Skip to main content
. 2020 Sep 25;27(9):1411–1419. doi: 10.1093/jamia/ocaa119

Table 3.

Binary classification accuracies of simple discriminators trained to distinguish real samples from fake samples generated by each model

Dataset Discriminators medGAN (%) VAE (%) VAE-GAN (%) WAE (%) ARAE (%) DAAE (%)
MIMIC-III CNN 98.7 97.5 95.5 78.2 74.5 71.3 a
Bi-LSTM 97.6 94.3 95.4 76.3 74.1 70.7 a
UTP CNN 99.4 99.4 99.3 99.5 86.2 83.8 a
Bi-LSTM 99.5 99.6 99.5 99.8 86.7 84.3

ARAE: adversarially regularized autoencoder; Bi-LSTM: bidirectional long-short-term memory; CNN: convolutional neural network; DAAE: dual adversarial autoencoder; GAN: generative adversarial network; medGAN: medical generative adversarial network; MIMIC-III: Medical Information Mart for Intensive Care-III; UTP: UT-Physicians; VAE: variational autoencoder; WAE: Wasserstein autoencoder.