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ABSTRACT

Objective: We sought to predict if patients with type 2 diabetes mellitus (DM2) would develop 10 selected com-

plications. Accurate prediction of complications could help with more targeted measures that would prevent or

slow down their development.

Materials and Methods: Experiments were conducted on the Healthcare Cost and Utilization Project State Inpa-

tient Databases of California for the period of 2003 to 2011. Recurrent neural network (RNN) long short-term

memory (LSTM) and RNN gated recurrent unit (GRU) deep learning methods were designed and compared

with random forest and multilayer perceptron traditional models. Prediction accuracy of selected complications

were compared on 3 settings corresponding to minimum number of hospitalizations between diabetes diagno-

sis and the diagnosis of complications.

Results: The diagnosis domain was used for experiments. The best results were achieved with RNN GRU

model, followed by RNN LSTM model. The prediction accuracy achieved with RNN GRU model was between

73% (myocardial infarction) and 83% (chronic ischemic heart disease), while accuracy of traditional models was

between 66% – 76%.

Discussion: The number of hospitalizations was an important factor for the prediction accuracy. Experiments

with 4 hospitalizations achieved significantly better accuracy than with 2 hospitalizations. To achieve improved

accuracy deep learning models required training on at least 1000 patients and accuracy significantly dropped if

training datasets contained 500 patients. The prediction accuracy of complications decreases over time period.

Considering individual complications, the best accuracy was achieved on depressive disorder and chronic is-

chemic heart disease.

Conclusions: The RNN GRU model was the best choice for electronic medical record type of data, based on the

achieved results.
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INTRODUCTION

Objective
Type 2 diabetes mellitus (DM2) is a chronic, metabolic disease and

affects almost 100 million people all over the world, including over

30 million in the United States.1–3 In the last 20 years, the number

of adults diagnosed with DM2 has more than doubled, and has

quickly become one of the most prevalent and costly chronic dis-

eases worldwide.4,5 Increased levels of glucose in the blood can

cause many health complications over time.6 Management of DM2

requires a multidimensional approach.7–9 Identification of people
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at high risk of progression of DM2 enables targeted preven-

tion.10,11

Multiple computer science, especially machine learning (ML),

applications have been developed to help with DM2 detection, man-

agement, and improvement of patients’ quality of life.12 We

designed deep and traditional ML models to predict development of

complications in patients diagnosed with DM2. Healthcare Cost

and Utilization Project (HCUP) electronic medical record (EMR)

data for the period of 9 years were used for experiments. They con-

tain diagnosis, procedures and time of patients’ visits. We developed

models based on a 1-way recurrent neural network long short-term

memory (RNN LSTM) and bidirectional RNN gated recurrent units

(GRUs) to capture the temporal nature of EMR data. Traditional

models such as random forest (RF) and multilayer perceptron

(MLP) were used for comparison.

To evaluate prediction performance of different approaches we

selected 10 well-described complications of DM2: angina pectoris,

atherosclerosis, ischemic chronic heart disease (ICHD), depressive

disorder, diabetic nephropathy, diabetic neuropathy, diabetic reti-

nopathy (DR), hearing loss, myocardial infarction (MI), and periph-

eral vascular disease.

Following were the objectives of our study:

• Predict if these complications will develop along the course of

DM2 (in our study within 9 years from DM2 diagnosis).
• Analyze how many hospitalizations between the diagnosis of

DM2 and the diagnosis of each of 10 complications were the

most optimal for deep learning or traditional models to produce

the best prediction accuracy.
• Test if deep learning RNN models are superior to traditional ML

models in accuracy of predictions on the EMR heterogeneous

temporal data.
• Analyze how the prediction accuracy of complications would

change over time period of 9 years.

Timely and accurate prediction of complications could help with

implementation of more specific and targeted measures, which

would potentially prevent or slow down their development. Conse-

quently, slowing down the development of complications would

save significant economic resources needed for their treatment.

BACKGROUND AND SIGNIFICANCE

Patients with DM2 suffer many life-threatening complications, in-

cluding macrovascular like stroke, coronary artery disease, or mi-

crovascular complications: retinopathy, neuropathy, nephropathy,

and others. DM2 represents the most common etiology of extremity

pain and diabetic neuropathy.13,14 Diabetic nephropathy continues

to be a chronic and devastating complication of DM2.15 Diabetes

and depression occur together frequently.16 DM2 appears to impair

auditory function.17 A close link exists between DM2 and cardio-

vascular diseases.18

ML methods were proposed (support vector machine, RF, logis-

tic regression, naı̈ve Bayes) to predict diabetic complications.19 ML

was used for forecasting future glucose fluctuations in the blood.20

Deep learning LSTM neural networks and probabilistic modeling

were designed for prediction of diabetes.21,22 ML models K nearest

neighbors, naı̈ve Bayes, support vector machine, decision tree, logis-

tic regression, and RF were also proposed for prediction of onset of

diabetes.23,24 Clinical risk prediction with limited EMR and chal-

lenges of deep learning in Medicine were analyzed.25,26

MATERIALS AND METHODS

We conducted experiments on hospital discharges data for 9 years

(2003-2011) obtained from the HCUP State Inpatient Databases of

California database. The studied dataset contains time of hospital-

izations (visits) and International Classification of Diseases–Ninth

Revision codes of diagnoses and procedures. The HCUP data were

preprocessed, and all patients with the diagnosis of DM2 were

extracted (1 910 674 patients), using adequate SQL and Python

queries. Original data were rearranged to create a table (matrix). Ev-

ery row represents 1 patient. Each row contained a patient’s hospi-

talizations in the order in which these visits occurred (Figure 1A).

Different colors in each row represent different hospitalizations.

Within each hospitalization patients had 1 or more diagnoses and

sometimes procedures. Because the procedures domain did not pro-

duce good accuracy, we performed detailed analyses on the diagno-

ses domain only.

In the first group of experiments patients who had the index

complication diagnosed after at least 2 hospitalizations from the

first DM2 diagnosis were extracted as the positive class. The same

number of DM2 patients who did not develop the index complica-

tion were randomly selected for the negative class, using a

population-based sample.27

In the second group of experiments, patients were selected for

the positive class if the complication appeared after at least 3 visits

from the first DM2 diagnosis. In the third group of experiments

patients who developed the studied complication after at least 4 hos-

pitalizations from the DM2 diagnosis were selected for the positive

class. From each of these 3 datasets we randomly selected matching

pairs (by minimum number of hospitalizations) of positive and nega-

tive cohorts. Thirty balanced datasets were created, 1 for each of the

10 complications in each of the 3 groups of experimental settings.

The average number of visits per patient was 4.07 6 5.08. All

the hospitalizations starting from the hospital visit in which patients

were diagnosed with the complication that we were predicting were

excluded from the positive cohort, in order to avoid data leak. After

this adjustment, the average number of hospitalizations for patients

with a positive label was very similar to the average number of visits

for patients with a negative label.

Diseases that appeared rarely or too frequently in the selected

datasets do not contribute to the prediction, as they do not have

high informative value. All diseases that appeared more than
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Figure 1. (A) Each row represents 1 patient (Pt). Different colors in each row

represent different hospitalizations. Each hospitalization contained 1 or more

diagnoses (d) and sometimes procedures (p). (B) Because the procedures do-

main did not produce good results, we dropped them and performed analy-

ses on the diagnoses domain only.
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200 000 or <50 times among all the patients were deleted. After this

preprocessing, 1023 International Classification of Diseases–Ninth

Revision disease codes were used to represent the patients’ hospital

visits. We applied singular value decomposition (SVD) to reduce di-

mensionality of visits.28 This dimensionality reduction method uses

matrix decomposition to transform features and select only features

with the highest variance because those are the most informative

characteristics.

Input to SVD was a matrix in which rows were all visits in a

dataset and columns were all possible disease codes for that dataset.

We have used a flat (one-hot encoded) representation of the

“diagnoses,” and not a flat representation of “time.” Each of

patients had at least few visits (rows in the matrix). Hospitalizations

happened over the time period, with the maximum interval of 9

years. Although time is not specifically used as one of the features,

the time component is reflected by the fact that consecutive visits

were ordered by their timesteps. Each cell value in the matrix repre-

sented if a specific disease was present inside the visit. The value of

each cell, therefore, was 0 or 1. Most of the cells had value 0 because

only a few diseases appeared in each hospitalization. Output of SVD

is a matrix in which rows are patients but columns are 50 features in

a transformed space with the highest variance selected by SVD,

which captures block correlations between data features.

Further, we created a matrix in which rows represented patients

and columns were hospital visits ordered by timestamps. We deleted

all patients who had more than 50 hospitalizations to reduce the size

of a sparse matrix, but most of the patients had much less than 50

hospitalizations. If a patient had <50 hospitalizations, we padded

their row with 0 to ensure that all rows had the same length. Then,

we substituted each visit with a 50-feature vector from SVD and

zero (nonexisting visits) with a 0-vector of length 50. In other words,

new matrix rows are patients containing concatenated feature vec-

tors of that patients’ visits (each row has up to 50 hospitalizations *

50 features ¼ 2500). After preprocessing and feature selection, the

dimensions of data matrix were (number of patients) � (number of

features) and this was the input for all the ML models that we tested

in this study (RNN LSTM, RNN GRU, RF, MLP). The input for

RNN (and other) models were all hospitalizations of all patients

given to the model in chronological order, as the sequence ordered

by timestamps for each patient.

Two types of ML models were utilized in this work: deep learn-

ing models and traditional models. The proposed deep learning

models were 1-way RNN LSTM and bidirectional RNN GRU

(Figure 2).

RNN is a neural network where hidden neurons can analyze

temporal sequential EMR data.29 It has the same structure as the ba-

sic neural network, but neurons in the same layer are connected,

allowing for neurons to learn information from its left neighbor in

addition to the current input. Therefore, RNN neurons have 2 sour-

ces of inputs, the present and the recent past. Learning process is de-

scribed with following equations:

ht ¼ relu bþWht�1 þUxt
� �

(1)

�y ¼ sigmoid bþ
X

t
Vht

� �
(2)

To calculate value ht of a hidden neuron t, a nonlinear transfor-

mation, ReLU, is applied to weighted W value of its left hidden neu-

ron ht-1 and the weighted U value of its input xt. Prediction is

calculated as a sigmoid function of weighted V sum of all hidden

neurons with added bias b. Learning is achieved with backpropaga-

tion. Because of the long chain through which historical information

(in forward direction) and gradient of error (in backward direction)

had to be pass, RNN suffers from the vanishing gradient problem,

which means that weights do not change and the model is not able

to learn. To remedy this, a LSTM was invented, in which simple

neurons of RNN are replaced with more complex short-term mem-

ory structure. LSTM shares the same weights across layers, which

reduces the number of parameters that the network has to deal with.

The GRU is another solution for vanishing gradient. It substitutes

the simple neuron with a gated unit, which has fewer parameters

than the LSTM neuron, because it lacks an output gate.30

To model heterogeneous sequential data, we tested bidirectional

GRU as a proposed method and compared it to 1-way LSTM.

“Keras” Python libraries were used to implement constructed algo-

rithms. We also compared GRU and LSTM to traditional ML algo-

rithms. Our hypothesis was that both deep learning methods (RNN

LSTM and RNN GRU) would perform better than traditional ML

models (RF and MLP) on medical temporal data like that of HCUP

because of their ability to learn from a patient’s history. In the pro-

posed model, we used ReLU and sigmoid activations. Also, we

added a dropout between hidden and output layers, which randomly

selects given percent of connections to cut. This is a well-known reg-

ularization technique that helps the model learn general pattern in

data.

We used RF as a traditional model because they have been

shown as the state-of-the-art model in existing literature on predict-

ing complications of diabetes and MLP because it is a simpler neural

network model that does not account for time. Both were imple-

mented with the “Scikit-learn” library in Python. The RF is a classi-

fication algorithm which consists of many decision trees.31 MLP is a

network that consists of multiple layers of perceptrons and uses

backpropagation learning. It uses a nonlinear activation function,

which in addition to multiple layers distinguishes it from a linear

perceptron.32

We compared the performance of these 4 models in prediction of

the occurrence of 10 selected complications of DM2 with each of

the 3 settings (2, 3, or 4 hospitalizations after DM2 diagnosis). The

problem that we wanted to solve was a binary classification task.

The evaluation metric was accuracy (equation 3) computed as:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
(3)

where TP is true positive, TN is true negative, FP is false positive,

and FN is false negative.

Further, we tested what would be the minimum number of

patients for RNN LSTM and GRU deep learning models to work

properly and produce good prediction accuracy, after which the per-

formance of these models starts to decrease. Two groups of experi-

ments considering the minimum required number of patients for

deep learning RNN models to perform optimally were conducted on

DR data with at least 2 or 4 hospitalizations. We performed experi-

ments with the entire datasets (58 641 patients with 2 and 25 468

patients with 4 hospitalizations) and then with randomly selected

5000, 2000, 1000, and 500 patients in the positive cohort to dis-

cover the number of patients in the positive training cohort after

which the accuracy starts dropping.

Furthermore, the prediction accuracy was evaluated for different

time intervals between DM2 diagnosis and the first diagnosis of

studied complications. We evaluated the accuracy of GRU RNN

models for the intervals between DM2 and development of DR for:

less than a year, 1 year, 2 years, 3 years, 4-5 years, and 6-8 years.

Analyses were conducted on 2 experimental models: the complica-
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tion developed after 2 or 4 hospitalizations from the initial DM2 di-

agnosis. Because the entire dataset covers the period of 9 years, the

maximum interval between DM2 diagnosis and the first diagnosis of

DR identified in the dataset was 8 years.

Data in all experimental settings were split into 72% training,

8% validation, and 20% testing. Cross-validation was used to find

the best hyperparameters values. For proposed RNN-like models,

we varied dropout and number of neurons in GRU/LSTM layer us-

ing random search. In the literature, dropout percent is usually be-

tween 0% and 50% and the number of units in the GRU/LSTM

layer are usually selected among values 32, 64, 128, 256, and 512.

For all RNN networks, we used batch size 128, Adam optimizer,

and binary cross-entropy loss. We trained 20 epochs for RNN and

tested on the epoch that had the best cross-validation accuracy. RF

and MLP were trained with specific hyperparameters as well. In RF,

maximum height of trees was bounded to 10 and number of trees

was 100. MLP had 100 hidden units.

We repeated the same process for 10 complications separately

and we repeated all tests for datasets with a filter of the minimum of

2, 3, or 4 hospitalizations before the studied complication was diag-

nosed. We used a t test at the level of P ¼ .05 to check the signifi-

cance of accuracy results that tested ML models produced in

different experimental settings. Finally, probabilities that patients

with DM2 will develop each of the studied complications (HCUP

data) were calculated. Our codes are available on a public repository

(https://github.com/bljubic/diabetes-prediction).

RESULTS

The total number of patients in the HCUP State Inpatient Databases

California dataset between 2003 and 2011 as well as the number of

patients with DM2 diagnosis are shown in Table 1. We also present

the number of patients with at least 4, 3, or 2 hospitalizations after

DM2 diagnosis and before an index complication was diagnosed.

These datasets were the source of data for positive and negative

cohorts for all experiments.

Experiments were performed separately for each of 10 complica-

tions, and results for RNN deep learning models (bidirectional GRU

and 1-way LSTM) as well as traditional models (RF and MLP) are

presented in Table 2. The evaluation metric is accuracy on out-of-

sample data, and sizes of samples for each type of experiments are

shown in the same table.

In Table 3, we present the accuracy, sensitivity, and specificity

results for bidirectional GRU RNN models in the 4-visit scenario for

all complications of DM2, which was the model that achieved the

best prediction accuracy. The results for 2 and 3 visits are omitted

because they were consistent with results for 4 hospitalizations.

Different choices of hyperparameters were tested. For bidirec-

tional GRU RNN, the best results were achieved with the drop-

out parameter value 0.2 and 128 hidden GRU neurons. We tried

randomly dropout parameters between 0 and 0.5 and the number

of hidden units 32, 64, 128, 256, and 512 in 20 experimental

runs for each type of hyperparameters. Accuracy results varied

2% in experiments for parameters selection. The best results for

LSTM RNN model were achieved with the dropout parameter

value 1.9 and 128 LSTM neurons. We present the average accu-

racy of 20 runs, including the standard deviation. We used the

same set of hyperparameters in experiments with 2, 3, or 4 hos-

pital visits.

Changes in the prediction accuracy of deep learning (RNN)

models as well as traditional models when the size of positive train-

ing cohorts decreases are presented on the example of DR in Table 4.

A B

Figure 2. The proposed deep learning models: (A) 1-way recurrent neural network long short-term memory (RNN LSTM) and (B) bidirectional RNN gradient

recalled unit (GRU).

Table 1. Datasets used in experiments and their sizes

Dataset Patients

HCUP SID California (2003-2011) 11 609 450

Patients in HCUP with diagnosed DM2 1 910 674

Patients with DM2 and 2 hospitalizations 1 295 691

Patients with DM2 and 3 hospitalizations 930 837

Patients with DM2 and 4 hospitalizations 692 397

DM2: type 2 diabetes mellitus; HCUP: Healthcare Cost and Utilization

Project; SID: State Inpatient Databases.
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The performance of both deep learning RNN models deteriorates

when the training dataset size decreases, especially when the number

of patients in the positive training dataset drops below 1000. The

traditional models’ performance vary slightly but does not change

statistically significantly.

The prediction accuracy (GRU RNN model) of development of

DR within the same year when DM2 was diagnosed and after 1, 2,

3, 4-5, and 6-8 years of diagnosis of DM2 are presented in Figure 3.

Experiments were completed with data of patients who had at least

2 hospitalizations or at least 4 hospitalizations after DM2 was diag-

nosed. All other complications have similar trends of the predicted

accuracy regarding the time intervals.

Predicted risk probabilities of development of each of 10 studied

complications in patients with DM2, according to HCUP data, are

presented in Figure 4.

DISCUSSION

In conducted experiments both deep learning algorithms were signif-

icantly more accurate than traditional models. Sarwar and col-

leagues reported accuracies for prediction of diabetes for the

following ML models: logistic regression 74% accuracy, SVM 77%,

naı̈ve Bayes, decision tree 74%, RF 71% and K nearest neighbors

Table 2. Presented are results of predicted accuracy that each of the 10 complications of DM2 will develop within a 9-year period after the

first DM2 diagnosis using HCUP EMR data (diagnoses domain).

Complication Patients Bidirectional GRU 1-way LSTM RF MLP

Angina pectoris

4 visits 19 589 0.796 6 0.024a 0.780 6 0.016 0.717 6 0.011 0.743 6 0.013

3 visits 26 973 0.789 6 0.012 0.793 6 0.019b 0.722 6 0.012 0.732 6 0.008

2 visits 42 459 0.738 6 0.016b 0.738 6 0.018 0.701 6 0.013 0.714 6 0.009

Atherosclerosis

4 visits 32 914 0.756 6 0.003a 0.750 6 0.015 0.712 6 0.007 0.691 6 0.008

3 visits 44 688 0.750 6 0.008b 0.745 6 0.012 0.704 6 0.011 0.671 6 0.008

2 visits 62 016 0.713 6 0.011b 0.701 6 0.018 0.689 6 0.014 0.665 6 0.012

ICHD

4 visits 52 959 0.835 6 0.005a 0.828 6 0.008 0.759 6 0.009 0.761 6 0.017

3 visits 81 658 0.814 6 0.008b 0.813 6 0.007 0.745 6 0.010 0.763 6 0.015

2 visits 147 718 0.802 6 0.010b 0.802 6 0.015 0.744 6 0.014 0.758 6 0.015

Depressive disorder

4 visits 56 343 0.820 6 0.005a 0.812 6 0.008 0.714 6 0.011 0.752 6 0.013

3 visits 78 732 0.802 6 0.018 0.810 6 0.004b 0.739 6 0.014 0.741 6 0.015

2 visits 135 492 0.773 6 0.021 0.776 6 0.019b 0.722 6 0.016 0.761 6 0.016

Hearing impairment

4 visits 8576 0.734 6 0.017b 0.720 6 0.021 0.6916 0.019 0.701 6 0.021

3 visits 12 030 0.743 6 0.017a 0.730 6 0.020 0.694 6 0.021 0.704 6 0.019

2 visits 16 884 0.716 6 0.019b 0.694 6 0.022 0.680 6 0.024 0.671 6 0.023

MI

4 visits 38 380 0.733 6 0.011a 0.713 6 0.013 0.691 6 0.010 0.661 6 0.016

3 visits 52 896 0.723 6 0.014b 0.701 6 0.012 0.688 6 0.013 0.665 6 0.014

2 visits 92 961 0.711 6 0.015b 0.679 6 0.013 0.663 6 0.015 0.662 6 0.017

Nephropathy

4 visits 37 982 0.768 6 0.012a 0.750 6 0.014 0.699 6 0.014 0.694 6 0.024

3 visits 52 283 0.766 6 0.013b 0.748 6 0.013 0.696 6 0.015 0.689 6 0.020

2 visits 71 053 0.742 6 0.008b 0.738 6 0.010 0.695 6 0.012 0.678 6 0.015

Neuropathy

4 visits 49 060 0.746 6 0.053a 0.719 6 0.073 0.671 6 0.033 0.668 6 0.039

3 visits 69 053 0.738 6 0.043 0.739 6 0.068b 0.664 6 0.040 0.664 6 0.046

2 visits 99 825 0.715 6 0.038b 0.712 6 0.054 0.660 6 0.035 0.662 6 0.055

PVD

4 visits 48 565 0.767 6 0.002a 0.744 6 0.014 0.695 6 0.006 0.691 6 0.014

3 visits 67 686 0.759 6 0.006b 0.743 6 0.010 0.708 6 0.009 0.684 6 0.010

2 visits 93 905 0.738 6 0.011b 0.738 6 0.014 0.701 6 0.008 0.680 6 0.012

Retinopathy

4 visits 27 796 0.796 6 0.014a 0.782 6 0.001 0.741 6 0.011 0.740 6 0.007

3 visits 36 221 0.752 6 0.021b 0.731 6 0.013 0.698 6 0.012 0.700 6 0.011

2 visits 58 641 0.728 6 0.019b 0.725 6 0.014 0.696 6 0.018 0.676 6 0.012

Values are mean 6 SD. This period varies between 1 month and 9 years for individual patients. Results are presented for patients who had at least 2, 3, or 4 vis-

its between the first DM2 diagnosis and before each of 10 complications was diagnosed.

DM2: type 2 diabetes mellitus; EMR: electronic medical record; GRU: gated recurrent unit; HCUP: Healthcare Cost and Utilization Project; LSTM: long short-

term memory; MI: myocardial infarction; MLP: multilayer perceptron; RF: random forest; RNN: recurrent neural network.
aBest accuracy results for each of 10 complications.
bBest accuracy results for each experimental setting.
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achieved 77%.24 Ngufor et al33 applied tree-based ML algorithms

such as RF, gradient-boosted machine, recursive partitioning, condi-

tional inference trees, and a mixed-effect ML (MEml) framework to

predict longitudinal change in hemoglobin A1c. Ngufor et al’s

model assumes that the number of variables which change over the

time period is small. In the case of hemoglobin A1c application,

there is only 1 continuous variable that changes longitudinally.

However, in our experiments, diagnoses are categorical variables

(with more than 1000 categories) which change with each visit,

making Ngufor et al’s method inapplicable. In the last time, accord-

ing to numerous publications, RNN-based models proved to be su-

perior to traditional models with high-dimensional temporal EMR

type of data. Choi et al34 showed that RNN deep learning models

performed better than traditional ML approaches on EMR temporal

data. Massaro et al21 described an application of a deep learning

LSTM model as a very good choice for diabetes prediction. Zhang

et al25 applied the MetaPred model and transfer learning using con-

volutional neural networks and LSTM RNN models in addition to

traditional ML models.

Table 3. Accuracy, sensitivity, and specificity for bidirectional GRU

RNN models in the 4-visit scenario for all 10 complications of DM2

Complication Accuracy Sensitivity Specificity

Angina pectoris 0.796 6 0.024 0.86260.019 0.69860.014

Atherosclerosis 0.756 6 0.003 0.79160.012 0.71860.014

ICHD 0.835 6 0.005 0.88660.014 0.78760.012

Depressive disorder 0.820 6 0.005 0.84860.009 0.79260.010

Hearing impairment 0.734 6 0.017 0.74360.016 0.72260.012

MI 0.733 6 0.011 0.80660.021 0.65260.012

Nephropathy 0.768 6 0.012 0.82660.017 0.65460.021

Neuropathy 0.746 6 0.053 0.79560.041 0.70160.049

PVD 0.767 6 0.002 0.77460.005 0.75360.011

Retinopathy 0.796 6 0.014 0.79960.007 0.79260.018

Values are mean 6 SD.

DM2: type 2 diabetes mellitus; GRU: gated recurrent unit; ICHD: ischemic

chronic heart disease; MI: myocardial infarction; PVD: peripheral vascular

disease; RNN: recurrent neural network.

Table 4. Experiments conducted on DR datasets with 2 and 4 hospitalizations in order to test changes in accuracy results with the decrease

of the training dataset size

Hospitalizations Patients Bidirectional GRU 1-way LSTM RF MLP

4 27 796 0.796 6 0.014a 0.782 6 0.001a 0.741 6 0.011a 0.740 6 0.007a

4 5000 0.782 6 0.012 0.776 6 0.006 0.738 6 0.010 0.747 6 0.011

4 2000 0.765 6 0.011 0.743 6 0.010 0.752 6 0.014 0.766 6 0.012

4 1000 0.769 6 0.014 0.767 6 0.002 0.752 6 0.009 0.742 6 0.008

4 500 0.745 6 0.013 0.745 6 0.008 0.740 6 0.013 0.750 6 0.009

2 58 641 0.728 6 0.019a 0.725 6 0.014a 0.696 6 0.018a 0.676 6 0.012a

2 5000 0.715 6 0.014 0.706 6 0.015 0.690 6 0.021 0.662 6 0.016

2 2000 0.707 6 0.015 0.707 6 0.011 0.687 6 0.019 0.660 6 0.015

2 1000 0.700 6 0.019 0.685 6 0.015 0.662 6 0.012 0.657 6 0.009

2 500 0.659 6 0.018 0.640 6 0.010 0.650 6 0.016 0.652 6 0.011

Values are mean 6 SD.

DR: diabetic retinopathy; GRU: gated recurrent unit; LSTM: long short-term memory; MLP: multilayer perceptron; RF: random forest.
aBest accuracy result.
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Figure 3. Prediction accuracy (recurrent neural network gradient recalled unit model) that patients with type 2 diabetes mellitus would develop diabetic retinopa-

thy (A) after a minimum of 2 hospitalizations and (B) after at least 4 hospitalizations. The results are presented by intervals when retinopathy developed within 1

year and after 1, 2, 3, 4-5, and 6-8 years from the diagnosis of type 2 diabetes mellitus.
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Our study focuses on detection of the most often complications

of DM2, using high-dimensional EMR type of data. RNN models,

especially GRU, achieved state-of-the-art prediction accuracy (Ta-

ble 2) by discovering complex temporal relationships inside EMR

data. A t test (P ¼ .05 level) did not show a statistically significant

difference between the 2 RNN models. Comparison of 2 traditional

ML models shows that both models performed similarly. Our

experiments show that an RNN GRU model is the best choice for

the high dimensional temporal EMR data. It performed significantly

better than traditional models, according to a t test at the level of P

¼ .05.

Considering the number of hospitalizations filter deep learning

models achieved the best results when data include 4 hospitaliza-

tions after DM2 diagnosis vs relaying on less hospitalizations. The

accuracy of our RNN GRU model with 4 hospitalizations achieved

values between 73.3% (MI) and 83.5% (ICHD). Datasets with 2

hospitalizations are 2-3 times larger than datasets with 4 hospital-

izations. Our results point toward the number of hospitalizations as

more important factor for prediction results than the size of data-

sets. We did not find significant difference in prediction accuracy if

the minimum number of hospitalizations was 3 instead of 4.

Analyzes of the influence of sizes of datasets indicate that about

1000 patients are sufficient in the positive dataset for RNN models.

The performance of RNN ML models decreased significantly when

the size of datasets decreased to 500 patients. Traditional ML mod-

els did not show statistically significant changes in achieved accu-

racy if the size of datasets decreased to 500. They also did not show

significant changes in accuracy with changes in the number of hospi-

talizations.

Figure 3 shows that prediction accuracy of DR decreases over

time. In case of 2 hospitalizations, the accuracy decreases steadily

over time because the sizes of datasets are big enough not to affect

performance of deep learning models. In experiments with 4 hospi-

talizations the initial accuracy within 1 year is lower because that

dataset was relatively small (523 patients), which is less than the op-

timal number of patients for the performance of the GRU model. Af-

ter this initial period, the rest of the curve in Figure 3B is similar to

the curve in Figure 3A. Similar changes are noticed with all other

complications.

Considering individual complications, RNN models were the

most accurate when predicting depressive disorder and ICHD. These

2 diseases had the largest absolute numbers of patients in positive

cohorts. The prediction accuracy of ICHD was 83.5%, which was

significantly better than the prediction accuracy of hearing loss (the

smallest dataset) or MI which were 73.4% and 73.3% consequently.

Individual diseases performed differently, and it is difficult to deter-

mine whether the size of datasets, comorbidities of individual com-

plications, or perhaps time gaps between different visits influenced

prediction results. Analyses of probabilities of development of 10

complications show that ICHD, depressive disorder, and diabetic

neuropathy have higher probability of occurrence (13%-14%) than

all other complications, including hearing loss with the probability

of occurrence of only 2%.

Results of our research with early and accurate prediction of 10

frequent complications of DM2 are important for targeting high-

risk patients for monitoring and intervention. They would enable

application of timely prevention measures, which will postpone

complications, improve quality of life, and increase survival rates.

Our methodology could be generally applied to prediction accuracy

problems of any other disease or complications of that disease. It

could be applied to predict cancer diseases, from EMR type of data,

or it can be applied to predict chronic diseases, such as heart or lung

diseases or complications of those chronic diseases. It can also be ap-

plied to predict acute medical conditions, such as heart attack,

stroke, acute kidney failure, or occurrence of infectious diseases (eg,

flu, coronavirus, hepatitis).

Further improvement of created RNN models would improve

prediction accuracy of DM2 complications and other diseases,

which could have significant clinical implications. It could become

incorporated into a clinical decision support system and help clinical

workers to improve quality of health care. Our GRU RNN model

can predict a clinical event (disease, complication) with high accu-

racy.

By demonstrating that application of RNN deep learning models

can make successful prediction of clinical events we hope that our

study may contribute to facilitate a wider use of ML in clinical

medicine in the form of a clinical decision support system. Also, it

could be applied in healthcare emergencies such as the current crisis
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Figure 4. Predicted risk probabilities of development of each of 10 complications in patients with type 2 diabetes mellitus (Healthcare Cost and Utilization Project

State Inpatient Databases California data). DD: depressive disorder; ICHD: ischemic chronic heart disease; MI: myocardial infarction; PVD: peripheral vascular dis-

ease.
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with COVID-19 ( coronavirus disease 2019) to make some impor-

tant and helpful predictions that will help to public health experts.

CONCLUSION

Deep learning approaches, especially the RNN GRU model, were

superior to traditional ML models with temporal EMR medical

data. The conducted large-scale experiments suggest that the num-

ber of hospitalizations (visits) should be 3 or more in the case of

temporal data if deep ML models are applied. The tradeoff between

the number of hospitalizations and the size of datasets should be

considered, because datasets with 3 visits could be significantly

larger than those with 4 visits, which will require more computa-

tional resources.

Deep learning models applied on the HCUP data achieved a very

good prediction accuracy with 10 selected complications of DM2.

Improvements in the accuracy of results might be possible if we had

had data from other domains, such as labs or drugs, available.

Our study provides evidence that better understanding and man-

agement of DM2 from the aspect of the studied complications is

possible when training deep learning models on appropriately pre-

processed EMR data. An accurate prediction of the occurrence of

complications is important in the planning of targeted measures

aimed to slow down or prevent their development.
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