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ABSTRACT

Objective: To identify predictors of prediabetes using feature selection and machine learning on a nationally

representative sample of the US population.

Materials and Methods: We analyzed n¼6346 men and women enrolled in the National Health and Nutrition

Examination Survey 2013–2014. Prediabetes was defined using American Diabetes Association guidelines. The

sample was randomly partitioned to training (n¼3174) and internal validation (n¼3172) sets. Feature selection

algorithms were run on training data containing 156 preselected exposure variables. Four machine learning

algorithms were applied on 46 exposure variables in original and resampled training datasets built using 4

resampling methods. Predictive models were tested on internal validation data (n¼3172) and external valida-

tion data (n¼3000) prepared from National Health and Nutrition Examination Survey 2011–2012. Model perfor-

mance was evaluated using area under the receiver operating characteristic curve (AUROC). Predictors were

assessed by odds ratios in logistic models and variable importance in others. The Centers for Disease Control

(CDC) prediabetes screening tool was the benchmark to compare model performance.

Results: Prediabetes prevalence was 23.43%. The CDC prediabetes screening tool produced 64.40% AUROC.

Seven optimal (� 70% AUROC) models identified 25 predictors including 4 potentially novel associations; 20 by

both logistic and other nonlinear/ensemble models and 5 solely by the latter. All optimal models outperformed

the CDC prediabetes screening tool (P<0.05).

Discussion: Combined use of feature selection and machine learning increased predictive performance outper-

forming the recommended screening tool. A range of predictors of prediabetes was identified.

Conclusion: This work demonstrated the value of combining feature selection with machine learning to identify

a wide range of predictors that could enhance prediabetes prediction and clinical decision-making.
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INTRODUCTION

Prediabetes is a global epidemic with multiple associated complica-

tions1,2 and its prevalence is increasing3 despite being treatable.

However, timely diagnosis is difficult as it frequently remains

asymptomatic.4 Current prediabetes screening tools utilizing a small

set of established risk factors reportedly fail to diagnose a large pro-

portion of undetected prediabetic individuals.5 Schools of thought

on prediabetes that underscore potential issues of overdiagnosis and
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over-medication are noteworthy.6,7 These have proposed different

optimal cutoff values which might produce varying estimates of pre-

cision and recall in diagnostic tools. Regardless of contrasting view-

points, it is widely agreed that the cornerstone of prediabetes

management should be lifestyle interventions, especially during early

and middle phases of prediabetes.8,9 Also, the effectiveness of early

prediabetes interventions is increasingly reported.10,11 Therefore,

a timely diagnosis would in fact reduce the need for

pharmacotherapy.

The continuous National Health and Nutrition Examination

Survey (NHANES) is a set of serial cross-sectional studies which

provides a rich source of multidimensional data for predictive ana-

lytics using self-reported, clinical, and biochemical variables col-

lected on a nationally representative sample of the

noninstitutionalized, civilian United States population.12 Three gly-

cemic tests—fasting plasma glucose (FPG), oral glucose tolerance

test (OGTT), and glycated hemoglobin (HbA1c)—are measured in

NHANES, a combined use of which reported better detection than

any single test.13

Machine learning (ML), though more complex than traditional

statistical analyses, has merits intrinsic to its knowledge discovery

process, such as the ability to generate new hypotheses, identify hid-

den risk factors of various diseases, predict more personalized risk

estimates, and develop individualized risk profiles on high-

dimensional data.14 New prediabetes predictors may augment and

complement current prediabetes risk assessment procedures, upgrad-

ing them into more personalized instruments. These are likely to en-

hance timely diagnosis of precursor stages of diabetes,15 providing a

window of opportunity to apply cost-effective interventions and pre-

venting progression to overt diabetes. Such more comprehensive and

informative multivariable ML models may have potential use in

clinical settings where the mining of big data repositories such as

electronic health records (EHRs) could assist clinicians in decision-

making and in community settings where the large-scale disease

screening procedures could be rendered more precise and

personalized.

Presently, the dominant approach is to model a limited set of eas-

ily measured variables using traditional statistical approaches to pre-

dict prediabetes. Such simple, cost-effective models are often

preferred in many situations including population-wide screening or

diagnostics in resource-constrained settings.16,17 However, expand-

ing big data technologies in health care are enabling cheaper data ac-

quisition on numerous biomarkers.18 Although high-dimensional

analytics could develop precise prediabetes prediction tools, they

tend to be of limited use in typical screening or clinical settings

where information on many biomarkers is still unavailable. There-

fore, it has been argued that these 2 approaches should be seen as

complementary rather than exclusive.19

Two systematic reviews of the quality of diabetes and prediabe-

tes prediction models, respectively, revealed common methodologi-

cal issues including univariate prescreening of variables,

categorization of continuous attributes, poor handling of missing

data,20 and the lack of external validation of tools.21 Conversely,

application of several feature selection methods22 and the use of

strategies, such as resampling methods23 and ensemble learning24 to

combat class imbalance, optimized classifier performance. Class

imbalance (ie, disproportionately higher or lower prevalence of 1

class of a categorical outcome variable) is a common phenomenon

in medical databases which can heavily deteriorate classifier perfor-

mance as it tends to optimize the overall accuracy without consider-

ing the relative distribution of each class.25

This study aimed at identifying predictors of prediabetes defined

by standard glycemic tests via prediction models built using feature

selection and machine learning on retrospective data from NHANES

2013–2014—the latest available at the time this analysis was con-

ducted—and by benchmarking their performance against a national

prediabetes screening instrument (ie, the CDC prediabetes screening

tool).26

MATERIALS AND METHODS

Analyses were done using R statistical software.27 Methodological

approach and participant selection are illustrated in Supplementary

Material Figure 1. Data were collected during 2013–2014 from the

sample following standard protocols. In summary, this consisted of

health interviews conducted in respondents’ homes and health meas-

urements including biological specimen collection performed in

specially-designed mobile centers. No follow-up assessments or

measurements on the same cohort were conducted. The exact time

points of the data collection process (ie, when the predictors were

measured and prediabetes tests were conducted) are not available.12

Therefore, temporal dynamics of predictors could not be analyzed.

All 3 diagnostic tests available in the NHANES 2013–2014,

namely, FPG, OGTT, and HbA1c tests were used to define predia-

betes. Prediabetes diagnostic criteria recommended by the American

Diabetes Association28 were used which were preferred over other

criteria, such as WHO definitions for this specific US population.

Individuals with evidence of diabetes (HbA1c > 6.4% or FPG >

125 mg/dl or OGTT > 200mg/dl) were first excluded. Of the

remaining sample, participants were classified as prediabetic if they

met at least 1 of the following criteria: FPG 100–125 mg/dl, OGTT

¼ 140–200mg/dl, or HbA1c ¼ 5.7–6.4%. Based on a receiver oper-

ating characteristic ROC analysis of self-reported status of partici-

pants having ever been told they had prediabetes versus current

HbA1c, FPG, and OGTT, self-reported prediabetes data were not

used for outcome definition (Supplementary Material Figure 2). We

also cross-checked self-reported diabetes data with the above classi-

fication and ensured that all self-reported diabetic individuals had

been excluded.

Variables with 30% or more missing data were excluded. From

the repertoire of variables in the NHANES 2013–2014, 156 varia-

bles were preselected following a literature review presented in Sup-

plementary Material Table 1. Assuming a missing at random

pattern, missing values were multiply imputed using default func-

tions of a “MICE” package;29 predictive mean matching for nu-

meric, polytomous logistic regression for multi-level (> 2 levels),

categorical, and binary logistic regression for dichotomous categori-

cal variables, respectively. Goodness of fit of imputed data was eval-

uated by comparing summary measures and distributions of

variables in original and complete datasets. A random 50/50 parti-

tioning of the complete NHANES 2013–2014 dataset was done to

create training data (N¼3174) and internal validation data

(N¼3172).

A random sample with corresponding variables was created

from NHANES 2011–2012 for external validation of the con-

structed models (N¼3000). As different cohorts are recruited every

year, NHANES datasets often cannot be directly compared. Previ-

ous studies used NHANES data for external validation, primarily,

owing to the uniform data collection procedures followed in these

serial surveys, reporting a closely similar set of variables.16,30 How-

ever, additional processing is required when discrepancies such as

missing or altered variables are encountered. One variable, namely
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“diagnosed jaundice,” was not available in the NHANES 2011–

2012 and a random, simulated sample of values from the NHANES

2013–2014 data of this variable was added to the external valida-

tion dataset. No further discrepancies requiring additional process-

ing were found in the NHANES 2011–2012 sample. Missing values

of the external validation data were handled similarly to the method

used for NHANES 2013–2014 described earlier.

Feature selection methods of all 3 types—wrapper, filter, and

embedded—using “Boruta,”31 “Fselector,”32 “glmnet,”33 and

“caret”34 packages (Figures 1 and 2) were run on the training data-

set (N¼3174) containing the 156 preselected variables (Table 1).

Based on the feature selection output and literature review, 46

variables were selected for modeling (Table 2). When several similar

or comparable variables had appeared in the output, objectively

measured physiological or biochemical variables were selected in fa-

vor of those emanating from self-reported data.

Four machine learning algorithms were used for modeling: logis-

tic regression (linear), artificial neural network (ANN) (non-linear),

random forests (RF) (ensemble), and gradient boosting (GB) (ensem-

ble). To address the issue of class imbalance, 2 methods endorsed in

literature were used: 2 ensembles35 indicated above and 4 resam-

pling techniques23—namely, majority class undersampling,23 minor-

ity class oversampling,23 random oversampling (ROSE),36 and

synthetic minority oversampling (SMOTE).37 Thus, using each of

the 4 algorithms, 5 models were built with: 1) original data, 2) un-

der-sampling, 3) oversampling, 4) ROSE, and 5) SMOTE. Parame-

ter tuning and 5-fold cross-validation were performed for ANN

models while the other 3 algorithms were trained using default

parameters specified by respective R packages and 10-fold cross-

validation. These are detailed in Supplementary Material Table 3.

Resulting 20 machine learning models built on training data

were tested on both internal and external validation data. Predictive

accuracy of models on validation data was gauged via confusion ma-

trix metrics (sensitivity, specificity, and negative and positive predic-

tive values) and area under the receiver operating characteristic

curve (AUROC). Relative impact of predictors in logistic regression

models was gauged via adjusted odds ratios (OR), while variability

and significance were assessed via their confidence intervals (CI) and

corresponding P values. Variable importance values were used for

identifying predictors via the other 3 classification algorithms. De-

fault functions available in packages of R were used to calculate

these variable importance estimates,27,34 which are described in Sup-

plementary Material Table 3.

Owing to the class imbalance of the sample (prevalence of predi-

abetes ¼ 23.43%), Youden index-maximizing AUROC was chosen

as the model performance evaluation criterion, as both Youden in-

dex38 and AUROC39 are preferred over other metrics in imbalanced

datasets. A benchmark AUROC of 70% which had been endorsed

as an acceptable prediction level40 was set a priori, and 7 optimal

models exceeding it were identified. A summary of these optimal

models and identified predictors are given in Tables 3 and 4.

Predictive performance of optimal models on the internal and ex-

ternal validation data were compared against the performance of a

national benchmark (ie, CDC prediabetes screening test).26 Since the

criteria of this benchmarking instrument were not reported in the

same format in NHANES, an adaptation process was required to

Figure 1. Feature selection using Boruta algorithm: Variable importance plot. Default functions of the “Boruta” R package were used; feature importance measure

¼ mean decrease accuracy, maximal number of random forest runs ¼ 100. Red, yellow, green, and blue boxplots represent Z scores of rejected, tentative, con-

firmed and shadow attributes respectively. Shadow (minimum, mean, and maximum) features are reference points for deciding which attributes are truly impor-

tant and these values are generated by the algorithm via shuffling values of the original attributes. Variables extracted from the 20 confirmed and the 10 tentative

features selected by the “Boruta” algorithm are given in Table 1.

(shadowMin¼Minimum shadow score, cpk¼creatine phosphokinase, psoriasis¼diagnosed psoriasis, milk¼milk consumption, mi¼diagnosed heart attack,

hepc¼hepatitis C, basop¼basophil count, copd¼diagnosed chronic obstructive pulmonary disease, ocp¼oral contraceptive use, ldh¼lactate dehydrogenase,

healthdev¼self-rated health trend, wbc¼white cell count, citizen¼citizenship status, gdm¼gestational diabetes, cuttingsalt¼reducing salt intake, edu¼education,

rbc¼red cell count, armc¼arm circumference)
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derive corresponding parameters and scores. Thus, we adapted the

CDC screening tool to be usable on the NHANES data and the allo-

cation of corresponding scores was as per Poltavskiy et al41 to which

interested readers are referred for details. This process, in which the

benchmarking screening instrument was defined with the informa-

tion available in the NHANES, is summarized in Supplementary

Material Table 4. The CDC prediabetes screening tool consists of

7Âquestions pertaining to age, having delivered an overweight baby

(> 9lb), siblings or parents having diabetes, physical activity, and

obesity. The total score ranges 0–18 and the cutoff point for predia-

betes is 9. Individuals with a total score � 9 were categorized as pre-

diabetic and those with < 9, nonprediabetic. This classification was

performed on both internal and external validation datasets;

AUROC were calculated and compared against corresponding

AUROC estimates of optimal models with � 70% AUROC using

the test for comparing AUROC of 2 classifiers by Hanley and

McNeil.42

RESULTS

Youden index-maximizing AUROC estimates illustrating the diag-

nostic ability of self-reported status of ever being diagnosed as predi-

abetic versus current Hb1Ac, FPG, and OGTT levels were 66.1%,

64.7%, and 65.7%, respectively (Supplementary Material Figure 2),

and since they were thus below 70% benchmark AUROC, self-

reported data were not used for defining prediabetes. Out of the 156

preselected attributes, only 1 numeric variable (ie, processed food

expenditure) and 6 categorical variables (ie, having ever served in

the armed forces, marital status, self-reported kidney stones, past

any tobacco use, self-reported urinary leakage, and functional limi-

tations) demonstrated significantly different distributions between

original and imputed datasets (Supplementary Material Table 2).

Prevalence of prediabetes in the sample (N¼6346) was 23.43%

with a mean age of 40.68 years (SD¼ 20.45 years; range¼12–80 years).

Distribution of the attributes between prediabetic and nonpredia-

betic individuals are summarized in Table 2. Self-perceived diabetes

risk, males, diagnosed hypertension, presence of hepatitis E IgG, col-

lege/associate of arts (AA) degree/above education level, moderate

activity, having an overweight baby at birth, hysterectomy, bilat-

eral ovariectomy, and female hormone intake were significantly

higher in the prediabetic group (N¼1487), while the presence of

hepatitis B surface antibody, education level of 9–11 grade, and

vigorous activity were significantly higher in the nonprediabetic

group (N¼4859). Among continuous variables, mean values of

age, duration of watching TV, body mass index (BMI), waist cir-

cumference, red blood cell (RBC) count, hemoglobin, alanine

amino transferase (ALT), aspartate amino transferase (AMT), se-

rum calcium, serum globulin, gamma glutamyl transferase (GGT),

osmolality, serum uric acid, mean systolic blood pressure (SBP),

mean diastolic blood pressure (DBP), and hematocrit were signifi-

cantly higher in the prediabetic group while food security, serum

potassium and serum phosphorus were significantly higher in the

nonprediabetic group.

Feature selection algorithms applied to the training dataset con-

taining the 156 attributes and the features extracted from the output

of each method are given in Table 1. A descriptive summary of the

46 variables selected for modeling considering both the feature selec-

tion output and the evidence from literature review (Supplementary

Material Table 1) is given in Table 2. This comprised 22 categorical

variables: self-perceived diabetes risk, gender, race, citizenship, mar-

ital status, alcohol use, past any tobacco use, diagnosed hyperten-

sion, hepatitis B, hepatitis C, diagnosed jaundice, familial diabetes,

hepatitis B surface antibody, hepatitis E IgG, education, vigorous ac-

tivity, moderate activity, gestational diabetes, overweight baby at

birth, hysterectomy, bilateral ovariectomy, and female hormone

intake and 24 numeric variables: age, income–poverty ratio, food se-

curity, duration of watching TV, BMI, waist circumference, white

blood cell (WBC) count, monocyte count, RBC count, hemoglobin

level, serum ALT, serum AMT, serum calcium, serum globulin,

Figure 2. Feature selection using recursive feature elimination. A random forest classifier with two-fold cross-validation was specified with other default functions

of the “caret” package in R to extract features via recursive feature elimination. Variables extracted from the 30 most important features selected by the recursive

feature elimination algorithm are given in Table 1.
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Table 1. Feature selection algorithms employed on the training dataset (n¼ 3134) containing the 156 general variables and the attributes se-

lected by each algorithm

Package Feature selection algorithm Extracted variables

Wrapper algorithms

“Boruta”31 An all-relevant feature selection algorithm using a random

forest classifier.

From the 20 confirmed variables: age, marital status, BMI,

waist circumference, red cell count, hemoglobin, osmolal-

ity, triglyceride level, education, bilateral ovariectomy, fe-

male hormones intake, mean SBP, mean DBP, hematocrit

From the 10 tentative variables: GGT, hepatitis E IgG, di-

agnosed hypertension, serum potassium level, serum uric

acid, hysterectomy

Filter algorithms

“FSelector”32 For using entropy-based methods, continuous features were

discretized.

1) Gain ratio: An entropy-based filter using information

gain criterion derived from a decision-tree classifier mod-

ified to reduce bias on highly branching features with

many values. Bias reduction is achieved through normal-

izing information gain by the intrinsic information of a

split.

From the top 30 variables: age, waist circumference, mono-

cyte count, mean SBP, BMI, diagnosed hypertension,

uric acid, GGT, serum phosphorus, vigorous activity, fa-

milial diabetes, marital status, serum potassium, hepatitis

B, hepatitis C, race, ALT, overweight baby at birth, gen-

der, hepatitis B surface antibody, bilateral ovariectomy,

self-perceived DM risk

2) Symmetrical uncertainty: An entropy-based filter using

information gain criterion but modified to reduce bias on

highly branching features with many values. Bias reduc-

tion is achieved through normalizing information gain by

the corresponding entropy of features.

From the top 30 variables: age, waist circumference, mean

SBP, BMI, gender, GGT, race, serum uric acid, phospho-

rus, hepatitis E IgG, hepatitis B, serum potassium, food

security, ALT, hepatitis B surface antibody, hepatitis C,

self-perceived DM risk, female hormone intake,

hysterectomy

3) Random forest: The algorithm finds weights of attributes

using random forest algorithm.

From the top 30 variables: age, waist circumference, BMI,

mean SBP, mean DBP, income-poverty ratio, hematocrit,

osmolality, triglycerides level, bilateral ovariectomy,

RBC count, female hormones intake, WBC count, mari-

tal status, serum uric acid, hemoglobin, GGT, monocyte

count, serum calcium, hepatitis E IgG, serum phosphorus

4) Relief: The algorithm finds weights of continuous

and discrete attributes basing on a distance between

instances.

From the top 30 variables: education, past any tobacco use,

hepatitis C, vigorous activity, overweight baby at birth,

citizenship, alcohol use, female hormone intake, moder-

ate activity, hysterectomy, duration of watching TV, bi-

lateral ovariectomy, gestational DM, diagnosed

jaundice, familial diabetes. Hepatitis E IgG

Embedded algorithms

“glmnet”33 Lasso (Least Absolute Shrinkage and Selection Operator)

regularization: This puts a constraint on the sum of the

absolute values of the model parameters. The sum should

be less than a fixed value (upper bound). A regularization

process penalizes regression coefficients of variables

shrinking some of them to zero. The variables with non-

zero coefficients after regularization are selected. The

lambda value that minimizes the cross validated mean

squared error determines the sparse model containing the

selected features.

From the top 15 variables: self-perceived DM risk, age, citi-

zenship, diagnosed hypertension, waist circumference,

RBC count, hepatitis E IgG, serum iron, serum calcium,

serum globulin, serum potassium

“caret”34 Recursive feature elimination: A resampling based recursive

feature elimination method is applied. A random forest

algorithm is used on each iteration to evaluate the model.

The algorithm is configured to explore all possible sub-

sets of the attributes.

From the top 30 variables: age, waist circumference, dura-

tion of watching TV, mean SBP, hematocrit, WBC count,

GGT, gestational DM, mean DBP, hepatitis E IgG, in-

come-poverty ratio, food security, RBC count, marital

status, osmolality, diagnosed jaundice, serum uric acid,

overweight baby at birth, serum iron, BMI, AMT, hys-

terectomy

Abbreviations: ALT, alanine amino transferase; AMT, aspartate amino transferase; BMI, body mass index; DBP, diastolic blood pressure; DM, diabetes melli-

tus; GGT, gamma glutamyl transferase; IgG, immunoglobulin G; RBC, red blood cells; SBP, systolic blood pressure; WBC, white blood cells.
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Table 2. Distribution of the characteristics of the dataset (N¼ 6346)

containing the 46 extracted variables of the NHANES 2013–2014

database between prediabetic and non-prediabetic individuals

Variable

Non-

prediabetic

(n¼ 4859)

Prediabetic

(n¼ 1487)

Categorical variables n (%) n (%) P valuea

Self-perceived DM riske

No 3646 (75.04) 1032 (69.40) <0.0001

Yes 1213 (24.96) 455 (30.60)

Gendere

Female 2631(54.15) 709 (47.68) <0.0001

Male 2228 (45.85) 778 (52.32)

Racee

(Non-Hispanic) White 1905 (39.21) 602 (40.48) NS

Otherb 2954 (60.79) 885 (59.52)

Citizenshipe

Yes 4290 (88.29) 1288 (86.62) NS

No 569 (11.71) 199 (13.38)

Marital statuse

Married/ Living

with partner

3564 (73.35) 1063 (71.49) NS

Otherc 1295 (26.65) 424 (28.51)

Alcohol used, e

No 1465 (30.15) 452 (30.40) NS

Yes 3394 (69.85) 1035 (69.60)

Past any tobacco usee

No 3757 (77.32) 1164 (78.28) NS

Yes 1102 (22.68) 323 (21.72)

Diagnosed hypertensione

No 3573 (73.53) 890 (59.85) <0.0001

Yes 1286 (26.47) 597 (40.15)

Hepatitis Be

Yes 41 (0.84) 16 (1.08) NS

No 4818 (99.16) 1471 (98.92)

Hepatitis Ce

Yes 48 (0.99) 18 (1.21) NS

No 4811 (99.01) 1469 (98.79)

Diagnosed jaundicee

No 4759 (97.94) 1458 (98.05) NS

Yes 100 (2.06) 29 (1.95)

Familial diabetese

No 3025 (62.26) 900 (60.52) NS

Yes 1834 (37.74) 587 (39.48)

Hepatitis B surface antibody

Negative 3418 (70.34) 1153 (77.54) <0.0001

Positive 1441 (29.66) 334 (22.46)

Hepatitis E IgG

Negative 4661 (95.93) 1400 (94.15) 0.0038

Positive 198 (4.07) 87 (5.85)

Educatione,g

<9th grade 733 (15.08) 207 (13.92) NS

9-11 grade 985 (20.27) 256 (17.22) 0.0093

High school 944 (19.43) 306 (20.58) NS

College/AA

degree/above

2197 (45.22) 718 (48.28) 0.0377

Vigorous activityf

No 2762 (56.84) 948 (63.75) <0.0001

Yes 2097 (43.16) 539 (36.25)

Moderate activityf

No 1383 (28.46) 470 (31.61) 0.0196

Yes 3476 (71.54) 1017 (68.39)

(continued)

Table 2. continued

Variable

Non-

prediabetic

(n¼ 4859)

Prediabetic

(n¼ 1487)

Categorical variables n (%) n (%) P valuea

Gestational DMe

No 4731 (97.37) 1443 (97.04) NS

Yes 128 (2.63) 44 (2.96)

Overweight baby at birth (> 9lb) e

No 4635 (95.39) 1384 (93.07) 0.0004

Yes 224 (4.61) 103 (6.93)

Hysterectomye

No 4514 (92.90) 1307 (87.90) <0.0001

Yes 345 (7.10) 180 (12.10)

Bilateral ovariectomye

No 4669 (96.09) 1396 (93.88) 0.0003

Yes 190 (3.91) 91 (6.12)

Female hormones intakee

No 4537 (93.37) 1327 (89.24) <0.0001

Yes 322 (6.63) 160 (10.76)

Numeric variables

Variable Mean (SD) Mean (SD) p-valuea

Age (years) e 38.18 (20.00) 48.87 (19.74) <0.0001

Income-poverty ratio 2.43 (1.65) 2.46 (1.63) NS

Food securitye,g 3.50 (0.91) 3.37 (0.99) <0.0001

Duration of watching

TV (hours) e

2.29 (1.63) 2.50 (1.62) <0.0001

Body mass index (kg/m2) 27.21 (6.87) 29.43 (7.54) <0.0001

Waist circumference (cm) 92.94 (17.10) 99.98 (17.28) <0.0001

White cell count(�109/L) 7.14 (2.20) 7.25 (2.29) NS

Monocyte count(�109/L) 0.579 (0.20) 0.577 (0.19) NS

Red cell count

(million cells/uL)

4.65 (0.48) 4.75 (0.51) <0.0001

Hemoglobin(g/dL) 13.90 (1.47) 14.19 (1.54) <0.0001

Alanine

aminotransferase (U/L)

24.49 (13.51) 26.10 (26.74) 0.0019

Aspartate

aminotransferase (U/L)

22.95 (17.67) 25.83 (19.66) <0.0001

Serum calcium (mg/ dL) 9.46 (0.35) 9.50 (0.37) 0.0002

Serum globulin (g/dL) 2.80 (0.43) 2.85 (0.43) <0.0001

Gamma glutamyl

transferase (U/L)

23.40 (33.29) 27.41 (34.04) <0.0001

Serum iron (ug/dL) 83.78 (37.73) 85.40 (34.41) NS

Serum potassium (mmol/L) 4.07 (0.36) 4.00 (0.34) <0.0001

Osmolality (mmol/kg) 278.60 (4.63) 279.64 (4.88) <0.0001

Serum phosphorus (mg/dL) 3.98 (0.65) 3.85 (0.65) <0.0001

Triglycerides (mg/dL) 133.89 (97.85) 135.50 (96.65) NS

Serum uric acid (mg/dL) 5.22 (1.35) 5.60 (1.42) <0.0001

Mean SBP (mmHg) 118.00 (16.89) 123.66 (17.82) <0.0001

Mean DBP (mmHg) 66.55 (13.03) 67.81 (13.26) 0.0012

Hematocrit 41.11 (3.96) 42.06 (4.20) <0.0001

a: Chi-squared test for 2 proportions and 2-samples t-test were used for

univariate analyses of categorical and continuous variables, respectively.

Level of significance p ¼ 0.05; b: Mexican American, other Hispanic, non-

Hispanic Black, non-Hispanic Asian & other races including multi-racial;

c: widowed, divorced, separated or never-married; d: defined as use of at least

12 drinks of any alcoholic beverage in any 1 year; e: self-reported data;

f: composite variables derived using NHANES questionnaire; g: modelled as

continuous variables.

Abbreviations: AA degree, Associate of Arts degree-equivalent to the first

two years of a bachelor’s degree; DBP, diastolic blood pressure; DM, diabetes

mellitus; IgG, immunoglobulin G; NS, not significant; SBP, systolic blood

pressure; SD, standard deviation.
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serum GGT, serum iron, serum potassium, osmolality, serum phos-

phorus, triglyceride level, serum uric acid, mean SBP, mean DBP,

and hematocrit.

Twenty predictors of prediabetes encompassing socioeconomic,

physiological, and biochemical variables (namely, age, income-

poverty ratio, marital status, food security, citizenship, mean SBP,

RBC count, serum triglyceride level, hematocrit, serum GGT, serum

uric acid, diagnosed hypertension, hepatitis C, ALT, osmolality, se-

rum potassium, vigorous activity, monocyte count, serum calcium,

and hysterectomy) were identified by 1 or more of the 3 optimal lo-

gistic regression models as shown in Table 3. The 3 optimal models

were the logistic regression with original, unresampled training

data, with majority-class undersampling and with minority-class

oversampling which had AUROC of 70.76%, 70.30%, and

70.83%, respectively, on the internal validation dataset. Four opti-

mal models were produced by nonlinear/ensemble machine learning

algorithms: random forest (RF) with minority-class oversampling;

RF with SMOTE; ANN with original, unresampled data; and GB

with original, unresampled data which had AUROC of 71.59%,

70.66%, 70.21%, and 70.55% respectively, on the internal valida-

tion data (Table 4). The optimal ANN model built from the original,

unresampled data via a logistic output function was a feed-forward,

5-fold cross-validated neural network containing uncorrelated (cor-

relation coefficient < 0.75), automatically standardized variables

with tuned parameters of 1 hidden layer, decay parameter of 0.1, 24

nodes in the hidden layer, and 5 neural networks trained with differ-

ent random number seeds and their predictions averaged. The other

3 ensemble optimal models were 10-fold cross-validated algorithms

containing automatically standardized variables with default func-

tions and parameters. Via 1 or more of these 4 optimal nonlinear/

ensemble models, 25 variables were identified as important predic-

tors of prediabetes, which consisted of the same 20 predictors identi-

fied by logistic regression models and 5 additional predictors,

namely, waist circumference, BMI, WBC count, hepatitis B, and

AMT. Two predictors were common to all 7 optimal models,

namely, age and serum potassium.

The AUROC estimates of the CDC prediabetes screening tool on

the internal (N¼3172) and external (N¼3000) validation data

were 64.40% and 62.80%, respectively. As per the statistical test

for comparing 2 ROC curves by Hanley & McNeil,42 AUROC of

all 7 optimal models were significantly higher than corresponding

estimates of the CDC prediabetes screening tool on both internal

and external validation data (P< .05), with AUROC difference

ranges of 5.81%–7.19% on internal validation data and 6.15%–

7.21% on external validation data. A comparison of the perfor-

mance of the CDC prediabetes screening tool upon the NHANES

database with that of the optimal predictive model having the high-

est AUROC is presented in Supplementary Material Table 5.

Table 3: Predictors of prediabetes as per predictive models with an AUC > 70% built using logistic regression algorithm

Logistic regression models and identified predictors

GLM originala

(AUCint ¼ 70.76%)d

(AUCext¼69.56%)e

GLM undersampledb

(AUCint ¼ 70.30%)d

(AUCext ¼ 69.01%)e

GLM oversampledc

(AUCint ¼ 70.83%)d

(AUCext ¼ 69.62%)e

Predictor ORh (95% CI) Predictor OR (95% CI) Predictor OR (95% CI)

Socio-economic Socio-economic Socio-economic

Age 1.02 (1.01-–1.03) Age 1.02 (1.01–1.03) Age 1.02 (1.01–1.03)

Citizenship (ref¼yes) 1.38 (1.04–1.81) Clinical Citizenship (ref¼yes) 1.23 (1.01–1.50)

Marital status (ref¼unmarried) 0.95 (0.90–1.00) Hepatitis C(ref¼no) 1.20 (1.02–1.43) Marital status (ref¼unmarried) 0.95 (0.91–0.98)

Income-poverty ratio 0.94 (0.88–1.00) Biochemical Income-poverty ratio 0.92 (0.88–0.96)

Food security 0.85 (0.76–0.94) Monocyte count 0.44 (0.20–0.94) Food security 0.82 (0.77–0.89)

Clinical Serum potassium 0.60 (0.43–0.83) Clinical

Diagnosed HT (ref¼no) 1.26 (1.02–1.55) Uric acid 1.14 (1.03–1.26) Diagnosed HT (ref¼no) 1.18 (1.02–1.37)

Mean SBP 1.01 (1.00–1.02) Vigorous exercise (ref¼no) 0.47 (0.28–0.76)

Biochemical Hysterectomy (ref¼no) 1.42 (1.04–1.93)

Monocyte count 0.45 (0.24–0.82) Biochemical

Red cell count 1.51 (1.14–2.01) GGT 1.10 (1.00–1.20)

Serum calcium 1.39 (1.06–1.82) Monocyte count 0.43 (0.28–0.65)

ALT 1.33 (1.07–1.65) Red cell count 1.32 (1.07–1.62)

Serum potassium 0.58 (0.45–0.75) Serum calcium 1.39 (1.15–1.67)

Triglycerides 1.01 (1.00–1.02) ALT 1.46 (1.24–1.71)

Serum potassium 0.58 (0.49–0.70)

Osmolality 1.02 (1.00–1.03)

Uric acid 1.11 (1.04–1.20)

Triglycerides 1.01 (1.00–1.02)

Hematocrit 1.09 (1.03–1.14)

a: logistic regression model on original, un-resampled data; b: logistic regression model on tde training data re-structured by majority class under-sampling; c:

logistic regression model on tde training data re-structured by minority class oversampling; d: compared with CDC prediabetes screening tool AUC on internal

validation data (N¼3172) i.e. 0.644; e: compared with CDC prediabetes screening tool AUC on external validation data (N¼3000) i.e. 0.628.

Abbreviations: ALT, serum alanine amino-transferase; AUCext, Area under receiver operating characteristic curve on the external validation data; AUCint,

Area under receiver operating characteristic curve on the internal validation data; CI, confidence interval; GGT, serum gamma glutamyl transferase; HT, hyper-

tension; OR, odds ratio; ref, reference level for categorical predictors; SBP, systolic blood pressure.
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DISCUSSION

When compared to the few risk factors used in the CDC screening

tool, a large number of predictors that are regularly collected

through established procedures at scale in the NHANES were identi-

fied. The demonstrated machine learning approach has potential

value in capturing undiagnosed prediabetes or those at higher risk

for diabetes based on information in the EHR that physicians might

not routinely incorporate into clinical decision-making.

Several established risk markers of diabetes, although with little

evidence for their associations with precursor stages of the disease,

were identified as predictors of prediabetes in the present study.

Such early markers may help diagnose high-risk individuals prior to

developing diabetes, where standard risk factors may not corrobo-

rate an early diagnosis. According to Suvitaival et al,43 such

markers may be present years before the onset of diabetes. These

are likely to be identified by higher-order ML algorithms which

could handle multi-dimensionality to discover complex, non-linear

relations within datasets.44,45 Most of the markers of prediabetes

spanning socioeconomic status (age, income–poverty ratio, marital

status, food security, citizenship), anthropometry (waist

circumference, BMI), hemodynamics (mean SBP, osmolality, diag-

nosed hypertension), lifestyle (vigorous activity), lipidome (serum

triglycerides), hematology (RBC count, WBC count, hematocrit,

monocyte count), liver function profile (GGT, ALT, hepatitis C),

and serum biomarkers (uric acid, potassium) identified in the pre-

sent study are already established as shown by our comprehensive

literature review (Supplementary Material Table 1). However, sev-

eral new predictors of prediabetes identified by the present study

(ie, serum calcium, hysterectomy, hepatitis B, and AMT) provide

directions for future research as potential early markers of hyper-

glycemia. It is possible that the linear modeling approaches often

used in previous studies did not capture the early manifestation of

these associations.

Despite reports that prediabetes is more difficult to predict than

diabetes,45 we built models that outperformed the chosen bench-

mark, and the findings are internally valid, indicating their utility

Table 4: Predictors of prediabetes as per predictive models with AUC > 70% built using non-linear and ensemble machine learning algo-

rithms. (Importance values of the 20 most influential socio-economic, clinical, and biochemical predictors of each model are given in

descending order.)

Optimal non-linear/ensemble machine learning models and identified predictors

RF oversampleda

(AUCint ¼71.59%)i

(AUCext ¼70.01%)j

RF SMOTEb

(AUCint ¼ 70.66%)i

(AUCext ¼69.23%)j

ANN originalc

(AUCint ¼70.21%)i

(AUCext ¼68.95%)j

XGB originald

(AUCint ¼ 70.55%)i

(AUCext ¼ 69.45%)j

Predictor importancee Predictor importancef Predictor importanceg Predictor importanceh

Socio-economic Socio-economic Socio-economic Socio-economic

Age 115.16 Age 113.93 Age 0.6457 Age 100.00

Income-poverty ratio 75.71 Income-poverty ratio 74.85 Marital status 0.5848 Food security 5.12

Clinical Clinical Food security 0.5363 Citizenship 2.36

Waist circumference 103.60 Waist circumference 101.23 Clinical Clinical

Body mass index 94.50 Body mass index 90.78 Mean SBP 0.5961 Waist circumference 35.12

Mean SBP 90.44 Mean SBP 88.20 Body mass index 0.5888 Hepatitis C 8.76

Diagnosed HT 81.26 Hepatitis C 81.25 Diagnosed HT 0.5668 Body mass index 4.78

Hepatitis C 79.98 Hepatitis B 74.55 Hepatitis C 0.5554 Mean SBP 4.27

Hepatitis B 78.35 Vigorous exercise 73.52 Hepatitis B 0.5548 Hepatitis B 2.82

Vigorous exercise 67.07 Diagnosed HT 72.95 Vigorous exercise 0.5387 Diagnosed HT 2.23

Biochemical Biochemical Waist circumference 0.5381 Biochemical

Red cell count 87.82 GGT 88.69 Hysterectomy 0.5376 Serum potassium 15.13

Triglycerides 86.61 Serum potassium 86.86 Biochemical Red cell count 14.48

Serum potassium 85.63 Serum calcium 82.67 GGT 0.5894 Triglycerides 13.97

GGT 84.45 Uric acid 80.70 Uric acid 0.5812 Hematocrit 11.77

Serum calcium 83.72 Osmolality 79.46 Serum potassium 0.5765 GGT 10.49

Uric acid 82.39 Triglycerides 79.46 ALT 0.5731 Osmolality 8.18

White cell count 80.59 Monocyte count 78.14 AMT 0.5640 Uric acid 6.91

ALT 75.74 ALT 77.35 Hematocrit 0.5636 White cell count 5.57

Osmolality 74.55 Red cell count 77.18 Osmolality 0.5630 ALT 4.54

AMT 70.65 Hematocrit 77.17 Red cell count 0.5517 AMT 4.37

Hematocrit 70.55 White cell count 74.72 Triglycerides 0.5357 Serum calcium 2.25

a: random forest model on training data restructured by minority class oversampling; b: random forest model on training data restructured by synthetic minor-

ity oversampling algorithm; c: artificial neural network model on original, un-resampled training data; d: gradient boosting model on original, un-resampled train-

ing data; e,f: by default, mean decrease in prediction accuracy after a variable is permuted; g: default method uses combinations of the absolute values of the

weights; h: same approach as a single tree (i.e. reduction in the loss function attributed to each variable at each split is summed over each node) but sums the im-

portance estimates over each boosting iteration; i: compared with CDC prediabetes screening tool AUC on internal validation data (N¼3172) i.e. 0.644; j: com-

pared with CDC prediabetes screening tool AUC on external validation data (N¼3000) i.e. 0.628.

Abbreviations: ALT, alanine amino-transferase; AMT, aspartate aminotransferase; AUCext, Area under receiver operating characteristic curve on the external

validation data; AUCint, Area under receiver operating characteristic curve on the internal validation data; GGT, gamma glutamyl transferase; HT, hypertension;

SBP, systolic blood pressure.
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among the US population. Nevertheless, their generalizability to

non-US populations may be constrained by the context-specific na-

ture of some variables and regional differences in prediabetes defini-

tions.28,46 The strategies, such as using a mix of linear, nonlinear

and ensemble algorithms, handling class imbalance via resampling

methods, applying extensive feature selection methods, and careful

handling of missing data would have contributed to robustness of

models. Additional measures, such as the use of different algorithms

and hyperparameter tuning, might further enhance their predictive

power and hence are suggested to be implemented in future studies.

To the best of our knowledge, this is the first study that applied a

range of feature selection methods and ML algorithms on a nation-

ally representative sample to optimize prediabetes prediction. As

recommended by Collins et al,20 a systematic approach was adopted

in the present study to select attributes, apply algorithms, and han-

dle missing data which enabled us to produce models with adequate

predictive power and identify several novel predictors of prediabe-

tes. Many well-established determinants were also identified stand-

ing as proof of concept for our analytic approach. For instance, all

20 significant predictors of logistic regression models were con-

firmed by other nonlinear ML models, while the latter also identi-

fied 5 additional predictors.

A known limitation of nonlinear and ensemble ML algorithms is

their low interpretability; directionality of associations cannot be

easily illustrated via a linear model, such as logistic regression.47

While nonlinear and ensemble algorithms offer greater predictive

performance than conventional parametric models, interpreting var-

iable effects may prove difficult. Therefore, novel predictors identi-

fied by such algorithms should be evaluated in conjunction with

related clinical evidence. Further research is also recommended to

elucidate the pathophysiology underlying those nonlinear, complex

associations with prediabetes.

Since we used cross-sectional data, associations are not causal and

further studies, preferably prospective cohort studies, are required to

determine directionality especially in relation to novel predictors.

Moreover, studies in which prediabetic individuals are followed up to

identify novel population clusters with different susceptibilities to

worse outcomes and their prognostic markers could be informative.

While inherent systematic errors of a cross-sectional study may

have affected the present study, it is noteworthy that the prediction

models contained 46 independent variables and were adjusted for

many potential confounders enhancing the validity of findings. Self-

reported prediabetes history may not be prudent for outcome classi-

fication in a cross-sectional study, because, unlike diabetes, predia-

betes is often asymptomatic4 and is reversible, so that some

individuals with self-reported prediabetes history may have shifted

to normoglycemic status or developed diabetes48 by the time the

data were collected. It has been reported that up to 70% of individu-

als with prediabetes will eventually develop diabetes, 5–10% of peo-

ple with prediabetes becoming diabetic annually.8 The feasibility of

not using self-reported prediabetes for defining outcome variable in

our study was reinforced by a ROC analysis which confirmed its

poor discriminant ability (Supplementary Material Figure 2).

We included the entire sample but the inclusion of youth (12–18

years) might not be ideal as definitions of several variables differ be-

tween youth and adults, while many of the comorbid conditions

may be absent among them. Therefore, future predictive modeling

studies to analyze youth and adults separately are warranted.

A prediction model’s performance is context-dependent; one

that is based on a clinical database having a higher prevalence of the

condition usually achieves a high AUROC, whereas modeling on im-

balanced population data which closely resemble the true and essen-

tially lower prevalence of a condition may not achieve comparable

AUROC estimates. Our approach was agnostic of any a priori

mechanistic associations to the extent that univariate prescreening

or a typical step-wise modeling was not followed thereby minimiz-

ing model overfitting. Instead, potential confounding was accounted

for via multivariate modeling, as we were interested not in making

the most parsimonious model with the minimal set of predictors,

which is perhaps best represented by those in the screening tools,

but on identifying a range of predictors from multidimensional

NHANES data. While logistic regression models performed as ro-

bustly as the other nonlinear and ensemble ML models, the latter

identified potentially new associations, suggesting their ability to

complement standard linear modeling approaches.

Our study provided a set of multivariable data models that

would help detect prediabetic subjects in clinical and community

settings without using HbA1c, FPG, and OGTT. A clear limitation

is that a number of candidate predictors may not be presently avail-

able or easily measurable in typical clinical settings. We acknowl-

edge that the predictors that are not routinely available, such as

serum potassium, might not be of immediate value in current health

settings. However, these should have future clinical implications as

patient biobanking gradually gets scaled up.

We propose that findings bear 2 important applications. Firstly,

predictors routinely obtained via standard tests, such as full blood

count and biochemistry profile in clinical settings, are increasingly

compiled to formulate EHR on which ML algorithms can be applied

to calculate automated risk scores, build individual risk profiles, and

detect individuals with prediabetes and direct them for confirmatory

glycemic tests, thus guiding clinicians in decisions about whom to

screen. For example, using a multidimensional sample of 24 331

adults and 442 variables including serum biomarkers, it was possi-

ble to develop accurate individualized risk algorithms for progres-

sion to diabetes in patients with contrasting covariate profiles.49

Therefore, this application is likely to provide avenues for establish-

ing more personalized prediabetes case detection and clinical care to

a healthcare-seeking, at-risk population. Models that notably out-

performed with the combination of BMI and age would be of partic-

ular interest, in this regard.

Secondly, the set of noninvasively measurable predictors such as

waist circumference, BMI, and self-reported variables, such as hepa-

titis B and C, hypertension, and hysterectomy, could be used to com-

plement or enhance current screening tools and community

diagnosis approaches. This is an important trajectory to be ex-

plored. It has been revealed that current hyperglycemic risk assess-

ment tools based on a broadly similar set of risk factors could be

enhanced by incorporating novel attributes.50 These simpler bio-

markers, therefore, may be useful as additional predictors to en-

hance the predictive ability of screening tools in a cost-effective

manner making them more personalized.

CONCLUSION

Combined use of feature selection and ML identified a range of

socioeconomic, physiological, and biochemical predictors of prediabetes

including a few potentially novel associations via optimal prediction mod-

els that outperformed the recommended screening tool. The wide range

of predictors may be useful for individualized prediabetes risk profiling.
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