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ABSTRACT

Objective: In multi-label text classification, each textual document is assigned 1 or more labels. As an important

task that has broad applications in biomedicine, a number of different computational methods have been proposed.

Many of these methods, however, have only modest accuracy or efficiency and limited success in practical use. We

propose ML-Net, a novel end-to-end deep learning framework, for multi-label classification of biomedical texts.

Materials and Methods: ML-Net combines a label prediction network with an automated label count prediction

mechanism to provide an optimal set of labels. This is accomplished by leveraging both the predicted confi-

dence score of each label and the deep contextual information (modeled by ELMo) in the target document. We

evaluate ML-Net on 3 independent corpora in 2 text genres: biomedical literature and clinical notes. For evalua-

tion, we use example-based measures, such as precision, recall, and the F measure. We also compare ML-Net

with several competitive machine learning and deep learning baseline models.

Results: Our benchmarking results show that ML-Net compares favorably to state-of-the-art methods in multi-

label classification of biomedical text. ML-Net is also shown to be robust when evaluated on different text gen-

res in biomedicine.

Conclusion: ML-Net is able to accuractely represent biomedical document context and dynamically estimate

the label count in a more systematic and accurate manner. Unlike traditional machine learning methods, ML-

Net does not require human effort for feature engineering and is a highly efficient and scalable approach to

tasks with a large set of labels, so there is no need to build individual classifiers for each separate label.

Key words: multi-label text classification, biomedical text, deep neural network, biomedical literacutre, clinical notes

INTRODUCTION

Text classification is a common task in natural language processing

(NLP) and a building block for many complex NLP tasks. Text clas-

sification is the task of classifying an entire text by assigning it 1 or

more predefined labels1 and has broad applications in the biomedi-

cal domain, including biomedical literature indexing,2,3 automatic

diagnosis code assignment,4,5 tweet classification for public health

topics,6–8 and patient safety reports classification,9 among others.

Text classification can be further grouped into 2 types: multino-

mial or multi-class and multi-label. For multinomial or multi-class

text classification, each textual document is associated with only 1

label (ie, labels are mutually exclusive). For instance, when only 2

classes are available, binary classification is 1 of the most common

multinomial classification tasks. For multi-label text classification, a

textual document can be assigned 1 or more labels. For example, in

Medical Subject Headings (MeSH) indexing, typically a dozen rele-

vant MeSH terms are assigned to new publications in PubMed.10 Be-

cause each textual document can be assigned an indeterminate

number of labels, multi-label text classification is often considered

more challenging than multinomial classification.11
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A traditional approach to solving the multi-label text classifica-

tion problem is binary relevance, which decomposes the problem

into multiple independent binary classification tasks (1 for each la-

bel). This method, however, assumes the independence of each la-

bel.10,12,13 Label powerset, which creates binary classifiers for each

label combination, is able to model potential correlations between

labels.14 Both of these approaches, however, could have low

throughput when the number of different labels becomes extremely

large. There are also other algorithms for multi-label text classifica-

tion, including learning to rank10 and classifier chains,15 among

others. A review of multi-label learning algorithms can be found in

Min-Ling & Zhi-Hua.16

In recent years, deep neural networks have been proposed for

multi-label text classification tasks. Most of these efforts13,17–21

used a similar framework, which often consists of 2 modules: a neu-

ral network and a label predictor. The neural network produces

scores for each label, using the multi-layer perceptron (MLP) neural

networks,13,17 the convolution neural networks (CNNs),11,18,19 the

recurrent neural networks (RNNs),22 or other hybrid neural net-

works.20 A label predictor splits the label ranking list into the rele-

vant and irrelevant labels by thresholding methods. Under this

framework, however, a search for the optimal threshold is often re-

quired, and the label decision ignores document context.

Li et al recently incorporated a label-decision module into deep

neural networks and achieved state-of-the-art performance in multi-

label image classification tasks.12 Motivated by their framework, we

propose ML-Net, a novel end-to-end deep learning framework, for

multi-label text classification tasks. ML-Net adopts the general

label–decision module in Li et al,12 but it changes the image process-

ing framework to text classification (ie, uses an attention-based bidi-

rectional RNN architecture together with deep contextualized word

representations). ML-Net combines label prediction and label deci-

sion in the same network and is able to determine the output labels

based on both label confidence scores and document context. ML-

Net aims to minimize pairwise ranking errors of labels and is able to

train and predict the label set in an end-to-end manner, without the

need for an extra step to determine the output labels. To demon-

strate the effectiveness and generalizability of ML-Net, we evaluated

the framework on 3 multi-label biomedical text classification tasks

in both the biomedical literature domain (2 tasks) and the clinical

notes domain (1 task). We compared the proposed framework with

both traditional machine learning baseline models and other deep

learning models.

MATERIALS AND METHODS

Deep neural network
The overall architecture of ML-Net can be seen in Figure 1. The ar-

chitecture consists of 3 major modules: (1) a document encoding

network that takes raw text as the input and outputs the high-

dimensional vectors that represent the entire textual document in 2

consecutive steps: (a) the Embeddings from Language Models

(ELMo) network23 takes raw text as the input and generates contex-

tualized embeddings for each word, and (b) an attentive RNN net-

work takes the contextualized word embeddings as the input and

generates the corresponding document representation; (2) a label

prediction network—a fully connected layer with an output layer

for which the number of nodes corresponds to the number of unique

labels—that takes document vectors as input and outputs a predic-

tion confidence score for each label; (3) a label count prediction net-

work that consists of several fully connected layers with an output

layer for which the number of nodes equals the number of maximal

permitted labels and that takes the same document vectors as input

and outputs the estimation of label counts for each document. The

source code of ML-Net is freely available at: https://github.com/

ncbi-nlp/ML_Net.

Document encoding network

We propose a document encoding network to encode the textual

document to high-dimensional vectors. Traditional word embedding

methods assign a static high-dimensional vector to a word, regard-

less of its context. A word, however, could have multiple context-

dependent meanings. Deep contextualized word-embeddings, such

as ELMo, can look at the entire context before assigning each word

its embedding vector.23 Our document-encoding network adopts the

pre-trained ELMo to map each token in the document to high-

dimensional vectors and then feeds the vectors to a bi-directional

RNN, which is able to capture both forward and backward sequen-

tial context. We further add the attention mechanism to augment se-

quence models by capturing the salient portions and context.24,25

Label prediction network

The label prediction network has a fully connected layer that takes a

document vector as the input and outputs a predicted confidence

score for each label. We apply the rectified linear unit 26 as the acti-

vation function for the output. The intuitive objective for multi-

label learning is to minimize the number of misorderings between

the pairs of relevant and irrelevant labels.13 Different loss functions

have been proposed to model the dependency of individual labels by

minimizing the pairwise-ranking errors. We choose log-sum-exp

pairwise (LSEP) as our loss function, which has achieved state-of-

the-art performance on large-scale multi-label image classification

tasks.12 The equation of LSEP can be seen here:

llsep ¼ log
�

1þ
X
v62Yi

X
u2Yi

expðfvðxiÞ � fuðxi

���

where f ðxÞ is the label prediction function that maps the document

vector x into a K-dimensional label space, which represents the con-

fidence scores of each label (K equals the number of unique labels);

fvðxiÞ and fuðxiÞ are the v and u -th element of confidence scores for

the i-th instance in the data set, respectively; and Yi is the corre-

sponding label set for the i-th instance in the data set.

Label count prediction network

Deciding the proper label set from the predicted label set is a key

challenge in multi-label classification. In common practice, a thresh-

old function is trained to split the ranking of the labels into relevant

vs irrelevant labels.13,17 Such a thresholding method, however,

ignores the document context in decision-making. Inspired by a

framework from multi-label image classification,12 our label count

prediction network takes the document vector as the input and casts

the label count estimation as an N-way classification task, where N

is a hyper-parameter for the maximum number of permitted labels

that can be returned by the neural network. For a document that has

a number of labels fewer than or equal to N, the model keeps the ex-

act number of labels as the label count for that document; for a doc-

ument that has a number of labels greater than N, the model uses N

as the label count for that document. We designed a MLP network

for the label count prediction. This network consists of several

fully connected layers and an output layer with Softmax function

for classification.
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There are 2 training steps. We first train the label prediction net-

work. During training, the label prediction and the document encod-

ing networks are updated through back propagation. Then, we train

the label count prediction network. However, different from the

training label prediction network, only the MLP part is updated as

the gradient descent stops at the layer of the document vector. For

prediction, we first rank all of the individual labels by their corre-

sponding confidence scores generated from the label prediction net-

work, and then the top n (n � N, decided by the label count

prediction network) labels are used as the final output.

Evaluation design
Evaluation tasks

We evaluate ML-Net on 3 different text classification tasks with

publicly available data sets in 2 text genres: biomedical literature

and clinical notes.

Task 1. Hallmarks of cancer classification. The hallmarks of can-

cer consist of a small number of underlying principles that describe

its complexity.27 Baker et al introduced a corpus of 1580 PubMed

abstracts manually annotated according to the scientific evidence of

10 currently known hallmarks of cancer.28 The data set is available

at: https://www.cl.cam.ac.uk/�sb895/HoC.html.

Task 2. Chemical exposure assessments. The vast amount of

chemical-specific exposure information available in PubMed is of

critical significance; however, the manual collection of such infor-

mation from the biomedical literature can be labor intensive.

Larsson et al proposed an exposure taxonomy that includes 32 clas-

ses and introduced a corpus of 3661 abstracts with annotated chem-

ical exposure information.29 The data set is available at: https://

figshare.com/articles/Corpus_and_Software/4668229.

We note that the annotation of Tasks 1 and 2 was originally per-

formed at the sentence level. As very few sentences are annotated

with multi-labels, we aggregated all of the unique labels for every

sentence in an abstract as the labels for that abstract and performed

the multi-label classification on the abstract level. This is also consis-

tent with Hanahan & Weinberg27 and Larsson et al,29 for which the

authors built binary classifiers for each label and performed the clas-

sification on the abstract level.

Task 3. Diagnosis codes assignment. The automatic assignment

of diagnosis codes to medical notes is a useful task that could bene-

fit the computational modeling of patient status. Due to the ex-

tremely large label collection, the diagnosis codes assignment task

can be considered an extreme multi-label text classification

problem.30 Perotte et al proposed a hierarchy-based classification

Figure 1. The framework of ML-Net.
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to automatically assign Internation Classification of Diseases

(ICD)-9 codes to the discharge summaries from the publicly avail-

able Multiparameter Intelligent Monitoring in Intensive Care II

(MIMIC II) data set,4 using a hierarchical support vector machine

(SVM). In this work, we followed the same steps to augment the

label set, using the hierarchy of the ICD-9 codes in Perotte et al.4

That is, if an ICD code is in the label set of a document, all of its

ancestors are also included in the label set for that document.

Their data set and label augmentation script are publicly available

at: https://physionet.org/works/ICD9CodingofDischargeSumma-

ries.

The overall statistics of the 3 data sets can be seen in Table 1.

Tasks 1 and 2 have similar characteristics in terms of number of

tokens and sentences in a document, which is not surprising, as they

are both collected from PubMed abstracts. In comparison, Task 2

has a relatively larger number of unique labels and corpus size. The

Task 3 corpus has very distinct characteristics from the PubMed

abstracts, with a significantly larger number of unique labels (over

7000), and each document is assigned many more labels (37 on aver-

age, after label augmentation).

Evaluation metric

The example-based metrics evaluate the multi-label learning sys-

tem’s performance on each test example (ie, each document) sepa-

rately by comparing the predicted labels with the gold standard

labels for each test example. We focus on 3 major example-based

metrics, as defined in Min-Ling & Zhi-Hua16:

Precision ¼ 1

p

Xp

i¼1

jYi\Ŷij
jŶij

¼ 1

p

Xp

i¼1

TP

TPþ FP

Recall ¼ 1

p

Xp

i¼1

jYi\Ŷij
jYij

¼ 1

p

Xp

i¼1

TP

TPþ FN

F1� score ¼ 2 � Precision � Recall

Precisionþ Recall

where p is the number of instances in the test set; Yi refers to the

true label set for the i-th instance in the test set; and Ŷ i refers to the

predicted label set for the i-th instance in the test set.

For Tasks 1 and 2, we define the true positives (TP) as the labels

that are identical to the gold standard labels, false positives (FP) as

labels that are not true positives, and false negatives (FN) as the gold

standard labels that were missed in the prediction results. For Task

3, considering the hierarchical structure of ICD-9 codes, we follow

the same definition of TP in Perotte et al,4 in which TP are predicted

codes that are ancestors of, descendants of, or identical to an

assigned code, and FP are predicted labels that are not true positives.

FN are the gold standard labels for which the labels or their

descendants are not predicted.

Text preprocessing

ML-Net requires little effort for text preprocessing. For Tasks 1 and

2, we removed punctuation marks and tokens that have only 1 char-

acter and then concatenated all tokens in the abstract together. For

Task 3, we first removed some common pattern strings, such as

“admission date,” and “signed electronically by,” as described in

the previous effort,4 and then followed the same preprocessing steps

in Tasks 1 and 2.

System implementation

For Tasks 1 and 2, we used the same implementation as follows. We

split the annotated corpus into training, validation, and test sets

with a ratio of 7: 1: 2, respectively. We loaded the pretrained ELMo

model from TensorFlow Hub (https://tfhub.dev/google/elmo/2), and

ELMo was set as trainable. We chose long short-term memory

(LSTM) as the RNN unit. We set the number of hidden units in the

RNN layer and the dimension of attention output both at 50. Drop-

out (rate at 0.5) was added on bi-RNN layer to avoid overfitting.

The maximum number of permitted labels was set at 5 and 8 for

Tasks 1 and 2, respectively. The number of neurons in the MLP in

the label count prediction network were set at 128, 128, and 64, re-

spectively. We first trained the label prediction network with the hi-

erarchical attention network for 50 epochs. We then applied early

stopping while training in the label count prediction network (20

epochs at most). We adopted the Adam optimizer31 and set the

learning rate at 0.001. The hyper-parameter tuning was performed

on the validation set.

For Task 3, due to computation limitations, we took the first

1500 tokens from each clinical note as input. We followed almost

the same hyper-parameters in Tasks 1 and 2. Considering the large

collection of labels (7024 unique ICD codes), we set the number of

neurons in the MLP of the label count prediction network at 7024

(total number of unique labels), 7024, and 128, respectively. The

maximum number of permitted labels was set at 70. To make our

model comparable with previous efforts, we followed the same data

preprocessing steps and used the same data sets for training

and testing.4 The major parameters setting for 3 tasks can be seen in

Table 2.

Machine-learning baseline. For traditional machine learning algo-

rithms, we framed the multi-label classification task as a binary rele-

vance task. We used term frequency-inverse document frequency as

features and trained a separate binary classifier for each label. We

compared multiple machine learning algorithms, including SVM, lo-

gistic regression, random forest, and extra trees. We report only the

results of SVM with linear kernel here, as it obtained better perfor-

mance than did other algorithms. For Task 3, we report the best

SVM-based results (ie, hierarchy-based SVM) in Perotte et al.4

Table 1. Descriptors and basic statistics for 3 text classification tasks

Task No. Number of

unique labels

Corpus

size

Number of tokens in document Number of sentences in document Number of labels in document

Mean Max Min SD Mean Max Min SD Mean Max Min SD

1 10 1580 209.29 638 44 58.32 9.44 27 2 2.87 1.56 5 1 0.78

2 32 3661 233.66 622 49 60.41 9.88 34 1 2.81 2.05 8 0 1.30

3 7042 22 815 1039.73 5882 8 623.21 165.71 904 4 95.86 36.68 127 5 16.16

Note. Task 1: Hallmarks of cancer classification; Task 2: Chemical exposure assessments; Task 3: Diagnosis code assignment (data after label augmentation).

Abbreviation: SD, standard deviation.
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Deep-learning baseline. To assess the effect of the document encod-

ing network, we replaced it in ML-Net with 2 neural networks: (1)

the classic CNNs proposed by Kim32 (which we term ML-CNN),

and (2) the hierarchical attention network (HAN) described in Du

et al33 (which we term ML-HAN), while keeping the label predic-

tion network intact.

To assess the effect of the label count prediction network, we

replaced it with an alternative thresholding mechanism for deter-

mining the final predicted labels. Specifically, for ML-Net, ML-

CNN and ML-HAN, we trained the label prediction network first.

Then, we searched the optimal global threshold (ie, 1 threshold

score for all of the labels in all examples in 1 task) for the confidence

scores generated from the label prediction network. The labels,

whose confidence scores were higher than the global threshold, were

included in the predicted label set. We name these 3 networks ML-

Net-threshold, ML-CNN-threshold and ML-HAN-threshold, re-

spectively. We searched the optimal threshold on the validation set

for Tasks 1 and 2. For Task 3, due to the lack of a validation set, we

searched the optimal threshold on the training set.

For these deep learning-based baselines, we first leveraged the

Natural Language Toolkit (NLTK 3.3) to perform the tokeniza-

tion and then removed the stop words. Next, we used the

pretrained word embedding to map tokens in the text to high-

dimensional vectors, which are then fed to the following networks:

for Tasks 1 and 2, we used the pretrained PubMed word2vec34 (di-

mension: 200); and for Task 3, we used the word embedding

trained from MIMIC III corpus, using the word2vec algorithm35

(dimension: 300).

RESULTS

The performance of the proposed ML-Net and other baseline mod-

els is summarized in Table 3. As we can see, ML-Net has the best F

score in both Tasks 1 and 2. For the hallmarks of cancer task, all of

the deep learning-based approaches outperformed the binary rele-

vance baseline methods. The ML-Net outperformed the baseline

model by more than 16%. For chemical exposure assessments, all of

the models with proposed label count prediction network (ML-Net,

ML-CNN, and ML-HAN) outperformed the binary relevance base-

line methods in the F score; for thresholding methods, only ML-Net-

threshold outperformed the binary–relevance baseline. For these 2

tasks, consistent with other findings, the label count prediction net-

work can make better decisions as compared to the thresholding

methods. In addition, the models with the proposed document

encoding network (ML-Net) achieved higher F score than did the

convolutional neural network (ML-CNN) and hierarchical attention

network (ML-HAN) in both cases.

For Tasks 1 and 2, we analyzed the errors on the label count pre-

diction made by the ML-Net and ML-Net-thresholds. Compared to

ML-Net, the best ML-Net-threshold model generated more labels

per example in the test set (Task 1: 1.73 vs 1.54; Task 2: 2.00 vs

1.91) and made higher errors per example in the test set (Task 1:

0.87 vs 0.44; Task 2: 0.86 vs 0.72, the absolute difference of pre-

dicted counts with gold standard counts).

For the task of diagnosis codes assignment, the ML-CNN-

threshold achieved the highest F score (0.428) among all models.

Note that the thresholding method generally achieved better perfor-

mance than did the label count prediction network for this task. We

suspect that this is due to the inclusion of additional codes based on

the hierarchical relations in the ICD-9 codes. By doing so, the count

of label set might largely depend on the hierarchical structure of

ICD-9 codes, instead of the context of the document. As our pro-

posed label count prediction network takes only the document vec-

tors as the input, the label-count estimation is not less accurate in

this case. All of the deep learning models with thresholding methods

outperformed the binary–relevance baseline, which again demon-

strated the superiority of a deep neural network for the diagnosis

code assignment.

DISCUSSION

We reviewed FP and FN in the test sets for Tasks 1 and 2 and found

that the most common errors of ML-Net are in the most frequent

labels. For example, in Task 1, the label “sustaining proliferative

signaling” is the most frequent label in the data set28 and the most

frequent FP and FN among all of the labels. For Task 2, the label

“effect marker-physiological parameter” is the most frequent label

in the data set29 and the second most frequent FP and most frequent

FN among all of the labels. As the data distribution is imbalanced in

both tasks, it is understandable that ML-Net tends to include the

common labels in prediction as FP. For example, in 1 abstract

(PMID: 23257893) in Task 1, the gold standard labels are “genomic

instability and mutation” and “resisting cell death.” Although ML-

Net accurately predicted the count of labels, it wrongly predicted

the labels to be “sustaining proliferative signaling” and “resisting

cell death.” In addition, the inaccurate prediction of label count can

lead to FP and FN. For example, in 1 abstract (PMID: 20184723),

the gold standard labels are “tumor promoting inflammation” and

“genomic instability and mutation,” whereas ML-Net output

includes only “tumor promoting inflammation.”

Table 2. Major parameter settings in ML-Net for the 3 tasks

Parameter Setting

Task 1 Task 2 Task 3

Maximum permitted labels 5 8 70

Maximum tokens in documents All tokens First 1500 tokens

Neurons in the MLP 128, 128, 64 7024, 7024, 128

Batch size 32 16

Training epochs (label prediction network) 50 30

RNN unit (dimension) LSTM (50)

Attention layer dimension 50

Dropout rate 0.5

Optimizer (learning rate) Adam (0.001)

Abbreviations: LSTM, long short-term memory; MLP, multi-layer perceptron; RNN, recurrent neural networks;
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Compared to the first 2 tasks, the performance of Task 3 is

much lower (by all methods), as the task is inherently more challeng-

ing. Perotte et al found a slight relationship between the diagnosis

code prevalence in the training data and performance.4 The preva-

lence of diagnosis codes indeed varies in this corpus. Following the

label preprocessing and code augmentation steps in Perotte et al, we

find that the top 100 most frequent codes account for more than

half of the total occurrences (115 268 out of 215 805). We also find

noticeable differences in diagnosis code co-occurrences in the train-

ing vs test set. For instance, the count of the co-occurring codes of

403.90 and 585.9 ranks 144th in the training set, while 12th in the

test set. Taken together, the unbalanced code distribution and the

differences of co-occurring codes in the training vs test sets may

have a negative impact on the system performance. When we further

examined the differences in prediction and gold standard codes in

the test set, we found that the system can more easily predict diagno-

sis codes that are close to each other. For example, the count of co-

occurrence of codes 412 and 414.01 is 155 in the prediction and 88

in the gold standard; and co-occurrence of codes 413.9 and 414.01

is 139 in the prediction and 49 in the gold standard. It is understand-

able that some closely related codes can be both highly related to the

document and, thus, included together in the prediction results by

the system, whereas, in practice, the nurses or physicians might

choose only 1 from these code pairs.

In addition, we evaluated the distance between predicted labels

with gold standard labels in Task 3 by calculating the shared path, the

depth in the ICD-9 tree of the deepest common ancestor between a

gold standard code and a predicted code.4 ML-Net was found to be

able to predict further along the correct path to the gold standard codes

than the hierarchy-based SVM reported in Perotte et al4: the most com-

mon shared paths for ML-Net are levels 3 and 6, while the most com-

mon shared paths for hierarchy-based SVM are levels 2 and 3.

Compared with binary relevance methods with traditional

machine learning algorithms, the proposed deep learning model alle-

viates human effort for feature engineering and avoids building indi-

vidual classifiers for each label, especially when the label collection

is large (eg, over 1000 labels). ML-Net advances the state of the art

by combining the label prediction network with a label count pre-

diction network, which can not only avoid the manual searching of

optimal thresholds for label prediction confidence scores, but also

dynamically estimate the label count based on the document context

in a more accurate manner.

This study had certain limitations. Due to the limitations of

computation resources, we did not perform a thorough hyper-

parameter tuning (ie, the current parameters setting may not be

optimal). In addition, our proposed label count prediction network

takes only the document vector as the input. However, the counts

of labels also might depend on other information, for example, the

hierarchical structure of the labels. Our current network is not

able to model such information. As seen, the label count prediction

does not work well for the labels with a hierarchical structure,

such as those in Task 3. We also evaluated Task 2 when expanding

the labels by their hierarchical structures,29 and a similar result

was found: The ML-Net does not demonstrate superiority over the

binary-relevance method on the labels with a hierarchical

structure. In future research, we will further investigate new archi-

tectures that can better model the hierarchical relation among

labels.

The document encoding network that maps the text to a high-

dimensional representation can be further improved, and a different

architecture could be exploited and evaluated. For example, Trans-

former36-based language representation models, including Genera-

tive Pre-Training37 and Bidirectional Encoder Representations,38

have significantly advanced major NLP tasks recently. An intuitive

change is to replace the document encoding network of ML-Net

with these advanced language representation models. As these mod-

els require quite large computation resources, we leave this to future

work. In addition, we plan to apply our proposed network on other

larger scale multi-label biomedical text classification tasks, including

automatic MeSH indexing, which aims to assign a small set of rele-

vant terms (�12 on average) to a given document from more than

27 000 unique concepts.10

CONCLUSION

ML-Net is a novel end-to-end deep learning framework for multi-la-

bel classification of biomedical texts. Unlike traditional machine

learning methods, ML-Net does not require human effort for feature

engineering nor the need to build individual classifiers for each sepa-

rate label. ML-Net is a highly efficient and scalable approach to

tasks with a large set of labels and tasks with different biomedical

genres.
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Table 3. Comparison of various algorithms for multi-label classification on 3 tasks

Task 1. Hallmarks of cancer

classification

Task 2. Chemical exposure

assessments

Task 3. Diagnosis code

assignment

Algorithm Precision Recall F score Precision Recall F score Precision Recall F score

Binary-relevance (SVM with TFIDF) 0.742 0.688 0.714 0.778 0.677 0.724 0.577 0.300 0.395

ML-Net 0.848 0.811 0.829 0.784 0.724 0.753 0.404 0.374 0.389

ML-Net-threshold 0.765 0.850 0.805 0.714 0.779 0.745 0.506 0.347 0.412

ML-HAN 0.813 0.817 0.815 0.753 0.724 0.738 0.355 0.338 0.346

ML-HAN-threshold 0.752 0.837 0.793 0.700 0.735 0.717 0.492 0.360 0.416

ML-CNN 0.843 0.778 0.809 0.778 0.689 0.731 0.311 0.442 0.365

ML-CNN-threshold 0.764 0.817 0.790 0.662 0.774 0.713 0.501 0.373 0.428

Note. For the diagnosis code assignment, the binary-relevance scores are the best results reported in Perotte et al.4Abbreviations: CNN, convolutional neural

networks; HAN, hierarchical attention network; SVM, support vector machine; TFIDF, term frequency-inverse document frequency;
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