Skip to main content
. 2020 Jul 27;27(9):1364–1373. doi: 10.1093/jamia/ocaa109

Table 4.

Concept normalization performance of existing NLP pipelines stand-alone and combined with RECEEM

Methods Precision Recall F1
CLAMP 0.477(597/1251) 0.205(597/2906) 0.287
0.449-0.505 0.191-0.22 0.269-0.305
CLAMP+RECEEM 0.687(1693/2465) 0.583(1693/2906) 0.630a
0.661-0.712 0.555-0.609 0.605-0.655
cTAKES 0.286(636/2226) 0.219(636/2906) 0.248
0.266-0.305 0.204-0.233 0.232-0.264
cTAKES + RECEEM 0.469(1312/2800) 0.451(1312/2906) 0.460a
0.444-0.492 0.426-0.477 0.436-0.484

CLAMP: Clinical Language Annotation, Modeling, and Processing; cTAKES: clinical Text Analysis and Knowledge Extraction System; RECEEM: reconstruct concepts from coordinated elliptical expressions in medical text.

a

The best performing result in the respective task.