Table 3.
Dataset | Discriminators | medGAN (%) | VAE (%) | VAE-GAN (%) | WAE (%) | ARAE (%) | DAAE (%) |
---|---|---|---|---|---|---|---|
MIMIC-III | CNN | 98.7 | 97.5 | 95.5 | 78.2 | 74.5 | 71.3 a |
Bi-LSTM | 97.6 | 94.3 | 95.4 | 76.3 | 74.1 | 70.7 a | |
UTP | CNN | 99.4 | 99.4 | 99.3 | 99.5 | 86.2 | 83.8 a |
Bi-LSTM | 99.5 | 99.6 | 99.5 | 99.8 | 86.7 | 84.3 |
ARAE: adversarially regularized autoencoder; Bi-LSTM: bidirectional long-short-term memory; CNN: convolutional neural network; DAAE: dual adversarial autoencoder; GAN: generative adversarial network; medGAN: medical generative adversarial network; MIMIC-III: Medical Information Mart for Intensive Care-III; UTP: UT-Physicians; VAE: variational autoencoder; WAE: Wasserstein autoencoder.