improved classification, with the most effective context coming from the sur-

rounding sentences. At sentence level, our best performing model achieved a micro-F1 of 0.605, significantly

outperforming context-free baselines. At patient level, our best model achieved a micro-F1 of 0.843.

Discussion: Our solution can be used to expand the identification of vulnerable older adults with geriatric syn-

dromes. Since functional and social factors are often not captured by diagnosis codes in EHRs, the automatic

identification of the geriatric syndrome can reduce disparities by ensuring consistent care across the older adult

population.

Conclusion: EHR free-text can be used to identify vulnerable older adults with a range of geriatric syndromes.

Key words: geriatric syndrome, vulnerable geriatric population, electronic health records, clinical notes, natural language proc-

essing, deep neural network, sentence classification

INTRODUCTION

Vulnerable older adult populations are at increased risk for a wide

range of medical and social conditions. A variety of factors affecting

vulnerable geriatric populations can lead to health disparities that

go unrecognized by medical professionals. Some of these factors are

termed geriatric syndromes, which are a set of complex symptoms

with high prevalence in older adults that do not fit specific disease

categories.1 Geriatric syndromes such as falls, incontinence, lack of
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social support, and frailty, are often associated with increased mor-

bidity and poor outcomes, which can substantially diminish the

quality of life among vulnerable older adults.2,3

While identifying and studying vulnerable older adults are of

great interest to health disparity researchers,4 geriatric syndromes

are difficult to study due to their complex nature and poor represen-

tation in diagnosis codes (eg, International Classification of Diseases

[ICD]).5–7 Coding challenges limit research opportunities and create

disparities between groups of patients where geriatric syndromes are

more difficult to track. While many of these symptoms are contained

in the free-text of EHRs,5–7 the lack of structured data may lead to

clinicians and researchers being unaware of ongoing issues affecting

health equity, such as identifying vulnerable patients, setting

inclusion and exclusion criteria in clinical trials, and aligning

provider-driven population health efforts with public health goals

and policies.8–11

To address the challenges in identifying vulnerable patients with

geriatric syndromes, we automatically discover geriatric syndromes

from the free-text of EHRs using machine learning algorithms. The

automatic identification of these syndromes can help assure that

consistent care is delivered to a medically complex and heteroge-

neous elderly population. We focus on 10 common geriatric syn-

drome constructs: falls (FL), malnutrition (ML), dementia (DE),

severe urinary control issues (UC), absence of fecal control (BC), vi-

sual impairment (VI), walking difficulty (WD), pressure ulcers (PU),

lack of social support (SS), and weight loss (WL).

We use information extraction (IE) techniques to identify

patients that exhibit geriatric syndromes using EHR free-text. IE is a

natural language processing (NLP) task to transform free-text into

structured output. In this setting, we seek to identify any of the 10

geriatric syndrome labels (ie, constructs) based on a clinician’s note

in an EHR. We create an IE system using supervised machine learn-

ing, whereby labeled textual examples of the 10 constructs are used

to train a statistical NLP model.

Traditionally, IE systems analyze 1 sentence at a time, meaning

that each sentence in the clinical note is independently analyzed to

determine if it expresses a syndrome for a patient. This technique

works well for common clinical IE tasks, such as identifying disor-

ders12 or medications13 whose presence can be determined by exam-

ining only the immediate context around the mention. However, a

key challenge of geriatric syndrome identification is the ambiguity

exhibited in the local context within the sentence.5–7 Consider the

sentence “patient has lost a few pounds since May.” Losing weight

could be either unintentional (a geriatric syndrome construct) or in-

tentional (not a geriatric syndrome construct). Thus, a single sen-

tence can ambiguously describe a geriatric syndrome, while the

disambiguating context is out of reach of traditional IE systems.

This study improves the identification of geriatric syndrome con-

structs by expanding the context considered by the IE system. We

evaluate methods for incorporating 3 types of contexts into the IE

system: sentences adjacent to the sentence under consideration, the

entire clinical document, and diagnosis codes (ie, ICD9 codes)

extracted from both structured and unstructured data. We frame the

task of identifying geriatric syndromes as sentence classification:

“which of the 10 geriatric syndromes, if any, are exhibited by this

sentence?”. We build on recent work using deep neural networks for

general NLP14 and clinical NLP15 tasks to build a sentence classifi-

cation system. We then propose a novel end-to-end neural architec-

ture that incorporates the 3 types of contexts. Our experiments

show that the addition of contexts significantly improves the identi-

fication of geriatric syndromes.

OBJECTIVE

We propose a method to automatically identify vulnerable older

adults with geriatric syndromes from unstructured free-text from

EHRs. We introduce a deep learning system for sentence classifica-

tion that incorporates contextual information from surrounding sen-

tences, the entire document, and structured diagnostic codes. We

demonstrate that contextual information improves the accuracy of

identifying geriatric syndromes.

MATERIALS AND METHODS

Data collection and annotation
The anonymized EHR data used in this study were provided by a

large multispecialty medical group in Massachusetts, United States

for a cohort of elderly patients enrolled in a regional Medicare Ad-

vantage health maintenance organization. We utilized a cohort of

18 341 members aged 65 or older who received continuous medical

and pharmacy benefits coverage for at least 24 months from Jan 1,

2011 to Dec 31, 2013. The EHR data included both structured fields

and unstructured free-text (eg, clinical notes). All data used in this

research were stored on a secure network approved by the institu-

tional review board of Johns Hopkins School of Public Health (IRB

#6196).

To enable our study, we further constructed a data set with geri-

atric syndrome constructs/labels. We randomly assigned a sample of

185 patients from the larger cohort of 18 341 members,5,6 resulting

in 8442 clinical notes. We then used the clinical Text Analysis and

Knowledge Extraction System (cTAKES)16 to segment the notes into

sentences. The sentence detector of this system extends

OpenNLP’s17 supervised sentence detector to the medical domain

and predicts whether end-of-line characters (eg, period, question

mark, exclamation mark, new line, tab) indicate the end of a sen-

tence. We obtained 150 947 sentences in total.

Three physicians carefully examined all 8442 notes to determine

the mentions of geriatric syndrome constructs for each sentence and

also to identify the words/phrases that indicate the constructs. Be-

fore the formal annotation, the physician annotators were trained

using a shared guideline and coded a similar text to ensure an ac-

ceptable consensus.5,6 Due to the considerable annotation workload

(150 974 sentences), we did not ask all annotators to label all senten-

ces. Each sentence was annotated by 1 of the physicians and the

annotations took around 240 person-hours in total. As sentences

were split among annotators, we were unable to calculate inter-rater

agreement for the entire annotated text.

In the annotated data set, only 3.4% of sentences were identified

to contain at least 1 of the 10 constructs. Our study results are based

on the annotated data set (representing 185 patients) while the unla-

beled notes (representing 18 156 patients) were used to train unsu-

pervised embeddings that enhance our models (detailed in the

following section). Table 1 shows a few sample sentences from our

data set. We have provided additional examples in the

Supplementary Material.

Proposed model
Our analysis of the labeled data found that manual labeling of clini-

cal notes for geriatric syndromes is a challenging task. While broad

agreement occurred on which sentences contain a construct, signifi-

cant differences existed between the specific words selected by each

annotator that indicated a construct. For example, some annotators

excluded words they deemed unimportant, while others included
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them (eg, “with a walker,” “walks with a walker,” or “walker” are

parts of the same sentence tagged by different annotators for walk-

ing difficulty). Using the same data set, our prior work experimented

with regular expressions for geriatric syndrome identification5,6;

however, that study focused on evaluating precision and not recall

thus lacking a test set which we could use to assess our current ap-

proach. In other words, the inconsistencies made it challenging to

rely on statistical information extraction with a sequence tagger, in

which each word must be correctly identified as part of a construct.7

Since our goal is to identify patients and records—not individual

phrases—we instead formulated the task as sentence classification:

that is, whether the sentence indicates the presence of a geriatric syn-

drome.

We construct a multi-class sentence classification model, as sen-

tences with more than 1 construct are extremely rare (0.02% in our

data set). Sentence classification systems are widely used across vari-

ous tasks in NLP, including sentiment analysis,18,19 opinion detec-

tion,20,21 and question type classification.22 Prior work has utilized

various architectures such as a convolutional neural network,23–25

long short-term memory (LSTM) recurrent neural networks,26–28

and, recently, Bidirectional Encoder Representations from Trans-

formers (BERT).29 Each approach learns a representation of the in-

put sentence, and utilizes that representation for making

classification decisions. In our work, we develop a deep neural net-

work to approach the sentence classification task, and adopt an

LSTM to learn a representation for the target sentence in our base

model.

We leverage context by augmenting a sentence classification

model with learned representations of the context. We consider 3

types of contexts: (1) the surrounding sentences, (2) the document as

a whole, and (3) the diagnosis codes (ie., ICD9 codes) mentioned in

the free-text of the note as well as the structured field of the encoun-

ter associated with the note.

Figure 1 illustrates our proposed model architecture. The model

consists of 4 modules: a sentence classification component repre-

senting the base model (ie, target sentence), and 3 optional advanced

modules that represent the contextual information (ie, surrounding

sentences, whole document, and diagnostic codes). The modules

used in our NLP architecture include (Figure 1) the following:

Target Sentence (T): This component learns a representation of

the sentence to classify. We use a Bidirectional Long Short-Term

Memory (BiLSTM) to learn a representation. The input to the

BiLSTM are word embeddings after applying dropout. We

pretrained word embeddings on the unlabeled notes of 18 156

patients (ie, representing the whole population of 18 341 patients

but excluding the 185 annotated patients; hereafter, large–unla-

beled) using the skip-gram model from Word2vec.30 We then used

an attention mechanism31 to produce a single representation of the

sentence that aggregates BiLSTM outputs after dropout for individ-

ual words. In the base model, this representation is then fed to a

fully connected layer followed by a dropout and a softmax to pro-

duce a classification for geriatric syndromes.

Surrounding Sentences (S): We define the surrounding sentences

as those adjacent to the target sentence in a fixed-size window (ie,

window size K is a tunable hyperparameter). To represent these sen-

tences as a vector, we leveraged Paragraph2Vec,32 an unsupervised

algorithm that learns a fixed-length feature representation from

variable-length pieces of texts, such as sentences and documents. We

trained Paragraph2Vec on all sentences in our large-unlabeled data

set, and applied the model to the labeled data set. Each of the

learned sentence embeddings are passed to an attention layer31 to

learn a single fixed-length representation for the surrounding senten-

ces. The attention layer aims to capture the importance of each sur-

rounding sentence.

Document (D): We trained Paragraph2Vec32 on all documents

of the large-unlabeled data set (ie, 18 156 patients), and applied the

model to infer the embeddings for documents in the labeled data set.

This vector is regarded as the document representation of the clinical

notes.

ICD9 Codes (I): The diagnosis codes used in our data set are

ICD9 codes. The ICD9 code typically appears in the structured field

of the encounter associated with the clinical note, but it can also be

mentioned in the note as free-text. Thus, we extracted ICD9 codes

from both sources. We employed Med2vec,33 an unsupervised algo-

rithm to learn a code representation on the large-unlabeled data set.

Med2vec uses the same concept of Word2vec’s skip-gram34 to

model the co-occurrences of ICD9 codes within a patient’s visit and

the co-occurrences of a patient’s visits in a context window. Since

each note may have multiple ICD9 codes, we used a max-pooling

layer to combine these codes’ representations (after dropout) to

form a fixed-length vector.

We concatenated each of the aforementioned learned representa-

tions into a single vector. This vector is provided to a fully connected

layer, followed by a dropout and a softmax which predicts 1 of the

possible 11 labels (ie, 10 geriatric syndrome constructs plus no con-

struct). We assessed all combinations of context modules, as well as

the standard target sentence model (detailed in Table 3). All models

were implemented in Google’s Tensorflow35 neural network library.

Table 1. Example sentences that contain a geriatric syndrome construct

Geriatric Syndrome Construct Example Sentencea

Absence of fecal control (BC) She has also been experiencing urinary incontinence and a few episodes of fecal incontinence too.

Dementia (DE) Patient has dementia and daughter feels as though it has worsened since Labor Day.

Falls (FL) She suffered a fall this past Tuesday and then was complaining of left shoulder pain.

Malnutrition (ML) Inadequate energy intake as evidenced by weight loss.

Pressure ulcers (PU) She has 2 intragluteal decubitus.

Lack of social support (SS) She is alone at home much of the day.

Severe urinary control issues (UC) She has a suprapubic catheter in (placed under interventional radiology at. . .) because she was

having pain on urination.

Visual impairment (VI) Has been seen by vision rehab and is registered with of blind.

Walking difficulty (WD) Ambulates slowly, uses Vital signs as above.

Weight loss (WL) Sed rate had been mildly elevated except the last one over 70 but in setting of acute illness and weight loss.

aPhrases annotated as geriatric syndrome constructs are bolded.
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Baselines
We compare 2 baseline systems that only consider the target sen-

tence with our proposed context-enhanced classification system.

Both baseline systems use a BiLSTM to learn a representation of

the target sentence. The first baseline constructs a single

sentence representation using max pooling over the hidden

states (BiLSTM-Max, Figure 2 left). The second baseline uses an

attention layer31 to combine the hidden states (BiLSTM-Att, Fig-

ure 2 right). Both models feed the sentence vector into a softmax

layer. Both models use word embeddings initialized by the

same skip-gram model used in our context model. Baseline

models do not use a fully connected network before the softmax

output.

Experimental setting
We randomly split our labeled data set of 185 patients into 85

patients as training, 50 as validation, and 50 as test. This approach

ensures that the system is assessed on both clinical notes and patients

that were unseen during training. For the very few sentences with

multiple constructs (0.02%), we replicated sentences and paired

them with each construct.

Table 2 details the construct distribution for both sentences and

patients. The data set has 2 key characteristics: First, the majority of

sentences (eg, 96.94% in training set) do not have a construct. Sec-

ond, constructs exhibit an imbalanced distribution. In the training

set, the 3 most common constructs are visual impairment (VI;

0.79% of sentences and 65.88% of patients), pressure ulcers (PU;

Figure 1. Our proposed context-aware geriatric syndrome identifier model. Context modules (S, D, and I) are optional.

Table 2. Data set statistics

Construct Training seta Validation setb Test setc

Sentence # (%) Patient # (%) Sentence # (%) Patient # (%) Sentence # (%) Patient # (%)

BC 40 (0.05) 12 (14.12) 46 (0.15) 4 (8.0) 8 (0.02) 3 (6.0)

DE 222 (0.3) 15 (17.65) 85 (0.27) 9 (18.0) 127 (0.28) 10 (20.0)

FL 379 (0.51) 37 (43.53) 79 (0.25) 21 (42.0) 189 (0.42) 23 (46.0)

ML 84 (0.11) 9 (10.59) 6 (0.02) 4 (8.0) 33 (0.07) 6 (12.0)

PU 512 (0.69) 53 (62.35) 348 (1.12) 30 (60.0) 425 (0.94) 30 (60.0)

SS 222 (0.3) 16 (18.82) 21 (0.07) 4 (8.0) 92 (0.2) 7 (14.0)

UC 92 (0.12) 16 (18.82) 38 (0.12) 6 (12.0) 119 (0.26) 13 (26.0)

VI 590 (0.79) 56 (65.88) 355 (1.14) 26 (52.0) 383 (0.85) 34 (68.0)

WD 99 (0.13) 21 (24.71) 87 (0.28) 14 (28.0) 237 (0.52) 19 (38.0)

WL 42 (0.06) 8 (9.41) 33 (0.11) 5 (10.0) 161 (0.36) 12 (24.0)

No construct 72 391 (96.94) – 30 028 (96.47) – 43 374 (96.07) –

Abbreviations: BC, absence of fecal control; DE, dementia; FL, falls; ML, malnutrition; PU, pressure ulcers; SS, lack of social support; UC, severe urinary con-

trol issues; VI, visual impairment; WD, walking difficulty; WL, weight loss.
a85 patients and 74 673 sentences.
b50 patients and 31 126 sentences.
c50 patients and 45 148 sentences.
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0.69% and 62.35%), falls (FL; 0.51% and 45.33%), and the 3 least

common constructs are absence of fecal control (BC; 0.05% and

14.12%), weight loss (WL; 0.06% and 9.41%), and malnutrition

(ML; 0.11% and 10.59%).

While we train our system to recognize constructs in a sentence,

we evaluate accuracy on both sentence and patient-level predictions.

A patient is considered associated with a geriatric syndrome con-

struct if any sentence in his/her clinical notes is predicted as that la-

bel. This allows the system to correctly assign a construct to a

patient if even 1 sentence in the patient’s record is correctly identi-

fied as exhibiting the construct. Since the data set exhibits a skewed

label distribution, we adopt precision (positive predictive value), re-

call (true positive rate), and F1 metric (harmonic mean of precision

and recall) for both sentence and patient evaluation. We report both

the micro-averaged (aggregate the contributions of all classes to

compute the average metric) and macro-averaged (compute the met-

ric independently for each class and then take the average) scores

over all the construct labels. Since we had a skewed data set, micro-

F1 was deemed the most appropriate metric in this study, which was

used to tune model hyperparameters.

We trained all models using an ADAM optimizer36 and set the

initial learning rate to 0.001. The dimensionality for all the embed-

ding layers was 100. We used the validation set to tune model

hyperparameters based on the sentence micro-F1, such as: the dimen-

sion of BiLSTM hidden states with a selection from the set (50,

100); the dimension of the fully connected layer with a selection

from (50, 100); dropout rates with a selection from (0, 0.1, 0.2, 0.3,

0.4, 0.5); and window size of surrounding sentences with a selection

from 2 (1 sentence before and after the target sentence), 10 (5 sen-

tences before and after), and 20 (10 sentences before and after). We

did similar hyperparameter tuning for the 2 baselines. To prevent

overfitting, we adopted an early-stop training strategy, in which we

stopped model training when performance did not improve for 10

epochs on the validation set.

RESULTS

In our experiments, we carefully tuned the hyperparameters of each

model on the validation set based on the sentence micro-F1 score.

We report the results obtained with the final chosen hyperpara-

meters. The optimal surrounding sentences context window size was

10 (5 sentences before and after the target sentence). Window size of

2 (1 before and after) captured too small of a context, while 20 (10

before and after) captured a wide context that was often not rele-

vant to the target sentence. For all of the models, the dimension of

the BiLSTM hidden state in each direction was 100. The dropout

Figure 2. Two baselines models of BiLSTM-Max (left) and BiLSTM-Att (right) that incorporate the target sentence via BiLSTM.

Table 3. Results on test set. Micro-F1 is the metric used to tune model hyperparameters.

Modela Micro-averaged Sentence-level Macro-averaged Sentence-level Micro-averaged Patient-level Macro-averaged Patient-level

Measure P R F1 P R F1 P R F1 P R F1

1 BiLSTM-Max 0.623 0.530 0.573 0.662 0.524 0.585 0.739 0.847 0.789 0.729 0.803 0.764

2 BiLSTM-Att* 0.582 0.576 0.579 0.631 0.564 0.595 0.741 0.892 0.809 0.712 0.832 0.767

3 T* 0.577 0.585 0.581 0.600 0.588 0.594 0.701 0.879 0.780 0.652 0.828 0.729

4 T1S*** 0.666 0.554 0.605 0.716 0.553 0.624 0.819 0.834 0.826 0.816 0.770 0.792

5 TþD* 0.688 0.499 0.579 0.610 0.496 0.547 0.755 0.762 0.758 0.782 0.822 0.801

6 TþI** 0.629 0.542 0.582 0.657 0.545 0.596 0.805 0.815 0.810 0.816 0.767 0.791

7 TþSI** 0.615 0.571 0.592 0.633 0.558 0.593 0.778 0.873 0.823 0.728 0.818 0.771

8 T1SID*** 0.654 0.546 0.595 0.726 0.529 0.612 0.846 0.841 0.843 0.833 0.781 0.806

Abbreviations: D, document; I, ICD9 codes; P, precision; R, recall; S, surrounding sentences; T, target sentence.
aMcNemar’s test was used to measure the difference between the results of BiLSTM-Max and other approaches.

***, **, and * indicate that p value is smaller than .001, .01, and .05.
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rate of word embedding, sentence embedding, document embed-

ding, and ICD9 code embedding were 0.2, 0.2, 0.3, and 0.3, respec-

tively. The dropout rate of the attention layer was 0.5. Similar to

prior work,37 we found proper dropout rates were effective in pre-

venting model overfitting.

Table 3 details the experimental results of each model with the

best hyperparameter setting on the test set. We used McNemar’s

test,38 a commonly used statistical test for classification models that

are difficult to train (eg, neural models),39 to measure the decision

(ie, classification label) differences between the models, although

McNemar’s test does not necessarily reflect the performance (eg, mi-

cro-F1) differences between models.

First, we found that attention was more effective than max pool-

ing for the base model using only the target sentence (micro-F1 of

0.579 vs 0.573 for sentence-level analysis; and 0.809 vs 0.789 for

patient-level analysis). All of our models had statistically significant

improvements over the BiLSTM-Max baseline. We also found that

the BiLSTM-Att and the target sentence model performed similarly,

with the BiLSTM-Att model generating better accuracy on the

patient-level (micro-F1 of 0.809 vs 0.780). We next evaluated how

each context affected system accuracy. We considered adding con-

text from the surrounding sentences, document context, and ICD9

codes. Adding the surrounding sentences consistently improved over

the target sentence alone across all metrics (micro-F1 of 0.605 vs

0.581 for sentence-level analysis and 0.826 vs 0.780 for patient-level

analysis). By comparison, the ICD9 context helped modestly, and

the document context impaired the recall but improved precision.

Finally, we considered using all 3 contexts in 1 model. We also

experimented with other combinations of the 3 context modules,

but the model with the 3 context modules worked best. Although

adding document context alone decreased the overall F1, incorporat-

ing it with the other 2 context modules added value (Table 3, rows 7

vs 8). Our final model with 3 contexts (Table 3, row 8) achieved the

best performing patient-level model, yielding nearly a 4-point im-

provement over the context-free BiLSTM-Att baseline (micro-F1 of

0.843 vs 0.809).

Table 4 shows model performance by construct for both sen-

tence and patient levels for the best performing models. The perfor-

mance varied widely for different constructs. At the sentence-level, 6

constructs BC, FL, DE, WD, VI, and SS obtained an F1 score greater

than 0.7, while the worst performing construct ML had an F1 score

as low as 0.184. At the patient level, all constructs except UC (F1 ¼
0.571) obtained an F1 score larger than 0.7, which shows the mod-

el’s robustness in patient-level prediction.

DISCUSSION

Measuring geriatric syndromes to identify vulnerable and potentially

underserved patients at a population level is of great interest to

health providers and researchers who are seeking to address health

equity challenges among older adults. Due to the complex nature of

geriatric syndromes, however, they are poorly captured by diagnosis

codes, yet they are present in the clinical text. Such coding chal-

lenges significantly limit research opportunities and create difficul-

ties to track vulnerable older adults with geriatric syndromes.

Our work creates new opportunities for health equity research

by improving and expanding the identification of vulnerable older

adults in need of additional medical and social services. We aimed

to extract geriatric syndromes from the free-text of EHRs. Our best

model performed well at a patient level, achieving a micro-F1 score

of 0.843. Our model can be used to identify geriatric syndrome con-

structs from EHR notes, which could expand the coverage of geriat-

ric syndrome in EHR systems. Additionally, our system can ensure

that, despite a lack of coding for these syndromes,5–7 all relevant

cases are tracked across patients thereby improving the inclusion of

vulnerable older adults in research (eg, clinical trials),8,9 alignment

of specific population health management efforts (eg, access to nurs-

ing home and assisted living),40–42 and potentially impacting public

health interventions.11,43,44

To the best of our knowledge, our study is the first to apply ma-

chine learning for extracting geriatric syndromes from EHR free-

text to identify vulnerable older adults, and potentially addressing

functional and social disparities among the geriatric population. We

demonstrate a model that effectively incorporates context from the

document and patient in information extraction decisions. Since

most prior work on information extraction uses the sentence

alone,12,23,45,46 our model may benefit other IE tasks in identifying

health disparity markers, such as social determinants of health, that

are often not coded in EHRs.44 Moreover, our model does not re-

quire any task-specific feature engineering as it relies fully on

learned representations of the text.

EHR vendors have recently started to roll out specific built-in mod-

ules to collect social determinants of health as structured data at the

point of care; however, common terminologies are yet to be adopted to

encode such coded information properly in EHRs.47,48 Given the lack

of standardized structured social determinants of health (including a

number of geriatric syndromes), deploying statistical NLP techniques

(which are superior to pattern matching techniques) will enable health

care providers to efficiently prescreen patients for potential underlying

health disparities, narrow the denominator of vulnerable patients

needed to go through other confirmatory means (eg, surveys and inter-

views), and effectively align social service resources.49

In summary, despite the increased adoption of EHRs among pro-

viders, some providers (mainly serving rural and lower

socioeconomic regions) may not be able to fully mature their EHRs

in the near future.50–52 Lack of advanced EHR functionalities to

identify underlying social determinants of health, including social

constructs of the geriatric syndrome, may consequently limit the

Table 4. The results of our best performing model by construct on

test set. The last 2 rows are the overall macro and micro-averaged

results, respectively.

Geriatric Syndrome Sentence (Tþ S) Patient (T þ SID)

Measure P R F1 P R F1

BC 1.000 0.750 0.857 1.000 0.667 0.800

DE 0.667 0.740 0.701 0.714 1.000 0.833

FL 0.685 0.794 0.735 0.786 0.957 0.863

ML 0.708 0.106 0.184 0.842 0.842 0.842

PU 0.750 0.455 0.566 0.800 0.667 0.727

SS 0.647 0.600 0.623 0.935 0.967 0.951

UC 0.455 0.543 0.495 0.571 0.571 0.571

VI 0.891 0.479 0.623 0.889 0.615 0.727

WD 0.689 0.601 0.642 0.906 0.853 0.879

WL 0.669 0.460 0.545 0.889 0.667 0.762

Macro 0.716 0.553 0.624 0.833 0.781 0.806

Micro 0.666 0.554 0.605 0.846 0.841 0.843

Abbreviations: BC, absence of fecal control; D, document; DE, dementia;

FL, falls; I, ICD9 codes; ML, malnutrition; P, precision; PU, pressure ulcers;

R, recall; S, surrounding sentences; SS, lack of social support; T, Target sen-

tence; UC, severe urinary control issues; VI, visual impairment; WD, walking

difficulty; WL, weight loss.
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ability of value-based providers to address health disparities among

various patient populations.48,53–56 As EHRs are becoming a major

source of risk stratification for providers,41,57–60 incorporating ad-

vanced NLP methods to extract risk factors of social determinants of

health (eg, lack of social support) can propel value-based providers

to leverage EHRs to identify and adjust for potential disparities

within their population health management efforts42,61 in addressing

the needs of vulnerable populations such as older adults.40

Technical limitations and future work
Our work focused on 3 types of contexts for improving information

extraction: surrounding sentences, the entire document (clinical

note), and the diagnosis codes. Other types of contexts may be bene-

ficial, such as the containing paragraph or section. Specifically, we

are interested in ways to include the entire document as context but

allow the model to learn and emphasize text in closer proximity to

the target sentence. Additionally, we are interested in models that

would allow us to directly train on patient-level labels, instead of in-

dividual sentences. Finally, we expect that different information ex-

traction tasks would benefit from different types of contexts. We

plan to explore this by considering our model for other complex IE

tasks such as identifying patients with other social determinants of

health needs (eg, housing instability, food insecurity).

Our neural model is based on learning contextual representa-

tions using recurrent neural networks. For several years, recurrent

neural networks, and specifically LSTM-based models, have repre-

sented the state of the art in NLP. Recently, these models have given

way to new contextual representations based on Transformers,62 in-

cluding the new BERT model which has achieved high performance

on several different NLP tasks.29 We plan to explore how BERT per-

forms in detecting social determinants of health, and how it can be

augmented with the types of contexts-aware models that we have

proposed in this work.

CONCLUSION

Structured data of EHRs provide an incomplete picture of geriatric

syndromes and potential disparities among older adults. To identify

vulnerable older adults, we presented a statistical NLP model for

extracting geriatric syndromes from EHR clinical notes. We proposed

a deep neural network model that incorporated context from the clini-

cal notes and patient records to improve construct extraction. Our fi-

nal model achieved a micro-F1 of 0.843 for patient-level

determination of geriatric syndrome constructs, significantly improv-

ing traditional models using target sentences alone (0.789). This NLP

methodology can be adapted and used to identify other functional or

social markers, such as housing instability and food insecurity, in

EHR’s free-text to address health equity issues among older adults.
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