

Review

Mapping scientific landscapes in UMLS research: a scientometric review

Meen Chul Kim (),¹ Seojin Nam,² Fei Wang,³ and Yongjun Zhu²

¹Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA, ²Department of Library and Information Science, Sungkyunkwan University, Seoul, Republic of Korea, and ³Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, New York, USA

*Corresponding Author: Yongjun Zhu, PhD, Department of Library and Information Science, Sungkyunkwan University, 25-2 Sungkyunkwan-ro, Jongno-gu, Seoul 03063, Republic of Korea (yzhu@skku.edu)

Received 12 February 2020; Revised 10 May 2020; Editorial Decision 11 April 2020; Accepted 25 May 2020

ABSTRACT

Objective: The Unified Medical Language System (UMLS) is 1 of the most successful, collaborative efforts of terminology resource development in biomedicine. The present study aims to 1) survey historical footprints, emerging technologies, and the existing challenges in the use of UMLS resources and tools, and 2) present potential future directions.

Materials and Methods: We collected 10 469 bibliographic records published between 1986 and 2019, using a Web of Science database. graph analysis, data visualization, and text mining to analyze domain-level citations, subject categories, keyword co-occurrence and bursts, document co-citation networks, and landmark papers.

Results: The findings show that the development of UMLS resources and tools have been led by interdisciplinary collaboration among medicine, biology, and computer science. Efforts encompassing multiple disciplines, such as medical informatics, biochemical sciences, and genetics, were the driving forces behind the domain's growth. The following topics were found to be the dominant research themes from the early phases to midphases: 1) development and extension of ontologies and 2) enhancing the integrity and accessibility of these resources. Knowledge discovery using machine learning and natural language processing and applications in broader contexts such as drug safety surveillance have recently been receiving increasing attention.

Discussion: Our analysis confirms that while reaching its scientific maturity, UMLS research aims to boundaryspan to more variety in the biomedical context. We also made some recommendations for editorship and authorship in the domain.

Conclusion: The present study provides a systematic approach to map the intellectual growth of science, as well as a self-explanatory bibliometric profile of the published UMLS literature. It also suggests potential future directions. Using the findings of this study, the scientific community can better align the studies within the emerging agenda and current challenges.

Key words: unified medical language system, science mapping, visual analytics, text mining, content analysis

INTRODUCTION

The Unified Medical Language System (UMLS) is 1 of the most impactful multidisciplinary projects initiated to create a set of interoperable terminologies and applications in biomedicine.¹ Developed and maintained by the National Library of Medicine, UMLS aims to capture a variety of medical entities and relationships that reference the same concepts, but are often expressed in very idiosyncratic

© The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/ 1612 open_access/funder_policies/chorus/standard_publication_model)

1613

forms. It also facilitates the interoperation between different medical systems with reduced barriers. Finally, it serves as a compendium of knowledge bases in biomedicine as well as comprehensive thesaurus and ontology. Over the past 3 decades, there have been considerable collaborative, multisite efforts for designing, developing, and tooling these resources.

Facing the monumental 30-year anniversary and scientific maturity of UMLS resources, tools, and applications, it is important to highlight current uses and impacts as well as technical milestones of UMLS. Based on a thorough survey of where it has been, where it is, and where it may go, we can properly identify future directions as well as better position our work with respect to emerging trends and current challenges. As the volume of literature in UMLS research has enormously increased, this study aims to systematically conduct a holistic review of the domain's intellectual landscapes. We explore the epistemological characteristics, historical developments, emerging technologies, and current challenges of the domain. The diffusion of knowledge is also investigated to understand the intellectual growth in much broader contexts. We employ a scientometrics review²⁻⁶ using a set of quantitative and visual analytics. Compared to the conventional reviews, this approach offers the following advantages: 1) a more diverse range of bibliographic entities can be analyzed; 2) this type of domain analysis can be conducted as frequently as needed without prior experience in a target domain; and 3) citation analysis used in this work provides topically relevant, influential references which, otherwise, can be chosen less objectively. The following research questions guide the remainder of the present study:

- RQ1: What are the intellectual driving forces of UMLS resources and projects?
- RQ2: What thematic patterns characterize the domain's historic footprint?
- RQ3: What are the emerging tools, applications, and current challenges?

MATERIALS AND METHODS

Data collection

We collected topically relevant articles to UMLS from the Web of Science (WoS). The WoS was chosen as our primary data source because it is known as an authoritative source of scientific literature, and our study leveraged scientometrics tool kits that use bibliographic records retrieved from the WoS. After determining that the WoS topic search on "unified medical language system" OR "umls" retrieved many irrelevant records (eg, with UMLs as an acronym for "upper mixed layers," we devised a 2-step approach: First, the following query was run on PubMed, which resulted in 1228 PMIDs (PubMed identifiers): "unified medical language system" [Text Word]. Given the retrieved PMIDs, we conducted the PubMed ID search on the WoS and retrieved 906 articles, proceedings, and reviews written in English between 1986 and 2019, as of December 31, 2019. This still limited the inclusiveness of records compared to the initial search on PubMed, but we decided to balance the tradeoff between higher relevancy and less noise. The vocabulary mismatch has been often reported to be a challenge for keyword-based searches.⁷ This data set was labeled "Core." Second, we used the citation report to retrieve a broader context of UMLS research via citation indexing.⁸ A total of 9563 records that cited the core data were collected. We named this set "Expanded." In the remainder of the study, Core was used to map the scientific profile of the UMLS literature while Expanded was considered as evidence representing the diffusion of knowledge. A statistical summary of the collected data sets is presented in Table 1. As rendered in Figure 1, the number of records in Core is consistent over time although it has received increasing attention in recent years.

Scientific mapping and text mining

We represented the intellectual landscapes of the domain with a variety of bibliographic entities such as publications, author and indexer keywords (keyword and keyword plus), cited references, and textual content. In interpreting such representations, we took a deductive approach moving from publication-level citations, subject category assignment, keyword co-occurrence and bursts, and document co-citation networks, to content analysis of landmark articles. This enabled our findings to be triangulated with different levels of granularity with consistent, richer meanings as we moved on to the next subsections. Our work leveraged CiteSpace v5.5.R2,^{9,10} VOSviewer v. 1.6.14,¹¹ and Gephi v0.9.2, which are widely used scientific mapping tool kits. The followings describe structural measures and machine learning frameworks to communicate the present study's analytical approaches:

- Citation analysis: Citation analysis is the study of frequency, patterns, and interconnections of references in literature.⁸ Citation analysis draws intellectual graphs of the data sets.
- Dual-map overlay: A dual-map overlay is a publication-level citation pattern visualization technique.¹² This representation was used to depict the domain-level growth of knowledge in the literature where a base map consists of the inter-citations among over 10 000 journals and conferences.
- Graph reduction: Drawing the entirety of nodes and edges on a graph is computationally costly and less likely to deliver an important structure. To remedy this, we selected the top 10% most occurring entities per year.
- Topological metrics: A graph density is defined as the number of actual links divided by the number of possible links. The higher, the more interconnections among the vertices.¹³ Betweenness centrality is a measure based on the shortest paths passing through a node.¹⁴ A vertex with a high betweenness value has an influence over the flow of information on a network. PageRank is an algorithm that measures the quantity and quality of links to a node.¹⁵ The higher, the more important links the node receives.
- Burst detection: Burst detection is an algorithm that models the periods and strengths in which certain features rise sharply in frequency.¹⁶ This technique identifies the keywords showing the surging frequencies.

Tab	ole	1.	Bib	liograp	ohic	records	s statistics
-----	-----	----	-----	---------	------	---------	--------------

Context	Duration	Total	Articles	Proceedings	Reviews	Authors	Keywords	References
Core	1986-2019	906	646	374	19	3724	9764	23 185
Expanded	1989–2019	9563	6706	2971	618	45 467	110 676	391 569

• Community detection: Community detection is a clustering approach to identify the latent sets of densely connected nodes on a network. To group the cited references, we employed a model where global modularity ranges between 0 and 1,¹⁷ meaning that the higher, the higher the number of communities.

Figure 1. Data distribution over time.

RESULTS

Disciplinary-level research trends Dual-map overlays

Figure 2 displays the dual-map overlays rendering domain-level citation patterns in Core (upper) and Expanded (lower), respectively. The visuals consist of 2 groups of domains: 1) publication domains (on the left) representing the scientific domains where the data sets are published and 2) reference domains (on the right) showing the domains from which the published articles cited their references. In these domains, each subregion is labeled with terms commonly found in the journal/conference titles in that subregion. The citation paths between the publication and reference domains are colored based on the publication domains' colors; the width of a path is proportional to the frequency of citations. Table 2 describes the paths with the publication and reference domains in descending order of frequency in z-score.

In the remainder of this section, "interdisciplinarity" is used for the combination of more than 1 branch of knowledge into a synthesis of approaches while "multidisciplinarity" draws on their disciplinary knowledge. In Core, the literature published in medical (medicine, medical, clinical) and biological domains (molecular,

Figure 2. Dual-map overlays: Core (upper) and Expanded (lower).

Context	Publication domains	Reference domains	Z-score
Core	Medicine, medical, clinical	Health, nursing, medicine	5.049
	Molecular, biology, immunology	Molecular, biology, genetics	3.786
	Medicine, medical, clinical	Molecular, biology, genetics	2.613
	Molecular, biology, immunology	Health, nursing, medicine	2.342
	Medicine, medical, clinical	Systems, computing, computer	1.917
	Molecular, biology, immunology	Systems, computing, computer	1.750
Expanded	Molecular, biology, immunology	Molecular, biology, genetics	8.678
	Medicine, medical, clinical	Health, nursing, medicine	5.118
	Medicine, medical, clinical	Molecular, biology, genetics	3.825
	Mathematics, systems, mathematical	Systems, computing, computer	3.332
	Molecular, biology, immunology	Health, nursing, medicine	2.155

Table 2. Disciplinary-level citation trajectories (rows colored with corresponding paths in Figure 2 upper and lower)

biology, immunology) heavily cites from healthcare (health, nursing, medicine), biological (molecular, biology, genetics), and computational (systems, computing, computer) domains. The citations in the core literature show an interdisciplinary pattern where the publication domains have been created by combining 3 reference domains. The publication domains are also partially multidisciplinary; 2 publication domains have led the creation of knowledge. In the Expanded data set, the published research in biological (molecular, biology, immunology) and medical (medicine, medical, clinical) domains mainly cites from biological (molecular, biology, genetics) and healthcare (health, nursing, medicine) domains. The other set of research published in mathematical domains (mathematics, systems, mathematical) cites from computational (systems, computing, computer) domains. The expanded literature in biological and medical domains cites the computer science domain to a lesser degree, whereas only the literature in mathematical domains references the computer domains. The diffusion of knowledge shows a less interdisciplinary but more multidisciplinary pattern.

Subject category assignment

Table 3 lists the top 20 subject categories most frequently assigned to the records in Core and Expanded, showing a high-level thematic concentration. Exclusive categories in each data set were colored in gray. In Core, medical informatics is the most dominant category followed by computer science and related fields (computer science, interdisciplinary applications, and computer science information systems) and healthcare sciences. The expanded data set shows similar trends: medical informatics is the top category and there are 17 overlapping subject categories. In contrast to the number of records being highly concentrated to a very few subject categories in Core, the expanded data set is more evenly distributed across multiple domains such as biochemical technologies and genetics. Along with the findings from the dual-map overlays showing Core being more interdisciplinary and Expanded being more multidisciplinary, the subject category assignment suggests that the UMLS research has been broadened from the interdisciplinary concentrated efforts toward the applications in more diverse contexts.

Keywords as evidence of emerging technologies Keyword co-occurrence

In this section, we investigated the keywords, considering them as important yet mid-high-level indicators of the underlying concepts in the UMLS research. Table 4 describes the top 20 keywords that most frequently occur in Core and Expanded. The "Year" column indicates the year a keyword first appears and the "Density" column indicates the average Count from its first appearance to 2019 (ie, Count/(2019 – Year + 1). Density describes a keyword's distributed impact over multiple years. The "Between" column shows the betweenness centrality of the keyword on the co-word networks. Exclusive keywords in each data set are colored in gray. The rows are sorted in ascending order of Year and descending order of Count within Year. For the remainder of the article, we divided the entire study duration into 3 phases: 1) P1 (1986–1997), 2) P2 (1998–2008), and 3) P3 (2009–2019).

In Core, 12 keywords were identified from CP2 (core phase 2) while CP3 had the lowest number of new keywords owing to the accumulation over time. This observation also suggests that the core literature is in a mature stage and recent themes have not received significant attention yet. Keywords "umls" and "system" are the leading ones based on all the metrics. Keyword "information" also shows the second highest count (87) and betweenness (0.240), indicating that "information" creation as a general purpose of UMLS has had the largest influence on the transfer of knowledge in Core. The exclusive concepts in this phase are "medline" and "vocabulary." We suggest that the keywords from CP1 represent an interdisciplinary endeavor for the development of UMLS resources. CP2 can be divided into 2 groups: 1) CP2-1 between 1998 and 1999 and 2) CP2-2 between 2003 and 2008. In CP2-1, "database" and "information retrieval" indicate the scientific efforts for retrieval, integration, and aggregation of information; "knowledge" and "representation" are also shown to be dominant themes. CP2-2 starts with "natural language processing" (NLP) that has the third highest count (86), second highest density (5.059), and third highest betweenness (0.200). Applications such as clinical "text" mining and "information extraction," together with the semantic "network" follow the "NLP" in this phase. Finally, recent applications such as "machine learning" represent CP3.

Figure 3 upper shows the keyword co-occurrence network in Core, which consists of 173 nodes and 945 links. We used density visualization in VOSviewer. In the figure, the closer a pair of keywords positions to the hotter zone, the more frequently the pair co-occurs in the literature. As depicted in the figure, 3 hot zones of co-words were identified around the leading keywords discussed above: 1) "system," "natural language processing," "text," and "extraction" on the left, 2) "unified medical language system" in the middle, and 3) "umls," "ontology," "network," and "semantic web" on the right. Keyword "machine learning" co-occurs closely to the left zone and other keywords regarding text analytics, such as "documents," "word sense disambiguation," and "recognition," move toward the perimeter. The middle zone plays a bridging role between the left and right clusters. Above this cluster, the keywords

Table 3. Top 20 WoS subject categories

Context	WoS Categories	Records	% of 906
Core	Medical informatics	583	64.349
	Computer science interdisciplinary applications	395	43.598
	Computer science information systems	386	42.605
	Health care sciences services	354	39.073
	Information science library science	223	24.614
	Mathematical computational biology	103	11.369
	Computer science artificial intelligence	72	7.947
	Biochemical research methods	65	7.174
	Engineering biomedical	63	6.954
	Biotechnology applied microbiology	58	6.402
	Computer science theory methods	56	6.181
	Engineering electrical electronic	23	2.539
	Statistics probability	19	2.097
	Biochemistry molecular biology	13	1.435
	Biology	11	1.214
	Radiology nuclear medicine medical imaging	10	1.104
	Genetics heredity	9	0.993
	Medicine research experimental	9	0.993
	Public environmental occupational health	9	0.993
	Emergency medicine	6	0.662
Expanded	Medical informatics	3124	32.668
-	Computer science information systems	2731	28.558
	Computer science interdisciplinary applications	2445	25.567
	Health care sciences services	1903	19.900
	Computer science artificial intelligence	1307	13.667
	Mathematical computational biology	1283	13.416
	Information science library science	1110	11.607
	Computer science theory methods	932	9.746
	Biochemical research methods	711	7.435
	Biotechnology applied microbiology	620	6.483
	Engineering electrical electronic	520	5.438
	Engineering biomedical	452	4.727
	Multidisciplinary sciences	308	3.221
	Biochemistry molecular biology	290	3.033
	Computer science software engineering	240	2.510
	Genetics heredity	215	2.248
	Radiology nuclear medicine medical imaging	201	2.102
	Pharmacology pharmacy	194	2.029
	Statistics probability	190	1.987
	Public environmental occupational health	161	1.684
	*		

in CP2-1, such as "information retrieval," "knowledge," and "(knowledge) representation," form a cooler zone, co-occurring with "care," "medical informatics," and "radiology". It indicates that "tool"-ing the UMLS resources in broader clinical contexts is also important. Finally, "terminology" is near the right zone, and "gene ontology" is closely located to "terminology." The cooccurrence of "language" and "health level 7" with this cluster suggests that the extension of UMLS resources is an emerging topic, and the existence of "semantic interoperability" triangulates our interpretation about the semantic network being of interest.

Compared to the Core, the values of betweenness centrality in Expanded are relatively lower across all the keywords. A total of 12 and 8 keywords are identified in EP1 (expanded phase 1) and EP2, respectively, and none in EP3, which suggests that, similar to Core, the latest concepts in the expanded literature have not received significant attention yet, compared to the maturity of those in the earlier phases. The keywords that appeared in CP2-1 such as "database," "information retrieval," "terminology," and "knowledge" and in CP2-2, such as "ontology," "natural language processing," and "classification," are the leading concepts in EP1.

In EP1, "care" and "disease" are the exclusive keywords, and in EP2, "text" and "extraction" appear earlier than in CP2-2 and CP-3. Moreover, "text mining," "gene," "identification," and "electronic health record" are newly discovered concepts in Expanded. These findings suggest that systems development and "tool"-ing the biomedical ontologies have already been the greatest concerns in the expanded contexts of the UMLS research. The results also confirm that applications and extensions are among the most important themes.

Figure 3 lower visualizes the keyword co-occurrence network in Expanded. It consists of 483 vertices with 5337 edges having lower density (0.046) than Core. The co-word network is spread out more (see Figure 3 upper for comparison), which indicates the existence of a variety of subtopics. Two hot zones of keywords are identified: 1) "system," "classification," and "model" on the left with "machine learning" on the perimeter and 2) "ontology" and information "extraction" on the right with "text mining" on the perimeter. The other keywords listed in Expanded tend to form their own clusters: 1) "database" with "networks," "resource," "genomics," and "pharmacogenomics," 2) "care" with "guideline," "computer," and

Context	Phase	Keyword	Year	Count	Density	Between
Core	P1	unified medical language system	1991	63	2.172	0.120
		Medline	1993	19	0.704	0.010
		System	1994	87	3.346	0.140
		Information	1994	62	2.385	0.240
		Vocabulary	1994	22	0.846	0.050
		Umls	1995	160	6.400	0.280
	P2	Terminology	1998	62	2.818	0.170
		Knowledge	1998	42	1.909	0.050
		Database	1998	35	1.591	0.040
		information retrieval	1998	29	1.318	0.060
		medical language system	1999	49	2.333	0.060
		Representation	1999	22	1.048	0.020
		natural language processing	2003	86	5.059	0.200
		Ontology	2003	72	4.235	0.110
		Text	2004	61	3.813	0.150
		information extraction	2004	22	1.375	0.090
		Network	2004	18	1.125	0.050
		Classification	2008	23	1.917	0.090
	Р3	Extraction	2011	21	2.333	0.060
		machine learning	2011	20	2.222	0.100
Expanded	P1	System	1992	1196	42.714	0.040
*		Information	1992	801	28.607	0.060
		Database	1994	667	25.654	0.060
		information retrieval	1994	362	13.923	0.030
		Terminology	1994	348	13.385	0.040
		Ontology	1995	1084	43.360	0.080
		Knowledge	1995	556	22.240	0.050
		natural language processing	1995	550	22.000	0.020
		Classification	1995	409	16.360	0.080
		Care	1995	345	13.800	0.050
		Umls	1995	327	13.080	0.040
		Disease	1996	293	12.208	0.040
		Model	1997	443	19.261	0.050
	Р2	Text	2001	489	25.737	0.020
		Tool	2001	329	17.316	0.020
		Extraction	2002	292	16.222	0.020
		text mining	2003	312	18.353	0.010
		Gene	2003	296	17.412	0.010
		Identification	2004	291	18.188	0.020
		electronic health record	2006	350	25.000	0.040

Table 4. Top 20 most frequent keywords (sorted in ascending order of Year and descending order of Count)

"usability," 3) "disease" and "identification" with "cancer," "discovery," and "brain," 4) "tool" and "gene," and 5) "electronic health record" with "management" and "medical records." Findings suggest that scientific landscapes have accessed much broader contexts, such as resource usability, knowledge discovery, ontology extension, health records management, as well as derivative databases.

Bursting keywords

We investigated the bursting activities in keywords occurrence to add time-aware interpretations. The burstiness of a keyword is calculated by the weighted sum of its frequency during 1 or multiple times windows. If the probability of these occurrences is higher than a data-dependent global threshold, that keyword is said to have a burst(s). Table 5 is sorted in ascending order of Begin. The exclusive keywords are colored in gray. The burst charts start from 1992 because that was the first year a burst appeared.

Table 5 presents the top 20 bursting keywords in Core and Expanded. Compared to the 8 exclusive keywords identified between Core and Expanded in Table 4, 13 exclusive keywords appear be-

tween Core and Expanded in Table 5, which suggests that the concepts receiving increasing attention are more diverse. Unlike in Table 4, burst detection identified 19 keywords from CP2 (8) and CP3 (11). In CP1, "vocabulary" is the only keyword with the longest burst between 1994 and 2003. In CP2-1, "representation" is the keyword with the strongest burst; "database" and "information retrieval" were previously identified in CP2-1 (see Table 4) and also burst in CP2-2. Keyword "informatics" as a novel way of knowledge discovery receives increasing attention. Keyword "word sense disambiguation" is a relatively recent concept receiving burst between 2010 and 2015, and it co-occurred with the "natural language processing" cluster in Figure 3 upper. Keyword "electronic health record" (EHR), which was an exclusive keyword in Expanded (see Table 4), has received the longest burst in CP3. With the existence of successive keywords such as "machine learning," "information extraction," and "word embedding," we suggest that knowledge discovery from EHR is the most recent and emerging application of UMLS resources. Keyword "snomed ct" has been receiving recent burst, given that it is an established medical ontology.

Figure 3. Keyword co-occurrence networks: Core (upper; node = 173; edges = 945; density = 0.063) and Expanded (lower; node = 483; edges = 5337; density = 0.046).

In contrast to Core, the bursting keywords in Expanded are more evenly distributed across all the phases. In the earliest phase, knowledge representation represented by "knowledge representation" and "representation" is 1 of the bursting concepts. Previously, it appeared to be a prevailing theme in CP2-1 (see Table 4). Bursting attention to "world wide web" together with "internet" suggests that public accessibility is an important consideration in developing medical ontologies as a new form of knowledge representation in

Phase	Keywords	Burst	Begin	End
CP1	Vocabulary	5 766	1994	2003
CP2	Internet	6 144	1998	2003
012	Language	6 341	1998	2001
	Representation	8 582	1999	2005
	semantic network	4 4 3 2	2003	2009
	Database	6.936	2003	2009
	information retrieval	5 461	2005	2007
	Informatics	3 593	2003	2009
	Classification	3 760	2008	2011
CP3	medical language system	3.845	2009	2010
010	Gene	4 348	2009	2011
	word sense disambiguation	4.590	2010	2015
	Term	3.556	2010	2014
	Identification	3.986	2011	2014
	electronic health record	4.150	2012	2019
	snomed ct	3.806	2013	2019
	machine learning	3.689	2014	2019
	information extraction	5.874	2014	2019
	Extraction	5.011	2015	2019
	word embedding	4.105	2017	2019
EP1	System	29,573	1992	2000
	Computer	15.947	1992	2003
	Language	40.535	1994	2002
	knowledge representation	26.810	1995	2007
	Representation	37.132	1996	2003
	information system	20.357	1996	2008
	Internet	33.931	1997	2006
	world wide web	21.627	1997	2005
EP2	medical language system	19.617	1999	2010
	health care	14.730	1999	2007
	medical informatics	17.403	2001	2006
	Bioinformatics	20.724	2002	2012
	Biology	16.252	2005	2010
EP3	electronic health record	29.462	2014	2019
	Pharmacovigilance	17.768	2015	2019
	big data	24.361	2016	2019
	Risk	17.189	2016	2019
	Prevalence	16.220	2016	2019
	machine learning	35.858	2017	2019
	word embedding	19.075	2017	2019

Table 5. Top 20 most bursting keywords (sorted in descending order of Begin)

biomedicine. In EP2, like "informatics" in Core, "medical informatics" and "bioinformatics" received considerable attention as promising approaches of knowledge creation that use medical ontologies. In EP3, like in Core, "big data" along with "electronic health record," "machine learning," and "word embedding" represents the recent interest in advanced text analytics. Keywords "pharmacovigilance" and "risk" also indicate the current and future direction of the UMLS research in drug safety.

Document co-citation networks

We used CiteSpace to create document co-citation networks in Core and Expanded. The visualizations (see Figure 4 upper and lower) were created by Gephi for enhanced legibility. In each graph, a vertex is a cited reference where the size is proportional to the cited count. Vertices are linked when they are co-cited in the literature. Therefore, neighboring nodes are assumed to be intellectually close to each other. Clusters were identified by community detection; the cluster membership is represented by the colors of nodes and edges. Table 6 describes 10 select articles in each data set. The references were also annotated in black in Figure 4 upper and lower. The size of a label is proportional to a corresponding node's cited frequency. In the remainder of the paper, we call these select articles "landmark articles" as determined by the following inclusion/exclusion criteria:

- Using the complete list of references, we derived 3 subtables based on cited frequency, betweenness, and PageRank, each containing the top 100 results;
- Articles were selected if they appeared in all 3 derived tables;
- Documents that are not original research articles were omitted;
- (Expanded only) Articles that have already appeared in Core were excluded;
- The top 10 references were selected in each data set and rearranged in chronological order/cluster membership for better interpretability.

Figure 4. Document co-citation networks: Core (upper; node=816; edges=3311; density=0.010; modularity=0.773; clusters=84) and Expanded (lower; node=1833; edges=9600; density=0.006; modularity=0.798; clusters=156).

As shown in Figure 4 upper, the cited references in Core resulted in a sparse graph (density = 0.010), consisting of 816 nodes and 3311 links among them, and 84 communities were detected with relatively high modularity (0.773). These metrics suggest the existence of a variety of subtopics while the visual prominence confirms 2 main clusters of communities (upper right, UR, and lower left, LL). In Table 6, visual cluster membership is denoted as Region using either UR or LL. The table shows that 7 articles belong to the earlier phases, namely CP1 (C0) and CP2-1 (C1–C6).

Figure 4 lower depicts the document co-citation network in Expanded. The graph became sparser (density = 0.006) with 1833 vertices and 9600 edges. We found 156 communities with higher

modularity (0.798). Again, we identified 2 distinctively larger regions of communities (upper left and lower right). The visual cluster membership is denoted as either UL or LR. Table 6 shows that 7 references come from the later phases, namely EP2-2 (E3–E7) and EP3 (E8, E9).

Content analysis of landmark literature

We conducted a content analysis for an in-depth understanding of the landmark literature. These papers were assigned to 1 of the following categories: 1) Extension, denoted as "Ext"; 2) Tooling denoted as "Tool"; and 3) Application, denoted as "App." The

No.	Publication (year)	Region	Cluster	Citation frequency	Between	PageRank
C0	Cimino et al (1994) ¹⁸	UR	64	23	0.097	0.004
C1	Cimino (1998) ¹⁹		64	20	0.030	0.003
C2	Ashburner et al $(2000)^{20}$		43	19	0.032	0.004
C3	Aronson $(2001)^{21}$		34	57	0.062	0.006
C4	Nadkarni et al (2001) ²²		14	20	0.026	0.004
C5	Peng et al (2002) ²³		47	14	0.036	0.003
C6	Chen et al (2002) ²⁴		43	12	0.025	0.003
C7	Gu et al $(2004)^{25}$		47	18	0.034	0.004
C8	Humphrey et al $(2006)^{26}$	LL	77	19	0.082	0.006
С9	Savova et al (2010) ²⁷		33	38	0.039	0.006
E0	Campbell et al (1997) ²⁸	LR	78	69	0.014	0.002
E1	Rector et al $(1997)^{29}$		78	65	0.013	0.002
E2	Rosse et al (1998) ³⁰		6	67	0.051	0.002
E3	Rosse and Mejino (2003) ³¹	UL	32	281	0.057	0.002
E4	Hamosh (2004) ³²		32	63	0.025	0.002
E5	Smith et al (2005) ³³		32	128	0.013	0.002
E6	Robinson et al (2008) ³⁴		32	83	0.014	0.002
E7	Friedman et al $(2004)^{35}$		0	107	0.072	0.002
E8	Kuhn et al (2010) ³⁶		0	106	0.013	0.002
E9	Xu et al (2010) ³⁷		0	93	0.033	0.002

Table 6. Ten landmark articles (sorted in ascending order of publication year and descending order of citation frequency)

main objectives of the papers in Ext include extensions to UMLS resources and development of new ontologies. The tooling research is about a concerted effort for evaluating and enhancing usability, interoperability, and integrity of controlled vocabularies in biomedicine. The App papers use UMLS and other ontology resources in informatics research and applications. Table 7 summarizes the objectives, methods, and findings of the papers.

In terms of the distribution of categories, Core has 2 extensions, 5 toolings, and 3 applications; Expanded has 7 extensions, 1 tooling, and 2 applications. Although this distribution should not be generalized as the thematic categorization of the entire data sets, it confirms that the landmark papers in Core have put large efforts toward 1) auditing and enhancing UMLS resources and 2) developing novel approaches for knowledge creation in biomedicine. These findings can also be mapped to the visual region formation in Figure 4 upper. Two extensions (C0 and C2), 5 toolings (C1, C3, C5, C6, and C7), and 1 application (C4) formed the UR region. Despite the categorical differences, 1 consistent theme identified in these papers is to make UMLS and its related resources more accessible and errorfree. Lastly, C8 and C9 belong to the LL region where advanced text analytics with the clinical text is a major theme. In Expanded, landmark papers have brought a wide range of UMLS extensions and new terminologies for specific applications. As illustrated in Figure 4 lower, 1 tooling (E0) and 2 extensions (E1 and E2) formed the LR region. The UL region consisted of 5 extensions (E3, E4, E5, E6, and E8) and 2 applications (E7 and E9). Except for the applications, the landmark articles in Expanded made a concerted effort for extensible ontologies with profound biomedical concepts.

DISCUSSION

RQ1: What are the intellectual driving forces of UMLS resources and projects?

The dual-map overlays and subject category assignments revealed the following. First, the core UMLS research is interdisciplinary. The studies published in medicine and biology heavily cited each other and other technical papers (systems, computing, and computer). The subject domains, such as medical informatics and computer and healthcare sciences, are the driving forces of the emergence of UMLS resources and projects. Second, the diffusion of knowledge represented in the Expanded data set was led by more multidisciplinary efforts such as biological and medical sciences and mathematics. Although they are not yet fully interdisciplinary, scientific communities are characterized by medical informatics, computer and healthcare sciences, biochemical technologies, and genetics, and further by software engineering and pharmacology and pharmaceutics. In conclusion, our analysis confirms that scientific profile and knowledge diffusion of the UMLS research are boundary-spanning to applications in a variety of contexts.

RQ2: What thematic patterns characterize the domain's historical footprint?

The investigation of keyword co-occurrence revealed the earlyphase research themes regarding UMLS resources, such as 1) development and 2) knowledge representation and information creation, as general objectives. These topics were followed by efforts for tooling and applications in broader contexts, such as semantic networking, information extraction, and text mining. The bursting keywords confirmed that informatics as a novel approach for knowledge discovery received significant attention. In the expanded context, thematic patterns, identified in the later phases of Core, were of greatest interest during the earlier phase. Moreover, applications, such as knowledge discovery in health records, were among the important themes. The bursting keywords in Expanded confirmed the medical informatics and bioinformatics as methodological driving forces of such endeavors. The following topics are also confirmed as prevalent concepts in the expanded data set: resource usability, ontology extension, health records management, and derivative databases. The document co-citation networks revealed that most core landmark papers belong to the earlier phases. The canonical endeavors include 1) auditing and enhancing UMLS resources and tools and 2) developing novel approaches for knowledge creation. The landmarks in Expanded focused more on the extensions of medical ontologies and advanced analytics. With the high

Table 7. Content analysis matrix (category code: Ext[ension]; Tool[ing]; App[lication])

No.	Category	Objectives	Methods/criteria	Findings/products
00	Ext	Developing a controlled medical terminology	Knowledge-based semantic networking	Medical Entities Dictionary (MED)
5	Tool	Examining Metathesaurus' semantic inconsistencies	String-matching with semantics and synonyms	Ambiguity, redundancy, and incorrect tree structure
02	Ext	Building a vocabulary for genes and gene products	Describing and annotating biological elements	Gene Ontology (GO)
3	Tool	Creating a concept-mapping tool to Metathesaurus	Natural language processing and text similarity	MetaMap, an algorithm mapping text to concepts
40	App	Using Metathesaurus for concept matching/indexing	Training and testing a concept-finding algorithm	82.6%/76.3% true positive rates for training/testing
CS	Tool	Identifying semantic types' redundant classifications	Inspection of classification overlaps in type pedigrees	12 657 redundant semantic type classifications
C6	Tool	Creating simpler views of the Semantic Network of UMLS	Expert-based portioning with semantic considerations	28 cohesive collections of semantic types
07	Tool	Detecting concept errors and inconsistencies in UMLS	Expert reviews on pure intersections in metaschema	Miscategorizations from 657 meta-type intersections
80	App	Disambiguating word sense for mapping text to concepts	Journal Descriptor Indexing based on MEDLINE citations	78.7% precision with the highest-scoring JDI version
60	App	Implementing a clinical knowledge extraction system	Natural language processing and named-entity recognition	cTAKES, a text mining app with an F-score of 0.924
ΕO	Tool	Assessing medical ontologies: READ, UMLS, and SNOMED	Integrity, taxonomy, clarity, mapping, and definitions	Strengths and weaknesses scored by an expert panel
Ε1	Ext	Proposing a language for modeling ontology concepts	Clarification of requirements for clinical concepts	GALEN representation and integration language (GRAIL)
E2	Ext	Developing an anatomical module for physical entities	Definition and validation of anatomical entities' attributes	An extendible ontology with structure, space, & substance
E3	Ext	Proposing FMA as ontology reference to human anatomy	Disciplined modeling for restructuring vocabularies	Taxonomy, structural and transformation abstractions
£4	Ext	Devising a knowledge base of genes and genetic disorders	Expert curation and editorial effort at Johns Hopkins	Online Mendelian Inheritance in Man (OMIM)
ΕS	Ext	Devising a relation ontology for biomedical coding errors	Extensive, manual reviews of experts in life sciences	Relation Ontology with consistency and unambiguity
Ε6	Ext	Developing a new ontology for human phenotypes	Text parsing and extensive, manual curation of terms	HPO, representing over 8000 human phenotypic anomalies
E7	App	Proposing an NLP-based method for code-mapping	Adaptation of an existing NLP system, MedLEE	84% recall and 89% precision in extracting UMLS codes
E8	Ext	Developing a public resource for mapping side effects	Text mining using public labels and UMLS COSTART	SIDER, connecting 888 drugs to 1450 adverse reactions
63	App	Devising an information extraction app for medication	Sentence boundary detection; semantic tagging; parsing	MedEx, a text mining system run against clinical narratives

Abbreviations: FMA, foundational model of anatomy; HPO, human phenotype ontology; NLP, natural language processing; UMLS, unified medical language system.

1623

concentration of keywords in the earlier phases, we argue that these topics have reached intellectual maturity. We also observed that scientific communities of UMLS research and its broader contexts have coevolved, exerting influence on each other.

RQ3: What are the emerging tools and applications, and current challenges?

Machine learning and information extraction against unstructured records were identified as the emerging application areas. Word sense ambiguation in clinical texts appeared to be the most challenging task. To this end, NLP and advanced algorithms, such as word embedding, have been recently considered. While showing similar trends to Core, there has been new initiatives arising in Expanded such as big data and drug safety surveillance. The existence of fewer concepts in the recent phases of Core and Expanded suggests that these topics have not had sufficient attention yet, while being the domain-leading concerns. We also identified the following potential challenges in the domain from our analyses. First, thematic trends suggest that recent studies heavily focus on computational techniques. This is not surprising given 1) the velocity and variety of data generated in biomedicine and 2) the remarkable advancement of NLP techniques with deep learning. The use of big data along with advanced machine learning techniques is, without a doubt, a promising approach for the discovery of less biased, more generalizable knowledge at scale. However, we observed limited coverage of the other methods. The potential challenge for the domain is to accommodate a variety of research topics as such diversity has advanced this field to date. Moreover, the heavy focus on applications in a few domains such as pharmaceutical sciences could explain the fact that there are a limited number of themes identified recently. This may be an indication that current research does not use UMLS resources and tools to its fullest extent of coverage and capacity. We contend that the domain should embrace more diverse applications to further advance the UMLS research and increasingly achieve quality care.

CONCLUSION

Celebrating the monumental 30-year anniversary of UMLS resources, we explored the historical footprint and landmark milestones of the UMLS research in a bibliometric fashion. The triangulated findings from domain-level citations, subject categories, keyword cooccurrence and bursts, document co-citation networks, and manuscript survey characterized our investigation. Our multilevel analyses identified thematic patterns, emerging technologies, and current challenges as well as the domain's epistemological characteristics. Methodologically, our review demonstrated high research validity by synthesizing quantitative and qualitative approaches in deriving richer interpretations and implications. We expect that the detailed scientific profile of the UMLS research evaluated in this study will help scientists and communities better align their work in progress and future studies with the identified thematic trends and challenges.

The present study has several limitations, some of which direct our future studies. First, we discovered data loss while conducting the PMID search on the WoS. Two-step data collection was employed because our study leveraged the scientometrics tool kits that use bibliographic records retrieved from the WoS. To complement the data gap between PubMed and WoS, we adopted citation indexing to expand our analysis toward the much broader context of the UMLS research. In addition, we aimed to avoid any overgeneralization of findings per subsection, triangulating consistently identified themes across all the result sections. In the future, we plan to develop 1) an Extract-Transform-Load pipeline incorporating multisource records and 2) an interoperable tool kit leveraging across a variety of bibliographic databases. Second, the collected data sets may underrepresent some of the document types, especially conference papers, due to the WoS's indexing policy.^{6,38} Furthermore, the authors could only collect records from the core collection of the bibliographic database because of the affiliated institutions' subscription status. Therefore, some relevant literature could have been omitted. In the future, we plan to use complementary data sources such as Scopus to enhance the variety as well as inclusiveness of the records. This will let us not only generate a more complete, detailed scientific profile of UMLS research but also better direct future editorship and readership in the research community. Next, we conducted network reduction by selecting only the top 10% most frequently occurring entities per year. Although this threshold is in part intuitive, it can be further strengthened by using refined selection criteria such as *h*-index or *g*-index. Finally, we plan to apply the present work's analytical procedure to other academic domains to discover more generalized understandings of the creation and diffusion of knowledge.

FUNDING

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea grant number NRF-2019S1A5A8033338.

AUTHOR CONTRIBUTIONS

All authors significantly contributed to the present work. All authors give approval for the final version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

- Humphreys BL, Lindberg DAB, Schoolman HM, Barnett GO. The Unified Medical Language System: an informatics research collaboration. J Am Med Inform Assoc 1998; 5 (1): 1–11.
- Chen C, Dubin R, Kim MC. Orphan drugs and rare diseases: a scientometric review (2000–2014). *Expert Opin Orphan Drugs* 2014; 2 (7): 709–24.
- Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). *Expert Opin Biol Ther* 2014; 14 (9): 1295–317.
- Kim MC, Jeong YK, Song M. Investigating the integrated landscape of the intellectual topology of bioinformatics. *Scientometrics* 2014; 101 (1): 309–35.
- Kim MC, Zhu Y, Chen C. How are they different? A quantitative domain comparison of information visualization and data visualization (2000– 2014). *Scientometrics* 2016; 107 (1): 123–65.
- Zhu Y, Kim MC, Chen C. An investigation of the intellectual structure of opinion mining research. *Inf Res* 2017; 22 (1): paper 739.
- Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. J Am Soc Inf Sci 1990; 41 (6): 391–407.
- 8. Garfield E. Citation Indexing: Its Theory and Applications in Science Technology, and Humanities. New York: Wiley; 1979.

- Chen C. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 2006; 57 (3): 359–77.
- Chen C, Ibekwe-SanJuan F, Hou J. The structure and dynamics of cocitation clusters: a multiple-perspective co-citation analysis. J Am Soc Inf Sci Technol 2010; 61 (7): 1386–409.
- Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. *Scientometrics* 2010; 84 (2): 523–38.
- Chen C, Leydesdorff L. Patterns of connections and movements in dualmap overlays: A new method of publication portfolio analysis. J Assoc Inf Sci Technol 2014; 65 (2): 334–51.
- Coleman TF, Moré JJ. Estimation of sparse Jacobian Matrices and Graph Coloring Blems. SIAM J Numer Anal 1983; 20 (1): 187–209.
- Brandes U. A faster algorithm for betweenness centrality. J Math Sociol 2001; 25 (2): 163–77.
- Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. *Comput Netw ISDN Syst* 1998; 30 (1-7): 107–17.
- Kleinberg J. Bursty and hierarchical structure in streams. In: proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data mining-KDD '02 [Internet]. Edmonton, Alberta, Canada: ACM Press; 2002: 91. http://portal.acm.org/citation.cfm? doid=775047.775061 Accessed February 3, 2020
- Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. *J Stat Mech Theory Exp* 2008; 2008 (10): P10008.
- Cimino JJ, Clayton PD, Hripcsak G, Johnson SB. Knowledge-based approaches to the maintenance of a large controlled medical terminology. *J Am Med Inform Assoc* 1994; 1 (1): 35–50.
- Cimino JJ. Auditing the unified medical language system with semantic methods. J Am Med Inform Assoc 1998; 5 (1): 41–51.
- Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet 2000 May; 25 (1): 25–9.
- Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proc Annu AMIA Symp 2001; 2001: 17–21.
- Nadkarni P, Chen R, Brandt C. UMLS concept indexing for production databases: a feasibility study. J Am Med Inform Assoc 2001; 8 (1): 80–91.
- Peng Y, Halper M, Perl Y, Geller J. Auditing the UMLS for redundant classifications. Proc Annu AMIA Symp; 2002 2002: 612–6.
- Chen Z, Perl Y, Halper M, Geller J, Gu H. Partitioning the UMLS semantic network. *IEEE Trans Inf Technol Biomed* 2002; 6 (2): 102–8.
- Gu H, Perl Y, Elhanan G, Min H, Zhang L, Peng Y. Auditing concept categorizations in the UMLS. *Artif Intell Med* 2004; 31 (1): 29–44.

- 26. Humphrey SM, Rogers WJ, Kilicoglu H, Demner-Fushman D, Rindflesch TC. Word sense disambiguation by selecting the best semantic type based on journal descriptor indexing: preliminary experiment. J Am Soc Inf Sci Technol 2006; 57 (1): 96–113.
- Savova GK, Masanz JJ, Ogren PV, *et al*. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation, and applications. *J Am Med Inform Assoc* 2010; 17 (5): 507–13.
- Campbell JR, Carpenter P, Sneiderman C, Cohn S, Chute CG, Warren J. Phase II evaluation of clinical coding schemes: completeness, taxonomy, mapping, definitions, and clarity. J Am Med Inform Assoc 1997; 4 (3): 238–51.
- Rector AL, Bechhofer S, Goble CA, Horrocks I, Nowlan WA, Solomon WD. The GRAIL concept modelling language for medical terminology. *Artif Intell Med* 1997; 9 (2): 139–71.
- Rosse C, Mejino JL, Modayur BR, Jakobovits R, Hinshaw KP, Brinkley JF. Motivation and organizational principles for anatomical knowledge representation: the digital anatomist symbolic knowledge base. J Am Med Inform Assoc 1998; 5 (1): 17–40.
- Rosse C, Mejino J. A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform 2003; 36 (6): 478–500.
- Hamosh A. Online Mendelian Inheritance in Man (OMIM), a knowledge base of human genes and genetic disorders. *Nucleic Acids Res* 2004; 33 (Database issue): D514–7.
- Smith B, Ceusters W, Klagges B, et al. Relations in biomedical ontologies. Genome Biol 2005; 6 (5): R46.
- Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. *Am J Hum Genet* 2008; 83 (5): 610–5.
- Friedman C, Shagina L, Lussier Y, Hripcsak G. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc 2004; 11 (5): 392–402.
- 36. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. *Mol Syst Biol* 2010; 6 (1): 343.
- 37. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication information extraction system for clinical narratives. J Am Med Inform Assoc 2010; 17 (1): 19–24.
- Mongeon P, Paul-Hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. *Scientometrics* 2016; 106 (1): 213–28.