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ABSTRACT

Objective: To conduct a systematic scoping review of explainable artificial intelligence (XAI) models that use

real-world electronic health record data, categorize these techniques according to different biomedical applica-

tions, identify gaps of current studies, and suggest future research directions.

Materials and Methods: We searched MEDLINE, IEEE Xplore, and the Association for Computing Machinery

(ACM) Digital Library to identify relevant papers published between January 1, 2009 and May 1, 2019. We sum-

marized these studies based on the year of publication, prediction tasks, machine learning algorithm, dataset(s)

used to build the models, the scope, category, and evaluation of the XAI methods. We further assessed the re-

producibility of the studies in terms of the availability of data and code and discussed open issues and chal-

lenges.

Results: Forty-two articles were included in this review. We reported the research trend and most-studied dis-

eases. We grouped XAI methods into 5 categories: knowledge distillation and rule extraction (N¼13), intrinsi-

cally interpretable models (N¼9), data dimensionality reduction (N¼8), attention mechanism (N¼7), and fea-

ture interaction and importance (N¼5).

Discussion: XAI evaluation is an open issue that requires a deeper focus in the case of medical applications. We

also discuss the importance of reproducibility of research work in this field, as well as the challenges and oppor-

tunities of XAI from 2 medical professionals’ point of view.

Conclusion: Based on our review, we found that XAI evaluation in medicine has not been adequately and for-

mally practiced. Reproducibility remains a critical concern. Ample opportunities exist to advance XAI research

in medicine.

Key words: Explainable artificial intelligence (XAI), interpretable machine learning, real-world data, electronic health records,
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INTRODUCTION

The emergence of modern data-rich technologies will require physi-

cians to interpret high-dimensional heterogeneous medical data

while also making efficient and accurate decisions for diagnosis and

treatment.1 Artificial intelligence (AI) techniques are critical tools

that can assist physicians with such analyses and decision-making.2

Referring to Norvig and Russel’s classic AI textbook,3 in this review

article we define AI as acting humanly through machine learning

(ML) and, more specifically, ML-based predictive analytics.

Szolovits4 defines AI in medicine (AIM) as “AI specialized to

medical application.” In recent years, AIM has contributed to

healthcare in the light of digitized health data.5 The wide adoption

of electronic health record (EHR) systems by healthcare organiza-

tions and subsequent availability of large collections of EHR data

have made the application of AIM more feasible.6,7 EHR data con-

tain rich, longitudinal, and patient-specific information including

both structured data (eg, patient demographics, diagnoses, proce-

dures) as well as unstructured data, such as physician notes, among

other clinical narratives.8

Despite their promising performance, the production of AIM sys-

tems for actual clinical use is challenging.9 A survey of medical pro-

fessionals in 2018 showed a lack of trust in AIM.10 Limited access

to large data, lack of integration to clinical workflows, and, espe-

cially, the ambiguity of requirements for regulatory compliance are

among the development and deployment challenges of AIM sys-

tems.11 In 2017, the Defense Advanced Research Projects Agency

(DARPA) released a public update report of their research program

on explainable AI (XAI).12 They reported that the new generation of

AI systems have limited effectiveness due to the inability of humans

to understand why an AI system makes particular decisions.

General Data Protection Regulation (GDPR) in Europe is an ex-

ample of the increasing needs for XAI from a regulatory perspective.

This regulation is a data protection and privacy law for all citizens

of the European Union, which regulates any organization that uses

personal data including EHRs of European Union residents for auto-

mated decision-making. Among other regulations, it requires organi-

zations to provide meaningful explanations about how the

algorithm reaches its final decisions.13 However, since there is no

concrete formulation and quantification of what an adequate expla-

nation should be, regulatory enforcement seems challenging in this

context.

Some researchers argue that if physicians could rely on drugs like

aspirin despite the fact that their underlying mechanism was un-

known, should they expect AI to give explanations if its perfor-

mance is promising?14 On the other hand, drugs have to go through

rigorously designed and conducted randomized clinical trials for

regulatory approval before production. Post-marketing surveillance

allows regulatory agencies, such as the Food and Drug Administra-

tion in the US, to withdraw them from the market in cases of serious

adverse events. AI, built inside labs using potentially biased and lim-

ited data with challenges like generalization to new samples, does

not have comparable mechanisms to ensure efficacy and safety in

the real world. XAI helps to understand whether AIM decisions are

valid and come to a consensus with medical professionals and as a

result, promote their trust in AIM.15 Thus, XAI for medicine is of vi-

tal importance to support the implementation of AI in clinical deci-

sion support systems.16,17

The increasing capabilities of AIM married to the necessity of

XAI demand a review of the state-of-the-art research in the field.

Our review summarizes a decade of research on the enhancement of

interpretability in EHR-based AIM. We aim to provide insights into

the current research trend by categorizing ML methods, XAI

approaches, and targeted ML prediction tasks to identify potential

gaps and suggest future research direction in the field. We also assess

the reproducibility of the included studies. Finally, we review and

evaluate the studies from the medical professional’s perspective on

their interpretability enhancement deliverables.

METHOD

Literature selection strategy
We conducted a systematic scoping review of XAI on EHR data us-

ing MEDLINE, Web of Science, IEEE Xplore, and Association for

Computing Machinery (ACM) databases based on the Preferred

Reporting Items for Systematic Review and Meta-Analyses

(PRISMA) framework18 to search studies published between Janu-

ary 1, 2009 and May 1, 2019. In this article, we refer to explainable

ML methods that are used for predictive analytics as XAI. We used

Covidence—a systematic review management system—to conduct

this systematic scoping review. We considered different combina-

tions of relevant search keywords in Table 1.

We found 6429 articles from MEDLINE, Web of Science, IEEE

Xplore digital library, and ACM digital library. After removing 651

duplicates, 2 authors (SNP and ZC) screened the titles and abstracts

of the remaining 5778 studies based on a set of inclusion and exclu-

sion criteria (see Supplementary Appendix Table 1). They retained

157 articles for full-text review and deemed 42 articles relevant to

include in the final full-text extraction. The PRISMA flow chart is

depicted in Figure 1.

The rest of the study team supervised the screening process, re-

solved conflicts, and provided clarifications based on their expertise.

Since this review focuses on EHR data, studies based on any data

other than EHR are not included. Building predictive models using

medical images and electroencephalogram data, for instance, do not

share similar characteristics with those based on patient EHRs. We

refer interested readers to other existing survey literature such as

those about AI in medical imaging19,20 and electroencephalogram

signal processing.21

Data extraction
We considered the following aspects when evaluating the full text of

the 42 articles (referred to as “the articles” throughout the paper) in-

cluded in this paper: 1) year of publication; 2) ML prediction tasks

(eg, incident of a disease, mortality, re-admission, risk assessment);

3) ML algorithm; 4) XAI method; 5) the dataset used to build the

model; 6) scope of XAI method (ie, intrinsic/posthoc, local/global,

model-specific/model-agnostic); 7) category of XAI method (ie, fea-

ture interaction and importance, attention mechanism, data dimen-

sionality reduction, knowledge distillation and rule extraction, and

intrinsically interpretable models); and 8) evaluation of XAI

method. We also assessed the articles in terms of reproducibility

based on 2 objective criteria: 1) if the datasets are accessible to the

public (ie, proprietary or not), and 2) if the availability of the source

codes/implementations is explicitly mentioned in the manuscript or

in the supplementary material.

We reviewed XAI methods in the articles and 2 medical profes-

sionals (PRM and JC) evaluated the clinical utility of these methods.

This can help identify the potential perception gaps between model

builders and the end users of the models. We also identified open

issues and challenges in XAI that can serve as suggestions for future

1174 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 7

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocaa053#supplementary-data


work in the field. To the best of our knowledge, this paper is the first

attempt to review XAI in AIM with real-world EHR data.

RESULTS

Research trends
We have seen a surge of XAI studies in AIM applications using EHR

data since 2015, with only a small number of studies from 2009 to

2011, as shown in Figure 2. The limited number of publications

indicates there is a demand for more research focused on XAI in bio-

medical applications using EHR data.

Prediction tasks, methods, and datasets
As of 2017, cardiovascular diseases, cancer, diabetes, and Alz-

heimer’s disease are the leading causes of death in the United

States.22 The majority of the articles (�60%) in our review focused

on 1 or more of these diseases. Table 2 lists all the articles, the ML

methods, the ML prediction tasks, and the datasets. Researchers

Table 1. The search queries

Database Query # initial results

MEDLINE and Web

of Science (via Cov-

idence software)

(explainable OR explainability OR

interpretable OR interpretability

OR understandable OR under-

standability OR comprehensible

OR comprehensibility OR intel-

ligible) AND (machine learning

OR artificial intelligence OR

prediction model OR predictive

model OR deep learning OR AI

OR neural network)

1487

IEEE Xplore 2208

ACM digital library 2734

Abbreviations: AI, artificial intelligence.

Figure 1. The PRISMA diagram depicts the number of records identified, included and excluded, and the reasons for exclusions.
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used different ML methods in the articles including: 1) logistic re-

gression (LR), 2) support vector machines (SVM), 3) decision trees

(DT), 4) ensemble, 5) Bayesian networks, 6) fuzzy logic, 7) deep

learning (DL), and 8) other approaches.

DL is the most popular ML method as approximately 38% of the

articles used DL with different architectures including feed-forward

neural networks, convolutional neural networks, recurrent neural net-

works with long short-term memory or gated recurrent unit. SVM, en-

semble techniques, and logistic regression (LR) are the second

(�14%) and third (�12%, �12%) most popular methods, respec-

tively. Other popular techniques in AIM are fuzzy logic and DT.

XAI methods
We grouped the XAI methods that were employed in the articles

into 5 categories: 1) feature interaction and importance, 2) attention

mechanism, 3) data dimensionality reduction, 4) knowledge distilla-

tion and rule extraction, and 5) intrinsically interpretable models.

We synthesized these categories from extant XAI review papers.74,75

Figure 3 depicts the type of XAI methods employed along with dif-

ferent ML methods and Table 3 summarizes different approaches in

each category of XAI methods for each of the articles.

We analyzed the XAI methods’ scope and categorized them into

1) intrinsic/posthoc (ie, interpretation as a result of inherited charac-

teristics of the ML method/interpretation as an additional step on

top of the ML model), 2) global/local (ie, interpretation of the whole

logic of the model/interpretation of a specific decision for an in-

stance), and 3) model-specific/-agnostic (ie, interpretation method

limited to a specific model/interpretation method not tied to a spe-

cific model). We referred to the definition of these categories in pre-

viously published XAI review papers.74,76 Visualization techniques

are often used as a complementary tool to facilitate the interpreta-

tion of the results in most of the articles. Thus, we did not consider

visualization as a separate interpretability enhancement method.

According to the articles, the majority of researchers chose “if-

then” rules (�28%) to enhance the interpretability of complex ML

methods. Another major trend is to preserve the interpretability of

less complex ML methods while boosting their performance and ap-

plying optimization (�21%). These 2 major trends are followed by

dimensionality reduction techniques (�19%).

Feature interaction and importance

Researchers have used feature importance and pairwise feature in-

teraction strengths to provide interpretability to ML models.75 The

level of contribution of the input features to the output prediction

has been extensively used for XAI in AIM.76 Ge et al54 used feature

weights to report top-10 contributing features for intensive care unit

(ICU) mortality prediction. Researchers have also used sensitivity

analysis for deriving the feature importance.80 Based on sensitivity

analysis, the most important features are those to which the output

is most sensitive. Eck et al32 determined the most important features

for microbiota-based diagnosis by approximately marginalizing fea-

tures out and evaluating the effect on the model’s output.

Ribeiro et al77 introduced the local interpretable model-agnostic

explanation (LIME) method. LIME produces explanations for any

classifier by approximating the reference model with a “locally

faithful” interpretable representation. To produce explanations,

LIME perturbs an instance, generates neighborhood data, and learns

linear models in that neighborhood. Pan et al38 used LIME to inves-

tigate the contribution level of features of new instances for predict-

ing central precocious puberty in girls. Ghafouri-Fard et al55 took

the same approach for diagnosing autism spectrum disorder.

Shrikumar et al79 introduced DeepLIFT, which is a

backpropagation-based interpretability approach. Backpropagation

approaches calculate the gradient of an output with respect to the

input via the backpropagation algorithm to report the feature im-

portance. Zuallaert et al48 used DeepLIFT to build interpretable

deep models for splice site prediction by calculating the contribution

score of each nucleotide.

Attention mechanism

The main idea behind the attention mechanism78 is the model’s ca-

pability to find a set of positions in a sequence with the most rele-

vant information to the prediction task. This idea is proved to apply

to interpretability enhancement as well.81

Attention mechanism has been used to 1) highlight the specific

times when the input features have mostly influenced the predictions

of clinical events in ICU patients,59 2) present an interpretable acuity

score framework based on DL (DeepSOFA) that can evaluate a

patient’s severity of illness during an ICU stay50; 3) provide

“mechanistic explanations” on accurate prediction of HIV genome

integration sites (DeepHINT)58; 4) feed gradient-weighted class acti-

vation mapping (Grad-CAM) with feature representations that in-

clude embedded time intervals information to recurrent neural

networks to predict vascular diseases61; and 5) to learn a representa-

tion of EHR data which captures the relationships between clinical

events for each patient (Patient2Vec).62

Choi et al60 introduced a reverse time attention model (RE-

TAIN), which uses 2 sets of attention weights, 1 for visit-level (to

Figure 2. Publication trend of XAI studies using EHR data between January 1st, 2009 and May 1st, 2019.
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Table 2. All the articles grouped based on the ML method along with the associated medical prediction task(s)

ML Method Prediction task(s) Dataset(s)a Article(s)

Logistic regression Incidence of Medium-chain acyl-coA de-

hydrogenase deficiency

A systematic newborn screening by the PCMA

screening center (Belgium)

Van den Bulcke et al23

In-hospital mortality (all-cause)/ hospi-

tal-acquired infections/ICU admis-

sions/development of pressure ulcers

during the patient’s stay

Premier healthcare EHR data Fejza et al24

Support vector machines Incidence of diabetes mellitus A diabetes dataset in Oman25 Barakat et al26

Incidence of leukemia/prostate cancer/

colon cancer

Unnamed datasets27–29 Hajiloo et al30

Gut and skin microbiota/ inflammatory

bowel diseases

Unnamed dataset31 Eck et al32

Incidence of type 2 diabetes Federazione Italiana Medici di Medicina Gener-

ale

Bernardini et al33

Hospitalization due to heart diseases or

diabetes

Boston Medical Center Brisimi et al34

Decision trees Protein solubility and gene expressions 40 datasets in the University of California Irvine

(UCI) repository, Solubility database of all E.

coli proteins, and 9 Gene Expression Machine

Learning Repository datasets

Stiglic et al35

Ensemble Risk of developing Type 2 diabetes Practice Fusion Diabetes Classification Dataset Luo36

Stage of acute myeloid leukemia/breast

invasive carcinoma

The Cancer Genome Atlas Jalali and Pfeifer37

Incidence of central precocious puberty

in girls

Pediatric Day Ward of the Endocrinology De-

partment at Guangzhou Women and Child-

ren’s Medical Center

Pan et al38

Incidence of multiple diseases 13 data sets of life sciences in the UCI Reposi-

tory

Valdes et al39

Adverse drug events Stockholm electronic patient record corpus

(HealthBank)

Crielaard and Papape-

trou40

Drug side effect Side Effect Resource 4 Zhang et al41

Bayesian networks Incidence of heart disease, fetal patholo-

gies

3 heart disease datasets in the UCI repository Bouktif et al42

Fuzzy logic In-hospital mortality (all-cause) MIMIC-III, Diabetes, Heart Disease and Liver

datasets in the UCI repository

Davoodi and Moradi43

Incidence of type 2 diabetes Pima Indian Dataset in UCI repository Settouti et al44

Deep learning Splice site detection Unnamed datasets45–47 Zuallaert et al48

Hospital readmission due to heart failure Congestive Heart Failure Xiao et al49

Illness severity/ in-hospital mortality University of Florida Health, MIMIC-III Shickel et al50

Heart failure/cataract Health Insurance Review and Assessment Na-

tional Patient Samples (Republic of Korea)

Kwon et al51

Cell-type specific enhancer National Institutes of Health Epigenome Road-

map data; National Human Genome Re-

search Institute ENCODE database; the

Encyclopedia of DNA Elements

Kim et al52

Mortality/ventilator-free days due to

acute lung injury.

Pediatric ICU dataset from the Children’s Hos-

pital Los Angeles

Che et al53

Mortality (all-cause) Asan Medical Center Ge et al54

Incidence of autism N/A Ghafouri-Fard et al55

Long-term survival from glioblastoma

multiforme

The Cancer Genome Atlas Hao et al56

Stage of several cancer Cancer microarray data sets obtained from

Gene Expression Model Selector

Hartono57

HIV genome integration site Retrovirus Integration Database Hu et al58

Daily sepsis/myocardial infarction/ van-

comycin antibiotic administration

MIMIC-III Kaji et al59

Heart failure Sutter Health Choi et al60

Incidence of vascular diseases Seoul National University Bundang Hospital Park et al61

Future hospitalization De-identified EHR data from the University of

Virginia Health System

Zhang et al62

Multifactor affiliation

analysis

Dementia stage of Alzheimer’s disease Open Access Series of Imaging Studies Aditya and Pande63

Stratify patients with stage 1 lung cancer Xena Zhao and Bolouri64

(continued)

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 7 1177



capture each visit’s influence) and the other for variable-level. RE-

TAIN is a reverse attention mechanism to preserve interpretability,

mimic medical professional’s behavior, and incorporate sequential

information. Kwon et al51 developed a visually interpretable DL

model for heart failure and cataract risk prediction based on RE-

TAIN (RetainVis). The commonality of these articles is in their aim

to enhance the interpretability of DL models by highlighting specific

position(s) within a sequence (eg, time, visits, DNA) in which certain

input features influence the prediction outcome.

Data dimensionality reduction

Researchers used data dimensionality reduction to build models

only by including the most important features. Bernardini et al,33

for instance, used the least absolute shrinkage and selection operator

Table 2. continued

ML Method Prediction task(s) Dataset(s)a Article(s)

Measuring similarity to

exemplars of clusters

Stratify the risk of 30-days mortality in

patients with cardiovascular disease

Portuguese real Acute Coronary Syndrome

patients’ dataset

Paredes et al65

Different predictive mod-

els on specific clusters

of patient population.

Survival from cardiac transplantation United Network of Organ Sharing Yoon et al66

Logic optimization for bi-

nary input to continu-

ous output

Drug response of cancer cell lines Genomics of Drug Sensitivity in Cancer, Cancer

Therapeutics Response Portal

Knijnenburg et al67

Rule-based Diabetes and breast cancer stage classifi-

cation

Wisconsin Breast Cancer Dataset and Pima In-

dian Diabetes Dataset in the UCI repository

Ming et al.68

Incidence of asthma/diabetes/depression/

lung cancer/leukemia/myelofibrosis

Medical diagnosis records of about 150K

patients collected by a web-based EHR com-

pany and 2 other nonmedical datasets

Lakkaraju et al69

Diagonal quadratic dis-

criminant analysis

Incidence of leukemia Unnamed datasets26,70 Huang71

Artificial hydrocarbon

networks

Incidence of breast cancer Wisconsin Breast Cancer Dataset in the UCI re-

pository

Ponce and Martinez-Vil-

lase~nor72

Sparse high-order interac-

tion model with rejec-

tion option

Incidence of Alzheimer’s disease Alzheimer’s Disease Neuroimaging Initiative Das et al73

Abbreviations: EHR, electronic health record; ICU, intensive care unit; ML, machine learning; UCI, University of California, Irvine.
aWe have either mentioned the name of the dataset/reference, the referenced paper that is indicated by the authors as the source of dataset, or the institute that

the dataset is generated by. If there was no information regarding the dataset in a study, we indicated it as N/A in the table.

Figure 3. Explainable artificial intelligence (XAI) methods vs machine learning (ML) methods used for interpretability enhancement. The links between ML and

XAI methods illustrate that ML method was used with that specific XAI method in a paper. The thicker the links are, the more frequent that combination of ML

and XAI method has been practiced. A thicker box around the XAI method shows that it has been applied by more of the articles.
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Table 3. Different explainable artificial intelligence methods, their category, and scope

XAI Category Articles Approach Intrinsic/Posthoc Local/Global Model-specific/-

agnostic

Feature interac-

tion and impor-

tance

Ge et al54 Feature weights in the model Posthoc Global Model-agnostic

Zuallaert et al48 Contribution score of each neuron acti-

vation (DeepLIFTundefined18)

Eck et al32 Approximately marginalizing features

out

Global, Local

Pan et al38 LIME77 Local

Ghafouri-Fard et

al55

Attention mecha-

nism

Kwon et al51 The model’s capability to find a set of

positions in a sequence with the most

relevant information to the prediction

task78

Intrinsic Global, Local Model-specific

Kaji et al59

Shickel et al50

Hu et al58 Local

Choi et al60

Zhang et al62

Park et al61

Data dimensional-

ity reduction

Zhao and

Bolouri64

Identifying most informative exemplars

through cluster analysis and LASSO

Intrinsic Global Model-agnostic

Kim et al52 Building a model based on the most im-

portant features

Hao et al56 Finding the gene pathways and their

interactions using sparse DL

Bernardini et al33 Sparse-balanced SVM

Zhang et al41 Selecting optimal feature subset from the

most critical dimensions of features

Huang71 Diagonal quadratic discriminant analysis

on chi2 selected features

Local Model-specific

Aditya and

Pande63

Affiliation analysis based on capturing

inter-feature relationships (knowledge

base)

Hartono57 Providing clearer mathematical descrip-

tion

Knowledge distil-

lation and rule

extraction

Xiao et al49 Distilling complex relationships between

hospital readmission and potential

risk factors

Posthoc Global Model-specific

Settouti et al44 Fuzzy rules Intrinsic Global, Local

Davoodi and

Moradi43

Global

Hajiloo et al30

Che et al53 Mimic learning Posthoc Global, Local

Barakat et al26 Intelligible representation of the SVM’s

classification decision

Intrinsic Global

Das et al73 sparse high-order interaction model with

rejection option

Global, Local

Crielaard and

Papapetrou40

Rule induction from transparent oracle-

coached predictive models

Global

Paredes et al65 Rule extraction from regions of belong-

ing associate with each class

Lakkaraju et al69 Decision-sets (nonhierarchical if-then

rules)

Local

Ming et al68 Visualizing rules Posthoc Global

Ponce and Marti-

nez-Villanse-

or72

Rule extraction based on predictive fea-

tures (polynomial weights)

Intrinsic

Luo36 Automatically pruning and manually re-

fining association rules

Posthoc Global, Local Model-agnostic

Intrinsically inter-

pretable models

Fejza et al24 Distributed logistic regression frame-

work

Intrinsic Global Model-specific

Van den Bulcke et

al23

Parameter and threshold optimization of

decision tree, LR, and ridge LR

Bouktif et al42 Ant colony optimization of combining

Bayesian classifiers

(continued)
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(LASSO)82 to induce sparsity for SVMs for type 2 diabetes early di-

agnosis. Hao et al56 developed pathway-associated sparse DL to

find the gene pathways and their interactions in patients with glio-

blastoma multiforme. Kim et al52 selected the most important input

features from the datasets based on domain knowledge and built a

DL model. Then, they ranked the features based on their weights in

the model and visualized the result for predicting cell-type-specific

enhancers.

In another work, Zhao and Bolouri64 stratified patients with

stage-1 lung cancer by identifying the most informative exemplars

through supervised learning. They proposed a hybrid approach for

dimensionality reduction by integrating pattern discovery and re-

gression analytics to identify a group of “exemplars” and create a

“dense data matrix.” Then, they included those exemplars that are

the most predictive of the outcome in the final model.

Zhang et al41 built a model for drug side effects prediction based

on the optimal dimensions of input features by combining multi-

label k-nearest neighbor and genetic algorithm techniques. To pro-

vide more transparency to the model, Hartono57 visualized cancer

classification using a clearer mathematical description. This was

achieved by introducing Softmax restricted radial basis function net-

works. Huang71 developed an integrated method for cancer classifi-

cation. He reduced the feature dimension by selecting important

genes using the Chi2 algorithm. Then, he applied diagonal quadratic

discriminant analysis for classification. Finally, he used general rule

induction to extract association rules.

Knowledge distillation and rule extraction

In their influential work, Hinton et al83 proposed a knowledge distil-

lation technique for neural networks. This technique transfers

knowledge from a complex and accurate model to a smaller and less

complex one which is faster but still accurate. Che et al53 used

knowledge distillation to build an interpretable prediction model for

ICU outcome (ie, mortality, ventilator-free days) by feeding learned

features from the base model into the helper classifier (mimic model)

and reporting feature importance of the mimic model to deliver in-

terpretability to the basic complex model. A similar approach was

taken by Ming et al68 to extract rules by approximating a complex

model using model induction on several tasks, such as breast cancer

diagnosis and diabetes classification.

Xiao et al49 developed a DL model (CONTENT) that distills

complex relationships between hospital readmission and potential

risk factors for patients by transforming patients’ EHR events into

clinical concept embeddings. As a result, they produced a context

vector that characterizes the overall condition of the patient. Also,

classification rules were derived as a means to provide human inter-

pretable representations of the black-box predictive models. Other

researchers used rule extraction techniques to 1) provide decision-

sets (nonhierarchical if-then rules) with use case on several diseases

diagnosis69; 2) automatically and manually prune association rules

for explanations of type 2 diabetes risk prediction36; 3) classify mi-

cro-arrays,30 predict mortality in ICUs,43 and classify diabetes44 by

fuzzy rule extraction; 4) diagnose Alzheimer’s disease73 by adding a

rejection option (on hard-to-classify samples); 5) diagnose diabetes

mellitus26; and 6) stratify patients with cardiovascular disease

risk.65

Intrinsically interpretable models

Besides common interpretability enhancement techniques described

earlier, many researchers have taken a different strategy to provide

interpretability to their predictive models. These approaches mainly

rely on preserving the interpretability of less complex ML methods

while enhancing their performance by boosting and optimization

techniques. Researchers implemented 1) distributed logistic regres-

sion framework to enhance the accuracy of logistic regression deal-

ing with large data with application to daily in-hospital mortality

prediction during the patient stay,24 2) automated pruning of deci-

sion trees for multiple disease classification,35 3) ensembles of regu-

larized linear SVMs for gene expressions,37 4) logic optimization for

binary input to continuous output to infer logic models for drug re-

sponse in cell lines,67 5) accurate decision trees based on boosting

for stratification of patients into subpopulations,39 6) clusters of

base learners (LR, linear perceptron, Cox regression) to create a tree

of classifiers with application to mortality prediction after cardiac

transplant,66 7) alternating clustering and classification optimization

using sparse linear SVM framework for hospitalization prediction

due to heart disease and diabetes,34 8) ant colony optimization of

combining Bayesian classifiers with application to heart diseases and

cardiotocography-based fatal pathologies prediction,42 and 9) pa-

rameter and threshold optimization of DT, LR, and ridge LR for

medium-chain acyl-CoA dehydrogenase deficiency classification.23

Reproducibility assessment
Many research fields, including AI, have been struggling with a re-

producibility crisis over the past decade.84 A survey of 400 algo-

rithms presented in the 2 top AI conferences shows that only 6% of

Table 3. continued

XAI Category Articles Approach Intrinsic/Posthoc Local/Global Model-specific/-

agnostic

Brisimi et al34 Alternating clustering and classification

Yoon et al66 A tree of clusters with base learners asso-

ciated with each cluster

Valdes et al39 Accurate decision trees based on boost-

ing

Global, Local

Knijnenburg et

al67

Logic optimization for binary input to

continuous output

Global

Jalali and Pfeifer37 Ensemble of regularized linear SVM Global, Local

Stiglic et al35 Automated pruning for decision tree. Global

Abbreviations: DL, deep learning; LIME, local interpretable model-agnostic explanation; LR, logistic regression; SVM, support vector machine; XAI, explain-

able artificial intelligence.
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the presenters have shared their implementation code, around 30%

shared data, and only 50% shared “pseudocode” with the public.85

Another recent study emphasizes the importance of reproducibility

in AIM research to ensure safety and effectiveness.86

We believe the reproducibility in this field deserves more atten-

tion. In general, �43% (18/42) of the articles did not explicitly (ie,

mentioned in the manuscript or in the supplementary material)

make their datasets accessible to the public; in �57% (24/42) of the

studies, source codes were not made publicly available; and �31%

(13/42) did not meet both criteria (see Supplementary Appendix Ta-

ble 2). Interested audiences should refer to the original work for

more details about their reproducibility. Nevertheless, more in-

depth analyses are required to rigorously evaluate the reproducibil-

ity of the articles, which is out of the scope of this review paper.

Interpretability evaluation
We observed that more than �26% (11/42) of the articles did not

explicitly report any evaluation of the XAI method they used,

�28% (12/42) have either referred to the common medical knowl-

edge and medical literature or compared the results with hypotheses,

and only �7% (3/42) reported human expert confirmation of the

results. The rest of the papers took different strategies for the XAI

method evaluation, especially regarding effectiveness measurement.

Barakat et al,26 for instance, measured the fidelity of the rules they

derived from the model against the original model as a way of mea-

suring the effectiveness of the proposed interpretability method.

They also measured “comprehensibility” which they define as the

number of rules. Ponce and Martinez-Villase~nor72 compared differ-

ent ML methods for breast cancer classification, reporting accuracy

percentage and interpretability level (low, medium, high). However,

the logic behind this categorization is not clear.

Lakkaraju et al69 defined several metrics for evaluation including

1) fraction overlap (the extent of overlap between every pair of rules

of a decision set); 2) fraction uncovered (the fraction of data points

not covered by any rule); 3) average rule length (average number of

predicates a human needs to parse in a decision set); 4) number of

rules in a decision set; and 5) fraction of classes (the fraction of class

labels predicted by at least 1 rule). To qualitatively analyze their

XAI method, Kwon et al51 verified whether the medical codes that

were highly predictive of heart failure in their model are supported

by general medical knowledge. Both of these studies51,69 performed

a user study to evaluate different aspects of interpretability enhance-

ment in their proposed approach. Kwon et al51 concluded that AIM

applications should incorporate more human interactions with the

system.

DISCUSSION AND CONCLUSIONS

Medical professionals’ perspectives of XAI for medicine
We studied the articles included in this systematic scoping review

from the lenses of 2 medical professionals (co-authors PRM and JC),

aiming to highlight the 1) general opportunities and challenges in

XAI for medicine and 2) examples of specific pros and cons regard-

ing each XAI category from the end-users’ perspective rather than

from the XAI researchers’ perspective. We summarized our findings

in Table 4. Nevertheless, more extensive studies are required to sys-

tematically collect feedback from medical professionals (eg, Diprose

et al88) and analyze potential pros and cons, opportunities, and chal-

lenges from their perspective. Such a study can assist to identify the

gaps between XAI researchers’ and end-users’ needs in real-world

scenarios.

Challenges: 1) Not all visualizations are interpretable by medical

professionals. In other words, visualization does not necessarily pro-

vide better interpretability. 2) There is a need to incorporate more

longitudinal features in XAI (as opposed to just using aggregated

values of a lab feature in a period) to improve the robustness of the

models. 3) The absence of a definition for sufficient explainability,

and how it can vary substantially in different use cases, is an ongo-

ing issue. 4) Including more features may help improve model accu-

racy. However, this may also result in overfitting that is not robust

Table 4. Potential pros and cons of explainable artificial intelligence (XAI) categories from the medical professional’s point of view

XAI Category Pros Cons

Feature interac-

tion and impor-

tance

Illustrates not only important features, but also their relative

importance toward clinical interpretation

Numerical weights are often not easily interpretable, or might

be misinterpreted

Attention mecha-

nism

Does not directly inform the clinical end user of the answer but

does highlight the areas of most interest to support easier de-

cision-making. Thus, user might be more tolerant of imper-

fect accuracy

Simply providing this information to a clinical end user might

not be useful. Major issues are information overload, alert

fatigue, etc. Providing areas of attention without clarity on

what to do with the results can potentially be even more con-

fusing if the end user is unsure of what to make of a

highlighted section (and also likely to miss nonhighlighted

areas that are sometimes crucial)

Data dimensional-

ity reduction

Simplifying the data down to a small subset can make the mod-

el’s underlying behavior comprehensible. It also can be gen-

erally advantageous with potentially more robust regularized

models that are less likely to overfit training data

Risk of missing other features that can still be important in in-

dividual cases, but the reduced models inadvertently do not

include them

Knowledge distil-

lation and rule

extraction

Potentially more robust models with summarized representa-

tions of complex data that allows clinical end users to natu-

rally infer meaning from87

If clinical end users cannot intuitively interpret the meaning of

these representations, then the representations are likely to

make it even harder for the end users to interpret and ex-

plain

Intrinsically inter-

pretable models

Simple models that are more familiar and intuitive to clinical

end users. Even if they don’t understand how these types of

models are constructed, many medical professionals will at

least have some familiarity with how to apply them

If ensemble of simple models is used to enhance the accuracy,

then a clinical end user is not able to interpret the results
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to variations and, thus, less usable and trustworthy for medical pro-

fessionals. 5) Predictive analytics on uncommon diseases might re-

veal some causations that are not known now and can be used to

prevent extensive and expensive workups.

Opportunities identified by these medical professionals are: 1)

more transparent predictive models for major diseases (eg, diabetes,

cancer) that are the reason for extensive pathologies in the field of

preventive medicine, 2) more emphasis on studying uncommon dis-

eases for possible etiologies in predictive analytics to prevent exten-

sive and expensive workups, 3) rerouting healthcare funds to

outpatient care and implementing preventive strategies using ex-

plainable hospital readmission prediction due to chronic diseases, 4)

educating new generations of medical professionals with basic AI

knowledge to overcome the gap between AI systems and medical

professionals, as an ultimate goal of XAI, 5) using XAI to assist

medical professionals overcome their medical knowledge biases and

become more objective, 6) enforcing more regulations to ensure AI

methods are evaluated rigorously, reproducible, and accompanied

by clear circumstances under which the methods are applicable, and

7) more focus on integrating causal inference with AI to provide

explanations.

Potential gap in the perspectives of designers and

medical professionals in XAI for medicine
We observed that knowledge distillation and rule extraction is the

most popular approach, followed by intrinsically interpretable mod-

els. XAI can assist designers to debug model development and do

sanity checks for spurious associations. Medical professionals, on

the other hand, may not require specific explanations of predictions

and recommendations if they have been empirically validated

through other mechanisms (eg, randomized clinical trials). How-

ever, being informed of the features/elements of a prediction model

that are important for risk assessment can itself be instructive to

medical professionals.

XAI can provide transparency to the prediction models that are

built on a cohort that excluded certain types of patients (eg, preg-

nant patients), thus, help medical professionals understand when it

may be unfair to directly apply the XAI methods to individual

patients. A closer look at the scope of the approaches proposed in

different XAI method categories reveals that the majority of current

approaches focus on the global scope. While valuable, more meth-

ods for local explanation need to be explored. Medical professionals

work with individual patients more often and need specific explana-

tions tailored to each patient’s situation to assess how the XAI

results do, or do not, apply to individual patient contexts.

If we look further at each XAI method category, we can see that

the attention mechanism (100%) and feature interaction and impor-

tance (60%) are the top approaches supporting local explanations.

This trend is followed by knowledge distillation and rule extraction

(�38%), intrinsically interpretable models (�22% local), and data

dimensionality reduction (12.5%) focus on the local explanations,

while they appear to be quite popular for XAI in medicine. This can

represent a potential gap between theory and practice.

Potential limitations of XAI methods
Despite the valuable effort in providing interpretability for black-

box models such as neural networks, researchers call for more cau-

tion and evaluation while applying these methods. Here we provide

some examples of these concerns. Ghorbani et al89 were able to

compute small adversarial perturbations (in a similar way to com-

puting adversarial examples to neural networks90) that cause sub-

stantial changes to feature importance maps of several

interpretation methods. However, such adversarial perturbations in

the case of real-world datasets such as EHR and their impact on

XAI methods for EHR-based models need to be studied further.

Sokol and Flach91 emphasize the importance of deriving more

meaningful concepts when using an XAI method by personalizing

the explanations through user’s input. Miller et al92 also note that

people maintain mental models of each other to tailor explanations

to individuals. This has not been the focus of much XAI research.

From another point of view,93 using attention mechanisms does not

necessarily provide more transparency to the black-box model.

Based on their experiments, the relationship between the attention

weights and model output is unclear. Another similar study94 argued

that whether or not attention is explanation depends on the defini-

tion of explanation. However, both studies confirmed that research-

ers should be cautious when using attention distributions for

explanations.

Rudin95 refers to post hoc XAI methods as “problematic” in the

case of high-risk decision-making. From her point of view, the way

forward is to create inherently interpretable models rather than cre-

ating methods that explain black-box models. She also calls the ac-

curacy and interpretability trade-off a myth. However, from our

perspective, we argue that such a statement might not always be

valid in medical predictive modeling using EHR data. Further, an in-

herently interpretable model does not give an explainable decision.

A large decision tree may still require explanation to a nontechnical

user; and concepts such as contrastive and counterfactual explana-

tions are independent of the interpretability of the model. Neverthe-

less, XAI and, more specifically, XAI for medicine, is a relatively

new topic that is still in its initial stage of formation. Thus, diverse

points of view and approaches to addressing existing limitations and

shortcomings of different XAI methods should be welcomed.

XAI evaluation issue
Few researchers have considered XAI evaluation in their work.

There is no consensus on the definition of interpretability yet; thus,

there is no agreed-upon approach to evaluate the results of the XAI

methods. We argue that making effective XAI methods for medicine

requires more interdisciplinary collaboration between different pro-

fessionals such as AI researchers and medical professionals. Other

researchers also have emphasized the importance of including hu-

man expertise in the explanation process.92 The most recent report

on XAI program of DARPA96 explicitly mentioned that “an XAI

system’s explanation effectiveness must be assessed according to

how its explanations aid human users. This requires human-in-the-

loop psychologic experiments to measure the user’s satisfaction,

mental model, task performance, and appropriate trust.”

Reproducibility issue
Based on the results of this systematic review, there is not enough

emphasis on the reproducibility of the research work published in

this field. Considering the issue of XAI evaluation, in addition to the

critical nature of AI applications for medical practices, research re-

producibility is crucial.86 To evaluate their new ideas, researchers in

the field need to compare their work to the previous work done by

other researchers. It would be easier and faster to examine and com-

pare ideas if researchers use publicly available datasets, describe

how they select specific features, clearly mention the dimensionality

of the dataset as well as the infrastructure they use, and provide the
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source code. Thus, we suggest that publication venues should re-

quire authors to meet certain reproducibility criteria before publish-

ing their research work.
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