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ABSTRACT

Objective: Timely availability of intravenous infusion pumps is critical for high-quality care delivery. Pumps are

shared among hospital units, often without central management of their distribution. This study seeks to char-

acterize unit-to-unit pump sharing and its impact on shortages, and to evaluate a system-control tool that balan-

ces inventory across all care areas, enabling increased availability of pumps.

Materials and Methods: A retrospective study of 3832 pumps moving in a network of 5292 radiofrequency and

infrared sensors from January to November 2017 at The Johns Hopkins Hospital in Baltimore, Maryland. We

used network analysis to determine whether pump inventory in one unit was associated with inventory fluctua-

tions in others. We used a quasi-experimental design and segmented regressions to evaluate the effect of the

system-control tool on enabling safe inventory levels in all care areas.

Results: We found 93 care areas connected through 67,111 pump transactions and 4 discernible clusters of

pump sharing. Up to 17% (95% confidence interval, 7%-27%) of a unit’s pump inventory was explained by the

inventory of other units within its cluster. The network analysis supported design and deployment of a hospital-

wide inventory balancing system, which resulted in a 44% (95% confidence interval, 36%-53%) increase in the

number of care areas above safe inventory levels.

Conclusions: Network phenomena are essential inputs to hospital equipment fleet management. Consequently, bene-

fits of improved inventory management in strategic unit(s) are capable of spreading safer inventory levels throughout the

hospital.
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INTRODUCTION

Intravenous infusion pumps are fundamental to providing safe and

effective patient care. The National Academy of Medicine recom-

mends all hospitals have them readily available for provision of

emergency care.1 Current evidence shows that timely availability of

infusion pumps in hospital units is determined by a complex set of

operational factors, including equipment breakdowns, lack of pre-

ventive maintenance, and staff work overload.1–5 However, previ-

ous studies have not addressed a potentially critical determinant of

equipment availability throughout a hospital: the tendency of units

to maximize their own inventory levels to serve their patients, poten-

tially leaving other hospital units with shortages (ie, hospital care

area network effects).

Intravenous infusion pumps move throughout the hospital due

to equipment-sharing practices, patient trajectories, and mainte-

nance requirements.6 Equipment sharing practices may occur be-

tween units under the same functional area, for example, in the

perioperative area between operating rooms (ORs) and postanesthe-

sia care units. Patient trajectories can also cause an infusion pump

movement, as the pump may accompany a patient as they move

throughout a hospital stay. Finally, infusion pump maintenance

requires removing them from the hospital units for repairs or re-

placement of mechanical components, software, or batteries in order

to prevent delays in therapy or inaccurate dosing, according to the

U.S. Food and Drug Administration.7

While infusion pumps are a shared asset, little is known about

the role of equipment sharing in preserving adequate inventory lev-

els within each care area. Hospital equipment-sharing practices may

result in the need for frontline healthcare workers to spend time lo-

cating and retrieving infusion pumps from other units, whereby con-

tributing to staff work overload and reduced nursing time per

patient.5,8,9 Also, the healthcare workers’ urge to hoard, hide, and

keep excessive equipment in their units may contribute to delays in

infusion therapy in other care areas. Hence, we use network analysis

to determine whether network phenomena of inventory levels per-

tain not just to direct relationships (eg, infusion pump movement

from the OR to postanesthesia care unit, and vice versa), but also to

indirect relationships (eg, labor and delivery and oncology), and

whether there are geographical or temporal constraints on these

effects. We define terminology needed to describe network analysis

and effects in Table 1.

The objective of an effective pump-sharing system is to ensure

that the each hospital care area (ie, unit) maintain a safe target

value for pumps available given expected utilization over time.

Considering flow of patient and pumps through the hospital net-

work, reallocation of pumps via a system of pick-up and drop-off

operations was required. We hypothesized that by using network

analyses methods, we could design and implement a hospital-wide

pump management system to increase the availability of infusion

pumps (ie, safe inventory levels) in all care areas through inven-

tory rebalancing while minimizing investment in new inventory.

Our primary goal was to guide the redistribution of underutilized

equipment and establish better equipment-sharing practices of PC

units (PCUs) (“brain”) and large-volume pumps (LVPs) (“side-

channel”).

MATERIALS AND METHODS

Setting
This study was performed in a 1154-bed tertiary care center located

in Baltimore, Maryland, which owns a fleet of 3459 infusion pumps

and a real-time location system (RTLS) that captures the location of

each infusion pump based on radiofrequency and infrared sensor

technology. If an infusion pump was moving, its location was

recorded by the RTLS every 3 seconds; if it was stationary, its loca-

tion was recorded every 2 minutes.

Measurement and data
We collected RTLS and electronic medical record data from January

to November 2017 to study the equipment-sharing network. Using

RTLS location data we constructed a directed network representa-

tion over time, whereby nodes represented hospital areas, including

the emergency department (ED), surgical and procedural units, inpa-

tient floor units, and ancillary areas including material management,

clinical engineering, cafeterias, and over 150 waiting, hallway, and

basement areas. Ties (Table 1) between nodes were created if there

was movement (transaction) of an infusion pump from one area to

another area. There were a minimal number of hospital areas with-

out RTLS coverage; these areas were excluded from our analysis be-

cause we were unable to measure it. To assess the accuracy in

tracking the fleet of infusion pumps under study, we compared the

total number of infusion pumps seen in the RTLS against the total

number of infusion pumps the hospital owned based on historical

purchasing orders. We used electronic medical record data to calcu-

late hospital bed occupancy over time.

Table 1. Network analysis glossary

Term Definition

Ego The focal hospital unit; this is the unit whose behavior is

being analyzed.

Alter A hospital unit connected to the ego; this is the unit which

is potentially influencing the behavior of the ego.

Node An object that may or may not be connected to other

objects in a network; for our application, nodes in the

network represent hospital units.

Tie A connection between 2 nodes that can be either 1 way or

2 way based on the direction (or lack thereof) of move-

ment between 2 nodes; for our application, a tie repre-

sents infusion pump movement between 2 hospital

units.

Cluster A subset of nodes in a network that are densely connected to

each other and sparsely connected to other nodes in the

network; for our application, a cluster represents a subset

of hospital units that share infusion pumps more often

with each other than with other units in the hospital.

Degree of

separation

The operational distance between 2 hospital units as mea-

sured by the smallest number of intermediary ties be-

tween an ego unit and other nodes within the network.

For a given ego, alters are degree 1, as they are directly

connected to the ego. Nodes that are connected to the

alters but not to the ego are degree 2, and so on. This is

also known as the “geodesic distance.”
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As the availability of infusion pumps in a given hospital area

fluctuates over time, we used a counting process to measure both

bed occupancy and infusion pump inventory levels.10 We divided

the 11-month study period into 30-minute intervals (starting on the

hour and the half-hour) and recorded observations of unit-level oc-

cupancy at this frequency. For these census observations, we

assigned partial counts for patients who transitioned from one area

to another during the 30-minute interval. For example, a patient be-

ing treated in unit i during the entire 30-minute interval is counted

as 1 for unit i. However, a patient who is treated in unit i for 10

minutes during the interval and then transfers to unit j for the

remaining 20 minutes is counted as one-third (10 of 30) for unit i

and two-thirds (20 of 30) for unit j. We assume transfer times are

negligible. We also counted the number of infusion pumps in each

area during each 30-minute interval and measured change in infu-

sion pump inventory based on how the area’s inventory compared

with the previous time interval.

Network analysis
We computed measures of centrality to characterizing the behavior

of the entire network of infusion pump sharing across hospital units

(see Network Centrality in the Supplementary Appendix). We used

eigenstructure-based algorithms to measure clustering,11,12 and we

validated cluster assignments with 3 senior nursing personnel inde-

pendently (see Network Clustering in the Supplementary Appendix).

To evaluate whether the clustering was statistically significant, we

compared the algorithmic clustering to the clustering observed in an-

other 1000 networks with random clustering. These random cluster-

ing networks preserved the network topology, but we randomly

shuffled the assignment of the cluster to which each node belongs.13

If clustering was occurring, then the probability that an ego (the fo-

cal hospital unit; this is the unit whose behavior is being analyzed)

changes its infusion pump inventory, given that an alter (a hospital

unit connected to the ego; this is the unit that is potentially influenc-

ing the behavior of the ego) changes its inventory, should be higher

in the observed network than in the networks with random cluster-

ing. This bootstrapping procedure also allowed us to create confi-

dence intervals (CIs), and to measure how far the correlation of

infusion pump inventory levels between ego and alter reaches. Given

that infusion pump sharing between hospital units is directional,

Figure 1 introduces the 3 types of unit-to-unit infusion pump–shar-

ing relationships: a negative relationship between hospital unit i and

j means that more infusion pumps were transferred from i to j than

from j to i, a positive relationship means the opposite, and a neutral

relationship means the average number of transactions between i

and j was approximately equal.

Following an egocentric network approach, we used longitudi-

nal logistic regression to estimate the extent to which equipment

sharing affects the inventory levels in a hospital unit while control-

ling for the hospital unit’s occupancy fluctuations. We denote each

hospital unit of interest as an ego, and each hospital unit that sends

(or receives) infusion pumps to (or from) the ego as an alter. We re-

port a subset of hospital units as ego units due to their high central-

ity in the network. The outcome was a binary indicator that was

equal to 1 if the infusion pump inventory level decreased in time in-

terval t þ 1 relative to the previous time interval t. We model the

outcome as

logit yi;t;tþ1

� �
¼ b0 þ b1Occupancyi;t þ

X

m2Mi

X

n2Ni

bn;mXn;m;t;tþ1 (1)

where logit yi;t;tþ1

� �
is the log odds that the ego hospital unit i re-

duced its inventory level of infusion pumps from time t to t þ 1.

Occupancyi;t is the average bed occupancy in hospital unit i during

time t. Mi is the set of alters in the ego network of hospital unit i. Ni

is the set of relationship types (Figure 1) exhibited by the equipment-

sharing network of hospital unit i. Xn;m;t;tþ1 is the number of alter

hospital units that reduced their inventory level of infusion pumps

from time t to t þ 1. The proposed model depicted in equation 1

helped us quantify the network effects of others in a hospital unit of

interest. The primary coefficients of interest in these regression mod-

els are the ones that capture the impact of changing inventory levels

in the alters on the ego’s inventory level, that is, the bn;m coefficients

in equation 1. We used generalized estimating equations to account

for multiple observations of the same ego across time periods and

across ego-alter pairings.14 We report regression estimates as odds

ratios, along with the associated 95% CIs and statistical significance

measures to quantify the estimated effects and importance of each

variable. Inclusion of each alter’s infusion pump inventory level dur-

ing the previous time helps to control for homophily,15,16 whereas

inclusion of ego’s occupancy levels helps to control for confounding

effects.

Translation to pump inventory management system
After understanding the dynamics of infusion pump sharing via net-

work analysis, we designed and deployed a process improvement in-

tervention across the whole hospital. In early 2017, a comprehensive

review of the infusion pump–sharing practices across all inpatient

and ambulatory infusion centers confirmed:

Figure 1. Infusion pump sharing relationships between hospital units.
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• The need for frontline healthcare workers to spend time locating

and retrieving infusion pumps from other units, whereby contrib-

uting to staff work overload; and
• The healthcare workers’ urge to hoard, hide, and keep excessive

equipment in their care areas, whereby contributing to potential

delays in infusion therapy.

Our primary outcome was the number of hospital units over

their assigned periodic automatic replenishment (PAR) level at 7

a.m. PAR level is defined as the minimum amount of infusion pump

inventory needed to meet daily infusion therapy demand. Secondary

measures were collected to ensure unbiased before-and-after com-

parisons, including bed occupancy and infusion pump fleet size. To

measure the effect of the proposed system, we followed a quasi-

experimental design to compare the number of hospital units at or

over PAR in the preintervention period of January 29, 2017, to April

15, 2018, with those in the postintervention period of April 16,

2018, to June 30, 2018 via segmented regression.17

RESULTS

During our study period, 93 distinct hospital units were connected

via 67,111 distinct transactions of infusion pumps, representing an

average of 201 transactions per day. In total, 93% of hospital units

sent at least 1 infusion pump to another unit, and each hospital unit

was connected, on average, to 17 other units. Based on a compari-

son against historical purchasing orders, the RTLS pump tracking

accuracy reached 93%, which is consistent with a previous study on

RTLS-based systems to track patient mobility at the same care

center.18

Further examination of the network indicates there were distinct

clusters of infusion pump sharing. As presented in Figure 2A and B,

hospital units were part of sharing clusters that were statistically sig-

nificant and larger than expected by chance alone (all P values

<.001). Figure 2C shows substantial centrality variation between

and within these clusters, ranging from a few locations with no infu-

sion pump exchanges to one unit that was connected to all hospital

units. Analysis of standard deviation revealed that network central-

ity in the neurosciences cluster was much less variable than in the

other clusters. (Ps ¼ .0436 and .0459 for neurosciences vs oncology

and neurosciences vs perioperative, respectively; Flinger-Killen test

of homogeneity of variances). Further examination of the network

centrality (see Network Centrality in the Supplementary Appendix)

revealed that the ED is a supplier of pumps, discharging inpatient

units are holders of pumps, and intermediate units have high poten-

tial of influencing others’ pump inventories. In particular, the high-

degree, low-betweenness, and low-closeness centrality of the ED

suggest that it is a supplier of pumps, whereby infusion therapy is

Figure 2. Infusion pump sharing network in The Johns Hopkins Hospital. (A) The movement of PC unit (PCU)–type infusion pumps and (B) the movement of

large-volume pump (LVP)–type infusion pumps. Each node represents a hospital unit (node number legend is presented in the Hospital Unit Name Glossary sec-

tion of the Supplementary Appendix). The size of the nodes and the thickness of the ties are proportional to the volume of pump movement. The interior color of

the nodes indicates cluster assignation based on eigencentrality. To measure if cluster assignation was statistically significant, we used the bootstrapping-based

procedure presented in Fortunato and Hric20 to compare the observed clustering against random clustering in 1000 networks of same topology. All P values were

<.001, and therefore we conclude that clustering presented in panels A and B are larger than expected by chance alone. (C) The network centrality distribution in

each cluster. Analysis of standard deviation revealed that network centrality in the neurosciences cluster was much less variable than in the other clusters (P ¼
.0436 and .0459 for neurosciences vs oncology and neurosciences vs perioperative, respectively; Flinger-Killen test of homogeneity of variances). No statistically

significant differences in medians were detected (all P values >.05 in Kruskal-Wallis test of differences of medians).
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initiated and then patients are transferred with their pumps to other

units. In contrast, the high in-degree, low-betweenness, and low-

closeness centrality of a surgical floor unit suggest that it is a holder

of pumps, whereby infusion therapy is completed, patients get dis-

charged, and their pumps remain at the discharging unit because of

a lack of feedback mechanisms. Finally, the high-degree, high-be-

tweenness, and high-closeness centrality of the intermediate care

unit (IMCU) suggests that it is a liaison for infusion pumps, whereby

most patients arrive and get transferred elsewhere in the hospital at-

tached to pumps. To determine the extent of these findings, we sub-

sequently present the results of longitudinal regressions that predict

the likelihood of a hospital unit to reduce its inventory as a function

of the inventory and hospital bed occupancy levels of other units.

Our primary interest was to evaluate the network effects of alters

on an ego, because if alters impact the ego’s likelihood of reducing

its pump inventory, then efforts to bring more pumps should target

the ego and its neighbors as well. Table 2 presents the discrimina-

tory power (C-statistic) and the risk estimates (odds ratio) for inven-

tory reduction in the ego according to covariates. Our results

indicate that the hospital units in our sample are up to 17% (95%

CI, 7%-27%) more likely to reduce its infusion pump inventory if

direct connections (first-degree neighbors) reduce their inventory,

and up to 16% (95% CI, 10%-22%) if indirect connections (sec-

ond-degree neighbors) reduce their inventory. This special case of

network effects variate according to the type of ego, and they

reached up to 2 degrees of separation.

• Inventory levels in liaison units exhibited a high dependency on

alters’ inventory but not on hospital bed occupancy levels. In the

IMCU, the risk for inventory reduction increased by 8% (95% CI,

1%-14%) when units that commonly send pumps to IMCU (posi-

tive relationship) reduced their inventory, and by 14% (95% CI,

6%-22%) when units that commonly share pumps with IMCU

(neutral relationship) reduced their inventory. Units connected to

the IMCU’s alters also influenced inventory levels in the IMCU, as

the risk for inventory reduction in the IMCU increased by 13%

(95% CI, 5%-18%) when positive second-degree connections

Table 2. Association of alter unit inventory decrease and ego inventory decrease for infusion pump

ED OR ICU IMCU Floor L&D

LVP

C-statistic 0.52 0.62 0.57 0.61 0.62 0.52

First degree

Positive 0.96 (0.91-1.01) 1.14 (1.09-1.19)c 1.03 (0.94-1.11) 1.08 (1.01-1.14)a 1.11 (1.04-1.19)b 0.94 (0.88-1.00)

Negative 0.97 (0.92-1.02) 1.06 (0.98-1.14) 0.95 (0.89-1.02) 1.04 (0.97-1.11) 1.06 (0.99-1.14) 1.01 (0.96-1.07)

Neutral 1.00 (0.96-1.04) 1.05(0.98-1.12) 0.99 (0.93-1.04) 1.14 (1.06-1.22)c 1.02 (0.95-1.09) 0.94 (0.85-1.04)

Second degree

Positive 1.02 (0.94-1.11) 1.16 (1.10-1.22)c 1.07 (0.87-1.29) 1.13 (1.05-1.18)b 1.1 (0.97-1.23) 1.02 (0.97-1.07)

Negative 2.28 (0.02-42.93) 0.97 (0.74-1.25) 1.13 (1.09-1.17)c 0.99 (0.87-1.12) 1.01 (0.9-1.13) 1.00 (0.96-1.04)

Neutral 1.02 (0.91-1.12) 1.09 (1.02-1.17)b 1.04 (0.98-1.11) 1.11 (1.05-1.18)c 1.08 (1.01-1.15)a 1.07 (0.93-1.23)

Third degree

Positive NA 1.31 (0.05-5.75) 0.23 (0.01-1.72) NA NA 1.83 (0.01-34.41)

Negative NA NA 1.20 (0.86-1.61) NA NA 0.95 (0.57-1.42)

Neutral NA NA 0.42 (0.57-1.17) NA NA NA

Occupancy NA NA 0.99 (0.99-1.00) 0.98(0.97-0.99)b 0.96 (0.95-0.97)c NA

PCU

C-statistic 0.53 0.60 0.57 0.59 0.61 0.52

First degree

Positive 1.03 (0.97-1.09) 1.10 (1.03-1.16)b 1.03 (0.94-1.12) 1.03 (0.93-1.12) 1.02 (0.86-1.18) 0.90 (0.82-0.99)a

Negative 0.95 (0.89-1.02) 1.17 (1.07-1.27)c 0.95 (0.89-1.02) 1.06 (0.98-1.15) 1.14 (1.05-1.23)b 0.96 (0.89-1.03)

Neutral 1.00 (0.96-1.03) 0.89 (0.79-1.00) 0.99 (0.93-1.04) 1.09 (1.02-1.17)a 1.05 (0.97-1.12) 0.99 (0.91-1.08)

Second degree

Positive 1.01 (0.85-1.16) 1.15 (1.10-1.19)c 1.07 (0.87-1.29) 1.13 (0.81-1.47) 1.01 (0.87-1.16) 0.99 (0.92-1.05)

Negative 0.92 (0.62-1.29) 1.02 (0.92-1.11) 1.13 (1.09-1.18)c 1.05 (0.92-1.17) 1.10 (0.96-1.23) 1.01 (0.96-1.06)

Neutral 0.95 (0.84-1.06) 0.97 (0.88-1.06) 1.04 (0.98-1.11) 1.14 (1.08-1.20)c 1.06 (1.00-1.12)a 0.98 (0.93-1.03)

Third degree

Positive 1.54 (0.01-18.9) 1.18 (0.89-1.53) 0.23 (0.01-1.72) NA 4.04 (0.03-51.07) 1.14 (0.87-1.47)

Negative 0.83 (0.01-7.82) 2.69 (0.67-8.42) 1.2 (0.86-1.61) NA NA 0.91 (0.10-3.79)

Neutral NA 0.81 (0.01-7.73) 0.42 (0.06-1.17) 1.15 (0.77-1.60) 1.10 (0.66-1.65) 0.97 (0.57-1.48)

Occupancy NA NA 0.99 (0.99-1.00) 0.99 (0.98-1.00) 0.96 (0.94-0.97)c NA

Values are odds ratio (95% confidence interval), unless otherwise indicated.

Without loss of generality, these are the results for a sample of hospital units, whereas the Network Effects of Alters Across All Hospital Units section of the

Supplementary Appendix presents the results for the whole hospital. In sensitivity analysis, we found that the odds ratio presented here are robust to the exclusion

of hospital areas with no bed occupancy such as basements and hallways (see the Network Effects of Alters With or Without Bed Occupancy section of the Sup-

plementary Appendix), to a more restrictive definition of positive, negative, and neutral sharing relationships (see the Network Effects of Alters With Narrower

Relationship Threshold section of the Supplementary Appendix).

ED: emergency department; ICU: intensive care unit; IMCU: intermediate care unit; L&D: labor and delivery; LVP, large-volume pump; NA: not applicable;

OR: operating room; PCU: PC unit.
aStatistically significant at 5%.
bStatistically significant at 1%.
cStatistically significant at 0.1%.
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reduced their inventory and by 11% (95% CI, 5%-18%) when

neutral second-degree connections reduced their inventory. These

network effects suggest that liaison units are the most affected by

other hospital units that supply them with pumps.
• Inventory levels in holder units were highly associated with both

alters’ inventory and hospital bed occupancy. In the floor unit un-

der study, the risk for inventory reduction increased by 11%

(95% CI, 4%-19%) when units that commonly send them pumps

reduced their inventory. Units connected to the floor unit’s alters

also affected inventory levels in the floor unit, as the risk for in-

ventory reduction in the floor unit increased by 8% (95% CI,

1%-15%) when neutral second-degree connections reduced their

inventory. In contrast, the risk for inventory reduction decreased

by 4% (95% CI, 5%-3%) if bed occupancy increased in the floor

unit. These network effects suggest that holder units are also af-

fected by the other hospital units that supply them with pumps,

even when controlling for days with low patient census.
• Inventory levels in the supplier unit under study, the ED, were in-

dependent of the alters’ inventory, suggesting they have enough

pumps.

Similar dynamics were found in the sharing network of PCU

pumps, suggesting there is order in hospital equipment-sharing sys-

tems.

Finally, we used the regression models to distinguish the network

effects of the different ego-alter relationships (positive, neutral, or

negative, as depicted in Figure 1) and alters’ operational distance

(degree of separation in Table 1). As presented in Figure 3A and B,

we found no statistically significant difference in the effect size pro-

duced by first- and second-degree neighbors (P ¼ .89). In the same

way, positive, neutral, and negative relationships revealed no statis-

tically different effect size (Ps ¼ .07, .43, and .37, respectively).

These observations suggest that cascade effects of alters on ego are

not infinite and highlight the reciprocal nature of equipment sharing

in hospital settings. These cascade effects found during the system

analysis phase also highlight the need for effective rebalancing oper-

ations. In the next section, we describe this intervention and the ob-

served effect on pump inventory in clinical areas.

Translation to pump inventory management system
Sporadic equipment shortages triggered a focused collaboration

among material management, clinical engineering, and infusion

pump users including nursing and pharmacy personnel to develop a

system to provide adequate infusion pump inventory in hospital

units using the network analysis. A pump inventory management

system was developed, piloted, and revised, and a new team of mate-

rial management personnel was formed. Together, they represented

a new work system for the daily management of infusion pump in-

ventories in hospital units. Recognizing that infusion therapy practi-

ces differ across specialties and patient populations, frontline

healthcare workers from multiple disciplines were engaged to the

system. Electronic reports with real-time feeds from the RTLS are

generated and used by a team of materials management personnel to

balance inventory of pumps across all hospital units on a daily basis

(see further details in the Quality Improvement Intervention section

of the Supplementary Appendix).

Following a quasi-experimental design and using segmented re-

gression ,19 we found that before the intervention, the percentage of

hospital units above their PAR levels were modestly trending up-

ward (Figure 4A shows PCU pumps with a 34% [95% CI, 31%-

38%] weekly average and a 2% [95% CI, 1%-3%] increase per

week; Figure 4B shows LVPs with a 31% [95% CI, 28%-33%]

weekly average and a 2% [95% CI, 1%-3%] increase per week). Af-

ter the introduction of the intervention, the percentage of hospital

units above PAR levels for PCU pumps and LVPs increased by 44%

(95% CI, 36%-53%) and 58% (95% CI, 52%-64%), respectively.

Furthermore, the postintervention period showed a sustained 1%

week-to-week increase in the percentage of units above their PAR

levels for both PCU pumps and LVPs. Sensitivity analyses with vary-

ing start dates for the intervention period and the addition of

system-level factors, including hourly bed occupancy, confirmed

that the immediate increase of pump inventory in units correlated

with the actual intervention start date.

DISCUSSION

We examined whether portable equipment-sharing practices are a

significant factor in sustaining shortage of equipment in hospital

units. We found that equipment inventory in a hospital unit pertains

not only to its intrinsic characteristics, but also to direct and indirect

sharing practices with others. This special case of network effects

difficult the task of keeping enough inventory levels in single hospi-

tal unit, as efforts to increase inventory in such unit may have detri-

Figure 3. Effect of operational distance and sharing relationship from alters with reduced inventory on the probability of an ego reducing its inventory. (A) The

mean effect of an ego’s operational proximity to other units with reduced inventory. Tukey’s range test measured no statistically significant difference between

degree of operational connectivity 1 and 2 (P ¼ .89). (B) The mean effect of an ego’s pump-sharing relationships; a positive (ie, “þ”) relationship with alters means

that more infusion pumps were transferred from the alters to the ego on average during the study timeframe, negative (ie, “-”) means the opposite, and neutral

(ie, “¼”) means the average number of pump transactions between ego and alters was similar. Tukey’s range test measured no statistically significant differen-

ces among positive, neutral, and negative relationships (Ps ¼ .07, .43, and .37, respectively). D: degree.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 6 889

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocaa033#supplementary-data


mental effects on other units. Consequently, a systems-based inter-

vention to rebalance inventory day to day across all hospital units

was designed and deployed at a tertiary hospital based on the net-

work analysis conducted. Using a quasi-experimental design, we

found the intervention doubled the number of units above their min-

imum amount of inventory needed to meet their daily infusion ther-

apy demand. Unit equipment inventory, in other words, is not

merely a function of how many patients are seen in a unit, but rather

is also a property of a “group of units.” Indeed, changes in a unit’s

inventory can ripple through the network and generate large-scale

structure in the network, giving rise to clusters of equipment sharing

and latent opportunities for improved fleet management.

Our results are consistent with previous work on the systems ba-

sis of healthcare delivery and the mobility patterns of asset-sharing

systems. The dynamics of portable equipment sharing and the asso-

ciated relationships between hospital units form a network whose

properties can be analyzed and exploited for optimum resource allo-

cation, level of service, and cost-efficiency. The network model for-

mulation of a hospital equipment-sharing system is further

necessitated by its large-scale operational structure and its intrinsic

interclinical ties. Given the cluster structure of many networks and

the various methods that have been developed to detect them,20,21

the employment of such an approach to the sharing of hospital

equipment is even more relevant as the detection and characteriza-

tion of these cluster patterns can be harnessed for significant gains.

This has been realized for other sharing applications, including

bicycle-sharing systems, ridesharing,22 and future automated

mobility-on-demand systems.23

Our data do not allow us to identify the actual causal mecha-

nisms of the spread of inventory shortages, but various mechanisms

are possible based on data from the Institute for Safe Medication

Practices and our experience managing equipment at our institu-

tion.24 For example, a patient is transferred while connected to an

intravenous infusion pump and there is no feedback loop to return

the equipment to the unit initiating the transfer. Also, failed redistri-

bution efforts after equipment maintenance, and cleaning, or a pa-

tient is discharged home from a unit with low intravenous infusion

pump utilization and is isolated from the sharing network. Yet, our

data show that the spread of inventory shortages reaches up to 2

degrees of connection. Although the unit-to-unit effects of these out-

comes tend to be quite strong, they decay well before reaching

across the entire network, as evidenced by the lack of third-degree

effects. In other words, the effect of a potential improvement in one

hospital unit may be limited across the hospital. These findings have

relevance for healthcare operations. Ideally, operational maneuvers

that increase the operational performance of one hospital unit will

have cascading effects on others, thereby enhancing the efficacy and

cost-effectiveness of an intervention. For example, delayed discharge

from a hospital floor unit is a potential source of admission delays

for patients going to the hospital floor unit in question as well as

other patients waiting for admission to surrounding units. Interven-

tions to ensure timely discharge might improve not only the opera-

tional efficiency of the hospital floor unit, but also the efficiency of

numerous others, thereby further vindicating the benefits of systems

engineering approaches to improve healthcare efficiency.

A systems engineering approach to increase the availability of in-

travenous infusion pumps may have significant clinical implications.

Smart infusion pumps—those with dose-error reduction software—

can optimize and improve the safety of intravenous medication ad-

ministration.25,26 This is particularly relevant to the administration

Figure 4. Hospital units above periodic automatic replenishment (PAR) level before vs after introduction of a quality improvement initiative to increase availability

of infusion pumps in The Johns Hopkins Hospital, and timeline of events key to implementation. PAR level is the minimum amount of infusion pump inventory

needed to meet the daily infusion therapy demand while providing a buffer in case of unexpected demand. (A) The percentage of hospital units that are above

PAR level for PC unit (PCU)–type infusion pumps while (B) large-volume pump (LVP)–type infusion pumps. Individual data markers represent the average per-

centage of hospital units above PAR level at 7 a.m. displayed by week; solid lines represent predicted percentage from segmented regressions, including 95%

confidence intervals. The arrows indicate key dates in the development and implementation of the quality improvement initiative. The asterisk indicates that seg-

mented regressions include hourly bed occupancy and total number of pumps seen in the real-time location system (RTLS) as fixed effects. The letter a indicates

the start of biweekly multidisciplinary discussions about how to increase infusion pump availability in hospital units through improved fleet management. The

letter b indicates observation of infusion pump underutilization in units in which patients are commonly disconnected from infusion therapy and over utilization

in units in which patients are commonly initiated on infusion therapy. The letter c indicates biweekly discussions about infusion pump utilization held with the in-

fusion pump work workgroup. The letter d indicates that the electronic redistribution system is implemented for all hospital units. The letter e indicates the

weekly electronic report to hospital operations leadership about the number of units at their required infusion pump inventory levels.
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of high-risk intravenous medications, such as heparin, insulin, or

opioids. However, sufficient pumps must be available in order to ap-

preciate these clinical benefits. Negative consequences of medical

equipment, including infusion pumps, being unavailable have been

reported in the literature.24,27 For these reasons, the Institute for

Safe Medication Practices guidelines for safe implementation and

use of smart infusion pumps recommend that institutions “purchase

a sufficient number of pumps to ensure that enough devices are

available to meet the needs of the organization.”28 Thoughtful sys-

tems engineering can promote more efficient utility of smart pump

fleets to meet clinical needs while containing costs.

Our study has several limitations. First, owing to the nonproba-

bilistic nature of our sampling, the extent to which the characterized

infusion pump–sharing network properties can be generalized for

other equipment-sharing applications is unclear. However, the pro-

cess via which the statistical analysis was designed and performed

should be useful in analogous situations. Second, the networks of in-

travenous infusion pump sharing observed in this study, like those in

most network studies, are only partially observed, creating potential

for measurement error in individual network attributes. For exam-

ple, there may be errors or unobserved transactions due to physical

limitations of the RTLS or areas with no RTLS coverage. If there is

a correlation between this measurement error and infusion pump in-

ventory, it could bias our results due to misclassification of the out-

come. To address this limitation, we measured this potential source

of bias by performing an 8-week physical inventory of all infusion

pumps in our 1154-bed hospital. We compared our inventory results

against RTLS data and found, on average, 93% coverage of our in-

fusion pump fleet of 3459, suggesting that the unobserved parts of

the network (7% average) have minimal impacts on the inferences

we make within the observed system.

CONCLUSION

The manner of propagation of intravenous infusion pumps within a

network of hospital units is an essential factor concerning equip-

ment inventory scarcity. Furthermore, the relevance of network

effects also suggests that it may be possible to harness these move-

ment patterns to increase inventory where needed. Consequently,

network-based approaches to asset fleet management may help in-

crease equipment availability without incurring large capital invest-

ments. The pump inventory management system presented here

significantly increased the timely availability of intravenous infusion

pumps in hospital units. Further studies are needed to define how

differences in hospital practices and equipment-sharing culture

would affect the effectiveness and implementation of strategies to

improve hospital asset availability.
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