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ABSTRACT

Objective: As clinical trials evolve in complexity, clinical trial data models that can capture relevant trial data in

meaningful, structured annotations and computable forms are needed to support accrual.

Material and Methods: We have developed a clinical trial information model, curation information system, and

a standard operating procedure for consistent and accurate annotation of cancer clinical trials. Clinical trial

documents are pulled into the curation system from publicly available sources. Using a web-based interface, a

curator creates structured assertions related to disease-biomarker eligibility criteria, therapeutic context, and

treatment cohorts by leveraging our data model features. These structured assertions are published on the My

Cancer Genome (MCG) website.

Results: To date, over 5000 oncology trials have been manually curated. All trial assertion data are available for

public view on the MCG website. Querying our structured knowledge base, we performed a landscape analysis

to assess the top diseases, biomarker alterations, and drugs featured across all cancer trials.

Discussion: Beyond curating commonly captured elements, such as disease and biomarker eligibility criteria,

we have expanded our model to support the curation of trial interventions and therapeutic context (ie, neoadju-

vant, metastatic, etc.), and the respective biomarker-disease treatment cohorts. To the best of our knowledge,

this is the first effort to capture these fields in a structured format.

Conclusion: This paper makes a significant contribution to the field of biomedical informatics and knowledge

dissemination for precision oncology via the MCG website.

Key words: knowledge representation, My Cancer Genome, precision oncology, knowledge curation, cancer in-

formatics, clinical trial data model

INTRODUCTION

Successful clinical trial completion is paramount for drug discovery,

and yet about 40% of trials close prematurely due to lack of patient

enrollment.1 The rise of biomarker-directed therapies in oncology

has resulted in increased complexity of clinical trial eligibility crite-

ria and multi-arm study designs. Clinical trial data models that can

store this complex information in meaningful, structured annota-

tions and computable forms can be used in downstream applications
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to improve trial enrollment and elucidate trends in the oncology

treatment space.

The number of cancer clinical trials featuring biomarker-based

eligibility criteria has more than quadrupled in less than a decade

from 3% in 2006 to 16% in 2013.2 Eligibility criteria have evolved

in complexity from single gene alterations in a single disease (eg,

BRAF V600E melanoma3) to multi-arm studies evaluating multiple

potential single or co-occurring alterations in multiple disease

cohorts (eg, NCI-MATCH, ASCO-TAPUR4,5) It is not uncommon

for trials to include/exclude groups of gene variants found along

specific cell signaling pathways, biomarkers important in drug me-

tabolism, and ones that confer drug resistance. The biomarkers in

trials span from well-studied genomic, protein, serological, and cy-

togenetic markers to newer biomarkers including viral proteins, epi-

genetic signaling, and tumor mutation burden. As the eligibility

criteria for trials become more complex, it has become challenging

to accurately match these trials to relevant patient populations.

This in turn translates into long and cumbersome recruitment

workflows, a high burden of manual review on clinical trial staff,

and ultimately low accrual rates.

There have been attempts with varying success to use key word-

search and machine-learning approaches to decipher the eligibility cri-

teria of clinical trial documents.6–10 However, nonstandardized and

nonstructured clinical trial documents, extensive use of gene and pro-

tein aliases, ambiguous sentence structure, and multiple amendments

to clinical trial documents make this a challenging task. To address

this issue, several groups have created information models that can

support clinical trial eligibility criteria curation or annotation. Some

of these knowledge bases are Matchminer by Dana-Farber Cancer In-

stitute,11 Trial Prospector by Case Western Reserve University,12 and

JAX-CKB by Jackson Labs,13 among others. There are commercial

vendors who are creating private versions of these to incorporate in

their next generation sequencing workflow (eg, Tempus, Foundation

Medicine). However, there are several limitations to existing efforts—

both in terms of model expressivity and model content. Expressivity is

the ability to express the full range of concepts observed in actual clini-

cal trial documents beyond genomic criteria (ie, cytogenetics, protein

expression, serological, epigenetic criteria, etc). Content is the scope

of trial curation beyond institutional trials, trials for a specific disease

group, etc.

Our prior approaches to clinical trial annotation explored both

key word search14 and natural language processing (NLP)-based

approaches10 for automated extraction of biomarker eligibility crite-

ria from clinical trial documents. However, we and others with simi-

lar efforts concluded that the level of precision and recall achieved

by these methods is relatively low.8,9,15–20 We then adopted a com-

bined methodology leveraging both artificial and human intelligence

to develop a standardized, structured, and extendable nomenclature

model for eligibility criteria curation of oncology trials in collabora-

tion with our software development partner GenomOncology.21

In this article, we provide a detailed description of our clinical

trial information model, clinical trial curation information system,

standard operating procedure (SOP) for trial curation, evaluation of

the model expressivity in curating eligibility criteria for over 5000

cancer clinical trials, and visualization of the model content for both

individual trials and aggregate summary statistics. Following an iter-

ative cycle of refinement and development, we have designed an in-

formation model that represents various data elements pertaining to

a clinical trial. A comprehensive set of annotated instances of this

model supports the clinical trial-related content on the My Cancer

Genome (MCG) website.22

MATERIALS AND METHODS

We adopted an assertion-based approach for our model since the

computable nature of this approach allows data to be queried and

utilized for several downstream applications. Figure 1 shows a high-

level overview of the clinical trial curation information system. Clin-

ical trial documents are pulled into the curation system from pub-

licly available sources, such as clinicaltrials.gov,23 cancer.gov,21 and

UMIN Japan.24 Using a web-based interface, a curator creates struc-

tured assertions related to disease-biomarker eligibility criteria, ther-

apeutic context, and treatment cohorts by leveraging terminologies

and concept groups available in the data model. These structured

assertions are utilized for clinical trial-related content on the MCG

website and other downstream applications.

Clinical trial data model
The clinical trial data model is supported by (i) core model asser-

tions, (ii) terminologies, and (iii) concept groups (Table 1). Core

model assertions define the relational structure between concepts

that make up the set of logical statements pertaining to clinical trial

properties. Terminologies from multiple external sources, as well as

locally maintained concepts, are used to populate values for individ-

ual trial assertions. Concept grouping enables modeling of comput-

able and reusable concepts using logical operators (any, all, none) to

enable more consistent and efficient curation. A complete schema of

the clinical trial data model (in PDF and JSON format) can be found

in the Supplementary Material.

Core model assertions
Eligibility criteria assertion

We have adopted the approach to curate the diagnosis and associ-

ated biomarker criteria for oncology trials. Curating the full set of

eligibility criteria was out of scope for the current curation effort,

but the eligibility criteria assertion (ECA) model is extensible to in-

clude other types of eligibility criteria. An ECA specifies the relation-

ships between the cancer diagnosis of interest (including diagnoses

that were excluded) and the associated biomarker eligibility criteria

for that diagnosis. Gene, protein, cytogenetic, serological, viral, as

well as epigenetic biomarkers are recognized and modeled within

the system.

An ECA can support hierarchical nesting of biomarkers to repli-

cate the complex eligibility criteria of oncology trials and can be

used to define several cohorts, or trial arms, presented in a trial.

This can be done by using the top-level or higher-level operator and

assigning it 1 of the logical operators (any, all, none). For consis-

tency, we have adopted the following nomenclature format for

ECAs: “Clinical Trial Identifier,” “Disease,” and “Biomarker” Posi-

tive/Negative (þ/-) (eg, NCT03945721: Breast Cancer: Selected

Alterations) (Figure 2).

Treatment context assertions

Treatment context assertions (TCAs) define the relationship be-

tween the therapeutic context and associated therapies/interventions

in a clinical trial. The therapeutic context combines the intention of

treatment (eg, curative, palliative, and supportive care) with con-

cepts representing the sequencing of treatments (eg, Induction, Neo-

adjuvant, Adjuvant, and First Line Metastatic). A full list of the

locally developed therapeutic context concepts supporting solid tu-

mor, hematologic, and lymphoid malignancies can be found in the

SOP (see Supplementary Material). A TCA can model multiple inter-

ventional arms, multimodality treatments (eg, surgery and radiation

1058 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 7

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocaa066#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocaa066#supplementary-data


therapy), and multidrug treatments. We have adopted the following

nomenclature format for TCAs: “Clinical Trial Identifier” AND

“Therapies” (eg, NCT03945721: Niraparib AND Radiation

Therapy) (Figure 2).

Treatment arm assertions

Treatment arm assertions (TAAs) establish the relationship between

the eligibility criteria assertions (ECAs) and the treatment context

assertions (TCAs) in a many-to-many model. Within a single trial,

multiple trial arms or subcohorts can be modeled, each with these

properties; that is, a single clinical trial can be broken down into

multiple individual TCAs, each corresponding to a separate treat-

ment arm. However, each TAA is a unique combination of individ-

ual ECA and TCA, respectively. For consistency, we have adopted

the following nomenclature format for TAAs: “ECA Name” AND

“TCA Name” (eg, “NCT03945721: Breast Cancer: Selected Alter-

ations” and “Niraparib AND Radiation Therapy”) (Figure 2).

Terminologies
For consistent curation and downstream mapping to routinely used

clinical and genomics terminologies, several external and internal

terminologies have been integrated and harmonized for use in the

curation information system.

Disease terminology

The multiple-parent disease terminology is derived from the Na-

tional Cancer Institute Thesaurus (NCIt)25 and the WHO diagnostic

classifications for hematologic disorders.26 Each disease is mapped

to multiple synonyms and concept identifiers in several commonly

used disease hierarchies (eg, OncoTree27), ontologies (eg, NCIt25),

and nomenclatures (eg, SNOMEDCT,26 UMLS,28 ICD-9/10,29 etc.).

Biomarker terminology

The biomarker terminology supports multiple biomarker classes

(Table 1). All genomic biomarker criteria are annotated using the

RefSeq gene database (GRCh37, annotation release 10530) with var-

iant names derived from the Human Genome Variation Society

(HGVS)31 and gene names from the Human Genome Organization

(HUGO)32 and HUGO Gene Nomenclature Committee (HGNC).33

Cytogenetic biomarkers are represented using the International Sys-

tem for Human Cytogenetic Nomenclature (ISCN)31 grammar and,

when appropriate, mapped to specific gene fusion events. Variants

are mapped to codons as well as exons, while translocations are

mapped to fusions for seamless and accurate translation of informa-

tion. Each genomic biomarker concept is programmatically mapped

via proprietary technology to all known gene synonyms and can be

manually mapped to colloquial terms, common clinically-used

terms, and/or relevant protein concepts (eg, the ERBB2 overexpres-

Figure 1. Clinical trial model and workflow schematic. This high-level schematic describes the curation model components and workflow. Clinical trial documents

are pulled into the clinical trial dataset from publicly available sources. Using the web-based interface, a curator creates structured assertions for trials. This is

done using the terminologies and concept groups available in the data model. A single clinical trial can be broken down into multiple individual treatment cohort

assertions (TCAs), each corresponding to a separate treatment arm. Once the assertions are created, they undergo a secondary manual review before being pub-

lished into the clinical trial knowledge base. This knowledge base is utilized for clinical trial matching, display on My Cancer Genome website, as well as for multi-

ple downstream applications.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 7 1059



T
a
b

le
1
.
C

o
m

p
o

n
e

n
ts

o
f

cl
in

ic
a

l
tr

ia
l
e

li
g

ib
il
it

y
cr

it
e

ri
a

a
ss

e
rt

io
n

m
o

d
e

l

C
o
n
ce

p
ts

D
ef

in
it

io
n
s

E
x
a
m

p
le

s

C
o
re

m
o
d
el

co
n
ce

p
ts

E
li
g
ib

il
it

y
cr

it
er

ia

a
ss

er
ti

o
n

(E
C

A
)

S
tr

u
ct

u
re

d
d
ia

g
n
o
si

s
w

it
h

o
r

w
it

h
o
u
t

a
ss

o
ci

a
te

d
b
io

m
a
rk

er
cr

it
er

ia
a
s

d
es

cr
ib

ed

in
th

e
tr

ia
l
d
o
cu

m
en

t

B
re

a
st

C
a
n
ce

r:
[E

R
N

eg
a
ti

v
e

A
N

D
P
R

N
eg

a
ti

v
e

A
N

D
H

E
R

2
N

eg
a
ti

v
e]

A
N

D

[N
O

N
E

:
T

P
5
3

G
er

m
li
n
e

M
u
ta

ti
o
n
s]

T
re

a
tm

en
t

co
n
te

x
t

a
ss

er
ti

o
n

(T
C

A
)

C
o
m

b
in

a
ti

o
n

o
f

th
e

in
te

n
ti

o
n

o
f

tr
ea

tm
en

t
o
r

se
q
u
en

ci
n
g

o
f

tr
ea

tm
en

t
a
n
d

th
e

tr
ea

tm
en

t
a
g
en

ts
th

em
se

lv
es

a
s

d
es

cr
ib

ed
in

th
e

tr
ia

l
d
o
cu

m
en

t

[N
ir

a
p
a
ri

b
A

N
D

R
a
d
ia

ti
o
n

T
h
er

a
p
y
]

A
N

D
[A

d
ju

v
a
n
t

S
et

ti
n
g
]

T
re

a
tm

en
t

a
rm

a
ss

er
ti

o
n

(T
A

A
)

L
in

k
in

g
th

e
p
a
ti

en
t

p
o
p
u
la

ti
o
n

(d
ia

g
n
o
si

s
a
n
d

b
io

m
a
rk

er
cr

it
er

ia
)

a
n
d

tr
ea

tm
en

t

a
rm

s
o
u
tl

in
ed

in
cl

in
ic

a
l
tr

ia
l
d
o
cu

m
en

t.
A

ch
ie

v
ed

v
ia

li
n
k
in

g
th

e
E

C
A

&
T

C
A

“
B

re
a
st

C
a
n
ce

r:
[E

R
N

eg
a
ti

v
e

A
N

D
P
R

N
eg

a
ti

v
e

A
N

D
H

E
R

2
N

eg
a
ti

v
e]

A
N

D

[N
O

N
E

T
P
5
3

S
o
m

a
ti

c
o
r

G
er

m
li
n
e

M
u
ta

ti
o
n
s]

”
&

“
[N

ir
a
p
a
ri

b
A

N
D

R
a
d
ia

ti
o
n

T
h
er

a
p
y
]

A
N

D
[A

d
ju

v
a
n
t

S
et

ti
n
g
]”

T
er

m
in

o
lo

g
ie

s
D

ia
g
n
o
si

s
S
o
li
d

tu
m

o
r,

h
em

a
to

lo
g
ic

o
r

ly
m

p
h
o
id

m
a
li
g
n
a
n
cy

.
T

h
e

m
a
p
p
in

g
st

ru
ct

u
re

m
ea

n
s

th
a
t

m
u
lt

ip
le

d
is

ea
se

sy
n
o
n
y
m

s
w

il
l
m

a
tc

h
to

th
e

sa
m

e
d
is

ea
se

,
ie

,

h
ep

a
ti

c
ca

n
ce

r,
h
ep

a
ti

c
ca

rc
in

o
m

a
,
ca

n
ce

r
o
f

th
e

li
v
er

,
li
v
er

ca
n
ce

r,
a
n
d

h
ep

a
to

ce
ll
u
la

r
ca

rc
in

o
m

a
w

o
u
ld

a
ll

m
a
p

to
th

e
co

n
ce

p
t

o
f

h
ep

a
to

ce
ll
u
la

r

ca
rc

in
o
m

a

b
re

a
st

ca
rc

in
o
m

a
,
h
ea

d
a
n
d

n
ec

k
sq

u
a
m

o
u
s

ce
ll

ca
rc

in
o
m

a
,
a
cu

te
m

y
el

o
id

le
u
k
em

ia

B
io

m
a
rk

er
In

cl
u
d
es

b
io

m
a
rk

er
s

re
la

te
d

to
g
en

e
v
a
ri

a
n
ts

(m
u
ta

ti
o
n
,
d
el

et
io

n
,
fu

si
o
n
,

a
m

p
li
fi
ca

ti
o
n
,
lo

ss
);

p
ro

te
in

v
a
ri

a
n
ts

(e
x
p
re

ss
io

n
,
o
v
er

-e
x
p
re

ss
io

n
,
d
efi

ci
en

t

ex
p
re

ss
io

n
);

cy
to

g
en

et
ic

/c
h
ro

m
o
so

m
a
l
a
b
n
o
rm

a
li
ti

es
(d

u
p
li
ca

ti
o
n
,
d
el

et
io

n
,

m
o
n
o
so

m
y
,
tr

is
o
m

y
,
k
a
ry

o
ty

p
e,

tr
a
n
sl

o
ca

ti
o
n
s,

in
v
er

si
o
n
s)

;
v
ir

a
l
m

a
rk

er
s

(E
B

V
,
H

P
V

,
K

S
H

V
,
M

C
P
y
V

,
et

c.
),

se
ro

lo
g
ic

a
l
(H

L
A

,
H

L
B

m
a
rk

er
s)

,

ep
ig

en
et

ic
m

a
rk

er
s

(m
et

h
y
la

ti
o
n

st
a
tu

s)
,
sp

ec
ia

lt
y

m
a
rk

er
s

(m
ic

ro
sa

te
ll
it

e

in
st

a
b
il
it

y
,
tu

m
o
r

m
u
ta

ti
o
n
,
M

M
R

st
a
tu

s)

M
Y

C
a
m

p
li
fi
ca

ti
o
n
,
M

S
H

2
lo

ss
,
E

R
B

B
2

o
v
er

ex
p
re

ss
io

n
,
m

o
n
o
so

m
y

7
,
co

m
p
le

x

k
a
ry

o
ty

p
e,

t(
9
;
1
1
)(

p
2
1
;
q
2
3
),

K
M

T
2
A

F
u
si

o
n
,
d
u
p
(1

)(
q
1
0
q
te

r)
,
E

B
V

p
o
si

ti
v
e,

H
L

A
-A

*
0
2
:0

5
,
M

G
M

T
p
ro

m
o
te

r
m

et
h
y
la

ti
o
n

p
o
si

ti
v
e,

M
S
I-

H
ig

h
,

T
M

B
-L

o
w

,
d
M

M
R

T
h
er

a
p
ie

s
A

n
y

th
er

a
p
eu

ti
c

a
p
p
ro

a
ch

u
se

d
in

cl
in

ic
a
l
tr

ia
l
d
o
cu

m
en

t
a
n
d

d
efi

n
ed

o
n

N
C

It

in
cl

u
d
in

g
,
b
u
t

n
o
t

li
m

it
ed

to
,
ta

rg
et

ed
th

er
a
p
y
,
im

m
u
n
o
th

er
a
p
y
,
h
o
rm

o
n
a
l

th
er

a
p
y
,
cy

to
to

x
ic

a
g
en

ts
,
m

o
n
o
cl

o
n
a
l
a
n
ti

b
o
d
ie

s,
a
n
ti

b
o
d
y
-d

ru
g

co
n
ju

g
a
te

s,

v
a
cc

in
e

th
er

a
p
y
,
a
n
d

h
em

a
to

p
o
ie

ti
c

a
n
d

b
o
n
e

m
a
rr

o
w

tr
a
n
sp

la
n
ta

ti
o
n

(s
u
rg

ic
a
l
in

te
rv

en
ti

o
n
s

a
n
d

ra
d
ia

ti
o
n

th
er

a
p
y

su
b
ty

p
es

a
re

ex
cl

u
d
ed

)

o
si

m
er

ti
n
ib

,
la

ro
tr

ec
ti

n
ib

,
ta

m
o
x
if

en
,
p
em

b
ro

li
zu

m
a
b
,
o
x
a
li
p
la

ti
n
,
tr

a
st

u
zu

m
a
b
,

b
re

n
tu

x
im

a
b

v
ed

o
ti

n
,
L

u
-1

7
7
-D

O
T

A
-T

A
T

E
,
C

A
R

T
-c

el
l
th

er
a
p
y

T
h
er

a
p
eu

ti
c

co
n
te

x
t

D
es

cr
ib

es
th

e
cl

in
ic

a
l
co

n
te

x
t

fo
r

tr
ea

tm
en

t
a
s

w
o
u
ld

b
e

re
le

v
a
n
t

to
a

p
a
ti

en
t’

s

d
is

ea
se

st
a
te

N
eo

a
d
ju

v
a
n
t,

a
d
ju

v
a
n
t,

m
et

a
st

a
ti

c,
tr

ea
tm

en
t-

n
a
ı̈v

e,
re

la
p
se

,
re

fr
a
ct

o
ry

,
et

c.

C
o
n
ce

p
t

g
ro

u
p
s

D
is

ea
se

g
ro

u
p
s

A
m

ea
n
in

g
fu

l
g
ro

u
p
in

g
o
f

d
ia

g
n
o
se

s
u
su

a
ll
y

b
a
se

d
o
n

o
rg

a
n

sy
st

em
s,

si
m

il
a
ri

ty

o
f

d
is

ea
se

b
io

lo
g
y

o
r

o
th

er
co

m
m

o
n
a
li
ti

es

U
ri

n
o
g
en

it
a
l
C

a
n
ce

r
g
ro

u
p
:
E

x
tr

a
g
o
n
a
d
a
l
E

m
b
ry

o
n
a
l
C

a
rc

in
o
m

a
,
R

en
a
l
P
el

v
is

a
n
d

U
re

te
r

C
a
rc

in
o
m

a
,
U

ro
th

el
ia

l
C

a
rc

in
o
m

a
,
U

te
ri

n
e

C
o
rp

u
s

N
eu

ro
en

d
o
cr

in
e

N
eo

p
la

sm
,
B

la
d
d
er

S
m

a
ll

C
el

l
N

eu
ro

en
d
o
cr

in
e

C
a
rc

in
o
m

a
,

C
er

v
ix

C
a
rc

in
o
m

a
,
M

a
li
g
n
a
n
t

B
la

d
d
er

N
eo

p
la

sm
,
M

a
li
g
n
a
n
t

O
v
a
ri

a
n

G
er

m

C
el

l
T

u
m

o
r,

M
a
li
g
n
a
n
t

R
en

a
l
P
el

v
is

N
eo

p
la

sm
,
M

a
li
g
n
a
n
t

R
ep

ro
d
u
ct

iv
e

S
y
st

em
N

eo
p
la

sm
,
M

a
li
g
n
a
n
t

U
re

te
r

N
eo

p
la

sm
,
M

a
li
g
n
a
n
t

U
re

th
ra

l

N
eo

p
la

sm
,
O

v
a
ri

a
n

E
m

b
ry

o
n
a
l
C

a
rc

in
o
m

a
,
T

es
ti

cu
la

r
E

m
b
ry

o
n
a
l

C
a
rc

in
o
m

a
,
T

ra
n
si

ti
o
n
a
l
C

el
l
C

a
rc

in
o
m

a
,
U

re
te

r
S
m

a
ll

C
el

l
C

a
rc

in
o
m

a

B
io

m
a
rk

er

g
ro

u
p
s

A
g
ro

u
p
in

g
o
f

b
io

m
a
rk

er
co

n
ce

p
ts

u
su

a
ll
y

to
a
cc

o
m

m
o
d
a
te

b
io

m
a
rk

er
s

th
a
t

fr
eq

u
en

tl
y

a
p
p
ea

r
to

g
et

h
er

in
cl

in
ic

a
l
tr

ia
ls

,
o
r

a
re

re
la

te
d

v
ia

a
si

n
g
le

p
a
th

w
a
y
,
o
r

a
re

u
su

a
ll
y

a
lt

er
ed

in
a

p
a
rt

ic
u
la

r
d
is

ea
se

.
C

a
n

a
ls

o
b
e

u
se

d
to

a
cc

o
m

m
o
d
a
te

N
C

C
N

-a
p
p
ro

v
ed

ri
sk

b
io

m
a
rk

er
g
ro

u
p
s

fo
r

p
ro

g
n
o
st

ic
ri

sk
o
r

d
ia

g
n
o
st

ic
cl

a
ss

ifi
ca

ti
o
n

1
1
q
2
3

a
b
n
o
rm

a
li
ti

es
:
d
el

(1
1
)(

q
1
0
),

K
M

T
2
A

-A
F
F
1

F
u
si

o
n
,
K

M
T

2
A

F
u
si

o
n
,

K
M

T
2
A

-M
L

L
T

3
F
u
si

o
n
,
in

v
(1

1
)(

p
1
5
q
2
3
),

K
M

T
2
A

-E
L

L
F
u
si

o
n
,
K

M
T

2
A

-

M
L

L
T

1
0

F
u
si

o
n
,
K

M
T

2
A

-M
L

L
T

1
F
u
si

o
n
,
K

M
T

2
A

-M
L

L
T

4
F
u
si

o
n
,
t(

1
0
;

1
1
)(

p
1
2
;
q
2
3
),

t(
1
1
;
1
9
)(

q
2
3
;
p
1
3
.1

),
t(

1
1
;
1
9
)(

q
2
3
;
p
1
3
.3

),
t(

4
;
1
1
)(

q
2
1
;

q
2
3
),

t(
6
;
1
1
)(

q
2
7
;
q
2
3
),

t(
9
;
1
1
)(

p
2
1
;
q
2
3
),

T
ri

so
m

y
1
1

D
ru

g
g
ro

u
p
s

A
g
ro

u
p
in

g
o
f

d
ru

g
s

b
a
se

d
o
n

d
ru

g
ca

te
g
o
ri

es
/c

la
ss

es
th

a
t

h
a
v
e

si
m

il
a
r

m
ec

h
a
n
is

m
o
f

a
ct

io
n

o
r

u
su

a
ll
y

a
p
p
ea

r
to

g
et

h
er

in
tr

ia
l
d
o
cu

m
en

ts
.
C

a
n

a
cc

o
m

m
o
d
a
te

d
ru

g
g
ro

u
p
s

th
a
t

ca
n
n
o
t

b
e

d
ir

ec
tl

y
d
er

iv
ed

fr
o
m

th
e

d
ru

g

o
n
to

lo
g
y

in
N

C
It

F
D

A
a
p
p
ro

v
ed

a
ro

m
a
ta

se
in

h
ib

it
o
rs

:
ex

em
es

ta
n
e,

a
n
a
st

ro
zo

le
,
le

tr
o
zo

le
.

1060 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 7



sion concept maps to HER2 Positive, HER2þ, Her2-overexpressing,

etc.) to facilitate document curation decision support algorithms.

Protein biomarkers map to protein expression, overexpression,

equivocal, deficient, or no expression. We added certain biomarker

concepts as a parser-override term since these cannot be modeled in

our system yet (ie, viral, serological, and epigenetic markers).

Drug terminology

Systemic therapy interventions are modeled at the level of drug

name. Specifications of drug dose, route, or frequency are not mod-

eled or curated at this time. The multiparent drug ontology from

NCIt25 is used as the primary drug terminology given the breadth

and depth of investigational drug concepts used in humans com-

pared to other terminologies which focus on drugs approved by reg-

ulatory agencies (eg, RxNorm34). The import includes drug

definitions, drug parents, synonyms, mapping codes, gene targets

(where applicable) and spans individual drugs, drug classes, and

drug regimens. The NCI-metathesaurus35 enables mapping the NCIt

drug concepts to other drug terminologies (SNOMED CT,27 Drug

Bank36) and nomenclature systems such as Veterans Health Admin-

istration National Drug File (VANDF).37

The NCIt drug concepts include extensive synonyms essential for

identifying drugs as they transition names through the drug develop-

ment process towards regulatory approval. While the “preferred

term” is used as the display name, the extensive synonyms facilitate

consistent curation of drug interventions throughout the drug devel-

opment life cycle.

Concept groups
A key feature of the clinical trial curation model are the concept

groups that allow for grouping of multiple concepts using logical

operators of “Any,” “All,” and “None” to create computable and

reusable sets of terms. Concept groups are used extensively to create

groups of co-occurring biomarkers that commonly appear in clinical

trial documents (eg, EGFR sensitizing mutations, 11q23 abnormali-

ties, BRCA1/2 frameshift/nonsense mutations). Both these terms en-

compass a substantial number of mutations. It would be

cumbersome to add these qualifying mutations individually every

time they appear in trials. The concept grouping feature allows the

user to create reusable groups that are saved in the system and can

be reused multiple times, improving annotation consistency and effi-

ciency. It can also be used to create disease groups (eg, urinogenital

cancers) and drug groups (eg, FDA-approved aromatase inhibitors).

Curation methodology
As described in Figure 1, clinical trial documents are pulled into the

curation information system from various publicly available sources.

At the highest level, the manual curation workflow consists of 1) the

creation of manually generated assertions, 2) a quality assurance

process, and 3) publication.

Data loading process

In a nightly refresh, clinical trial documents are loaded into the in-

formation system from multiple public sources.21,23,24 Clinical trials

with any of the following key words: cancer, tumor, neuroblastoma,

melanoma, leukemia, sarcoma, lymphoma, carcinoma, or malignan-

cies are loaded during this refresh. There are no restrictions based

on trial phase or recruiting status. During this loading process, docu-

ments are automatically parsed for biomarker concepts and diseases

that would qualify as cancer by leveraging the terminology syno-

nyms. Trial metadata (trial title, recruiting status, phase, locations,

trial sponsor, last change date, etc.) are parsed automatically from

Figure 2. Core model concepts: framework and instance. The figure shows the components of the assertions defined as core model concepts. The top section

indicates the framework for eligibility criteria assertion, therapeutic context assertion, and treatment arm assertion; and the bottom section presents a real-world

trial example.
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structured fields in the clinical trial documents for inclusion in the

trial-level data model. During each import, the trial document

loader completes a word-by-word check of the trial title, trial arm,

and eligibility criteria information currently stored in the informa-

tion system against the current document on ClinicalTrials.gov and

imports the most recent document if any of these fields have

changed. New documents are stored in a series of versioned docu-

ments, and the amended trials are automatically flagged for re-

review within the user interface.

Curation workflow

Trials are manually annotated by curators using a cloud-based cura-

tion interface. To standardize best curation practices, we have devel-

oped a detailed SOP (see Supplementary Material). Primarily, the

curator creates assertions for each trial which are manually reviewed

by a secondary curator before they are published and used for down-

stream applications. To support the secondary review of curation

and ongoing auditing, the system requires the curator to highlight

relevant portions of text in the clinical trial document and attach

these to the respective manual annotation.

When a trial document uses ambiguous language in the bio-

marker eligibility criteria, our curation philosophy is to model the

eligibility criteria to be more inclusive and less restrictive for a po-

tential patient population. Trial documents often contain vague lan-

guage about permissible genomic criteria—this is sometimes to

maintain the intellectual property of the protocol and other times to

provide room for exceptions at the discretion of the trial investiga-

tor. By erring towards inclusivity, we ensure these trials will be

returned in downstream search and trial-matching use cases.

Evaluation of model expressivity. All biomarker eligibility criteria

were curated. Genomic alteration, protein expression, and cytoge-

netic terms have structured components and standard terminologies

underlying the concepts. Other biomarkers were modeled as local

terminologies with free text string concepts. This achieved the goal

of comprehensive biomarker eligibility criteria curation and demon-

strates remaining opportunity to further extend the expressivity of

the structured biomarker terminology in the future.

Data visualization & dissemination. Our model supports visualiza-

tion and dissemination of the curated clinical trial data both at the indi-

vidual trial level and in aggregated form. This is done using standard

python data science tools, including the panda library for data aggrega-

tion and the bokeh library for data visualization. Aggregated data is vi-

sualized to show treatment trends in by disease, drug, or biomarker.

The individual assertions and select aggregate analysis related to trials

have been disseminated for public use on the MCG website.22

RESULTS

Clinical trial curation content
Figure 3A summarizes the outcomes of the curation workflow. Be-

tween 11/15/2015 and 10/30/2019, 9855 trials were curated and

8407 eligibility criteria assertions, 7656 treatment context asser-

tions, and 9762 treatment arm assertions were created for these eli-

gible trials. The full clinical trial document and its detailed curation

for a set of 5 clinical trials in JSON format can be found in the Sup-

plementary Material. Figure 3B shows the usage of various bio-

marker classes encountered in clinical trials. Although genomic

Figure 3. Clinical trial curation workflow and results. The figure above shows (A) a broad overview of the curation workflow. There are currently 67 479 cancer-re-

lated clinical trials loaded into the system (as of 10/30/2019). Of these, 15 578 were found to have a status of recruiting or not-yet-recruiting. Of these, 9855 trials

were automatically flagged for manual review as possibly containing biomarker key words. According to the curation SOP, of the 9855 manually reviewed clinical

trials, 5045 met criteria for manual curation of disease-biomarker eligibility criteria and treatment context. A total of 4810 trials were considered out of scope

based on the curation SOP. The trials that had a biomarker-driven eligibility criterion were curated. To date, we have manually curated and created structured

annotations for 5045 clinical trials. A detailed copy of the SOP is provided in the Supplementary Material. Trials included for manual curation have a recruiting

status of “Recruiting” or “Not yet recruiting,” that are (i) interventional (ii) directed toward treating cancer (not for treating side-effects or toxicities caused by can-

cer treatments), and (iii) contain biomarker-driven eligibility criteria (patient’s tumor is required to have a specific biomarker to enroll on the trial). (B) the different

biomarker type supported by the system for clinical trial curation. Genomic biomarker makes up the largest category followed by protein, cytogenetic, viral, sero-

logical, and epigenetic-related biomarkers. The numbers in parentheses on the X-axis indicate the actual number of defined concepts in each category, while the

instances of cumulative use across clinical trial curations are shown on the y-axis. The curated trial dataset (n¼5045) was used to calculate these numbers.
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biomarkers made up the majority of biomarkers curated in clinical

trials, biomarkers related to protein expression, cytogenetic altera-

tions, serological markers, viral particles, and epigenetic regulation

were frequently encountered and modeled. Table 2 shows the num-

ber and frequency of usage of various concept groups as well as

germline and parser-override biomarkers.

Dissemination of content on My cancer genome

All trial assertion data is available to view publicly on the MCG

website.22 The website features an improved trial search feature us-

ing multifaceted filtering. Trials can be filtered based on diagnosis,

biomarkers, phase, recruiting status, and drug categories using dy-

namic sorting. Each clinical trial page contains a trial description,

recruiting status, and phase information imported from the clinical

trial source document along with the respective manually curated

assertions. The curated ECAs and TCAs are displayed as logical

statements with dynamic content that allows the user to quickly nav-

igate to content on related entities (Figure 4).22

Aggregated analysis of the curated data is also visualized on the

website.22 This includes a series of dynamic bar charts counting the

number of open and closed clinical trials oriented to disease, bio-

marker, or investigational drug. This type of analysis allows users to

understand drugs being studied across multiple cancer types and a

spectrum of biomarker criteria. For example, as of April 2019, there

were 60 clinical trials exploring the use of olaparib across 10 tumor

types and spanning dozens of biomarkers (Figure 5).

Landscape analysis of clinical trials

Querying our structured knowledge base, we performed a deeper

landscape analysis across all curated cancer clinical trials. The top

diseases, biomarker alterations, biomarker alteration types, and

drugs featured across all trials are shown in Figures 6A, B, and C,

respectively (curated between 11/2015 and 04/2019). Breast can-

cer, lung cancer, and adult acute myeloid leukemia had the highest

number of curated clinical trials, owing to the rapid discovery of

biomarker-driven therapies in these diseases. Since a vast majority

of phase I trials allow patients with any advanced solid malignant

tumor, there were a substantial number of trials (n¼472) anno-

tated as solid cancer trials. There were 5 diseases (pancreatic,

Table 2. Number of entities for concept groups and germline bio-

markers with usage data

Number of

entities

Cumulative

Usage in

Unique Trials

Biomarker groups 355 2404

Drug groups 257 277

Disease groups 3 8

Germline biomarkers 104 250

Figure 4. Screenshot of display of curated clinical trial assertions. This screenshot from the My Cancer Genome website shows the grouping of eligibility criteria

assertions (enclosed by yellow boxes) with the treatment context assertions (enclosed by red boxes). Accessed 2/2/2020.
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brain, hepatic, prostate, and sarcomas) with fewer than 100 cu-

rated trials. This may represent a lack of known biomarkers associ-

ated with the disease, fewer active trials for rare cancers, or

availability of standard of care options. Not surprisingly, bio-

markers related to breast cancer (ERBB2 loss, ER/PR/HER2 ex-

pression) and lung cancer (EGFR alterations) clinical trials

Figure 5. Screenshot of gene and disease inclusion criteria for open trials investigating olaparib. This screenshot from the My Cancer Genome website shows the

grouping of trials by disease and biomarker eligibility criteria that are investigating the use of olaparib. The total number of trials associated with each disease is

shown on the data labels. The breakdown of the trials for each disease category can be viewed by hovering over the area of interest at the relevant My Cancer Ge-

nome web page (https://www.mycancergenome.org/content/drugs/olaparib/). The curated trial dataset (n¼5045) was used to calculate these numbers. Accessed

06/26/2019.

Figure 6. Landscape analysis of all cancer trials shows the (A) top diseases (B) top biomarker alterations, and (C) top drugs in our curated knowledge base. The

curated trial dataset (n¼ 5045) was used to calculate these numbers.
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constituted the top biomarkers alterations (Figure 6B). Finally,

Figure 6C shows the most widely used drugs across all clinical tri-

als: cyclophosphamide, pembrolizumab, and trastuzumab. It is

noteworthy that although trials used in the analysis were

biomarker-driven trials, targeted therapy was not the top drug cat-

egory given that they are often combined with or compared to cy-

totoxic therapies.

DISCUSSION

Because clinical trial accrual remains a consistent barrier to preci-

sion oncology, it is important to develop supportive infrastructure

to expedite patient-matching to clinical trials. In this article, we de-

scribe an extensible clinical trial data-model, curation information

system, and standard operating procedure for manually generating

assertions of clinical trial biomarker eligibility criteria, treatment

context, and treatment arms. Using this approach, we have created

assertions for over 5000 biomarker-driven oncology trials and pre-

sent an analysis of the treatment trends and biomarker profiles.

There have been several other data models for structuring clini-

cal trial data with varying scope and expressivity. In a prior review

of the existing models,38 a key differentiator is our model’s depth of

expressivity of biomarkers and scope of trial curation. Unlike other

models that only leverage genomic and protein biomarkers, our

model is capable of representing cytogenetic biomarkers. As a result,

13% of curated clinical trials in our knowledge base include cytoge-

netic eligibility criteria (Figure 3B). Cytogenetic biomarkers are

widely used for diagnostic and prognostic evaluations in hemato-

logic malignancies, highlighting their importance and the need to in-

clude these as high-value biomarkers in data-model design. Protein

and cytogenetics-related biomarkers were used to curate 25% of the

trials in our dataset, highlighting the importance of designing mod-

els that can accurately capture these biomarker classes. Designing

models with sufficient expressivity to handle these classes of bio-

markers are crucial for broader curation of biomarker criteria in

trial documents and improving the precision of clinical trial-

matching applications. Although our current model does not sup-

port structured representation of viral, serologic, or epigenetic

markers, we have circumvented this limitation by creating parser-

override biomarkers which account for less than 2.5% of all bio-

marker concepts and are used in curation of less than 1% of trials

(Figure 3B). This represents a potential limitation of our model ex-

pressivity but allows for complete curation of biomarker eligibility

criteria; these curations can be evaluated and used to inform priori-

ties for model extension to support real-world applications.

Further, we have extended our model to support the curation of

treatment context assertions and treatment arm assertions in addi-

tion to biomarker eligibility criteria assertions. This allows us to re-

cord the treatment setting and investigational drugs in a structured

form—allowing for deeper and more enriched treatment-level data

as visualized on the MCG website.22 Adding structured assertions

for drugs and correlating this with biomarker eligibility criteria rep-

resents a nontrivial effort, especially in multi-arm or umbrella stud-

ies. Our curation for treatment arm assertions gives us a unique

understanding of the depth of eligibility criteria and allows us to

perform drug-biomarker analyses in clinical trials, which may be

otherwise hard to compute. Finally, this supports aggregate analyses

to illuminate drug-biomarker-disease associations and to process

complex data that would otherwise remain cloaked (eg, imatinib is

being investigated in 18 clinical trials spanning 7 diagnoses and 6

biomarkers). One potential limitation to our model is the adopted

curation scope for therapies; for example, we curated drugs or bio-

logics at a more granular level than radiation or surgical interven-

tions. This choice of model priority was guided by our overarching

goal of advancing precision oncology.

An important contribution of this work is the deep knowledge

that has been added to the public domain. All of the data generated

through the model—curated clinical trial eligibility criteria asser-

tions, therapeutic context assertions, drug usage data, biomarker

landscape—are available on the MCG website22 for public use. The

website also has several visualizations that include aggregated analy-

sis on individual biomarkers, drugs, trials, etc. that can be down-

loaded instantly (no login needed). The figures presented in the

paper are derived from the dataset created using the described

model. However, not all of these figures are available on the MCG

website.22 An application programming interface (API) for searching

and filtering through the trial dataset allows us to do these addi-

tional analytics on the dataset. APIs are available via GenomOncol-

ogy39 for deep use of this dataset, making the public/private nature

of the model a potential limitation.

This knowledge base could also be used as a training and valida-

tion set for automated or semiautomated methods for extracting

clinical trial data from clinical trial documents. It is to be noted that

full access to the dataset is only possible through a licensed API at

present. There is, however, an ongoing need for national and global

efforts to standardize and structure publicly available clinical trial

content for multiple downstream uses.

CONCLUSIONS

Precision oncology is a rapidly evolving field, and the ability to pro-

cess large amount of clinical trial data and derive meaningful

insights can spur interesting research and open potentially new ave-

nues for patients as well as researchers. Clinical trial data processing

and analysis requires consistent, structured, and detailed biomarker

eligibility criteria nomenclature in trial documents that allow stake-

holders the ability to query and assess trial criteria computationally.

This article outlines our model for curation of precision oncology

clinical trials and dissemination of this structured trial information

via the MCG website.1 This work is part of a larger effort to im-

prove trial accrual and advance the forefront of precision oncology.
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