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ABSTRACT

Objective: Predictive disease modeling using electronic health record data is a growing field. Although clinical

data in their raw form can be used directly for predictive modeling, it is a common practice to map data to stan-

dard terminologies to facilitate data aggregation and reuse. There is, however, a lack of systematic investigation

of how different representations could affect the performance of predictive models, especially in the context of

machine learning and deep learning.

Materials and Methods: We projected the input diagnoses data in the Cerner HealthFacts database to Unified

Medical Language System (UMLS) and 5 other terminologies, including CCS, CCSR, ICD-9, ICD-10, and Phe-

WAS, and evaluated the prediction performances of these terminologies on 2 different tasks: the risk prediction

of heart failure in diabetes patients and the risk prediction of pancreatic cancer. Two popular models were eval-

uated: logistic regression and a recurrent neural network.

Results: For logistic regression, using UMLS delivered the optimal area under the receiver operating character-

istics (AUROC) results in both dengue hemorrhagic fever (81.15%) and pancreatic cancer (80.53%) tasks. For re-

current neural network, UMLS worked best for pancreatic cancer prediction (AUROC 82.24%), second only

(AUROC 85.55%) to PheWAS (AUROC 85.87%) for dengue hemorrhagic fever prediction.

Discussion/Conclusion: In our experiments, terminologies with larger vocabularies and finer-grained represen-

tations were associated with better prediction performances. In particular, UMLS is consistently 1 of the best-

performing ones. We believe that our work may help to inform better designs of predictive models, although

further investigation is warranted.
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INTRODUCTION

In the current big data era of biomedical informatics, abundant elec-

tronic health record (EHR) data are becoming available, leading to

the development of predictive modeling algorithms. In the past 5

years, thousands of predictive modeling-related studies have utilized

a variety of methods, such as logistic regression (LR) or deep learn-

ing, to predict the patient’s risk of developing such diseases as heart

failure1–5 and pancreatic cancer (PC).6,7 An important, but

unaddressed, research question in regard to predictive modeling is

how to efficiently feed the EHR data to models.8–10

Structured diagnosis data in EHR datasets are usually heteroge-

neous, leading to challenges in data analysis, including interpretabil-

ity and generalizability issues. For example, different hospitals and

departments use different terminologies; thus, to develop a general-

izable model, researchers either train the model on all of the differ-
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ent terminologies in use or introduce a standardizer that can normal-

ize the data into a single terminology.

Terminology standards are evolving constantly, and newer ver-

sions will introduce additional levels of data redundancy. For exam-

ple, patient diagnosis information was commonly stored in the

International Classification of Diseases-ninth revision (ICD-9) for-

mat before 2015; but then, for billing purposes, hospitals had to up-

grade it to the tenth revision (ICD-10), which introduced a higher

level of details. Currently, an even newer revision, ICD-11, is being

released. Further, in many cases, the coding system in EHRs is a mix

of multiple ICD terminologies. As a result, it is difficult to organize

information represented in heterogeneous formats and for models

trained on older terminologies (eg, ICD-9 codes) to generalize to

new terminologies without proper normalizations.

EHR vendors also are introducing internal codes that can be

mapped to different standard terminologies in a one-to-one manner

to facilitate various system functionalities. Using such codes for pre-

dictive model training may restrict the generalizability of such mod-

els to vendor-specific solutions or even to a single hospital if the

mappings are different between sites. In addition, many of the exist-

ing terminology mappings are in many-to-many styles, which might

hinder the accuracy and the interpretability of the model.

Terminology normalization involves assigning a unique standard

medical term to a health condition.11 Most terminology mapping

and normalization-related studies concern the development of map-

pings between different terminologies,12–14 the tools developed for

automated mapping suggestions, or the development of concept

embeddings based on different terminologies.15–19 There are, how-

ever, several practical questions on terminology normalization that

have not been addressed. The first is how to find the optimal level of

granularity required for predictive modeling, assuming that the data

source is homogeneous. For example, it is not known whether we

should use the diagnosis information as originally recorded in the

dataset or group similar or relevant codes to reduce the input dimen-

sion.

The second is how important terminology normalization is when

the data source is heterogeneous. Rajkomar et al10 described the ad-

vantage of using the Fast Healthcare Interoperability Resources for-

mat for interchangeable information representation but

acknowledged that the limited semantic consistency from

unharmonized data may have a negative impact on the model per-

formance. In our previous work,4 we compared the use of Clinical

Classifications Software (CCS) codes with the raw data from Cerner

HealthFacts and found that grouping diagnosis codes was not help-

ful, which conflicts with the findings of other studies2,9 that found

the CCS grouping was helpful. Notably, our findings also were sup-

ported by those of other studies.18,20 Unified Medical Language Sys-

tem (UMLS) provides a multipurpose knowledge source and attracts

more research attention, as it includes mappings to almost all clini-

cal terminologies at different hierarchical levels.21 It also has been

broadly used in concept normalizations in the natural language

processing domain;17,22,23 thus, we selected it as our most expressive

terminology.

OBJECTIVE

In this study, our objectives are 2-fold. The first objective is to com-

pare simply feeding the models with the raw data, as they were origi-

nally collected, versus preprocessing the data when mapping it to a

single terminology. The second is to evaluate the performance of

predictive models using UMLS and 5 other terminologies commonly

used in the healthcare analytics domain. We used 2 clinical predic-

tion tasks: predicting the risk of developing heart failure (DHF)

among a cohort of type-II diabetes mellitus (DMII) patients and the

risk of developing (PC). Our study cohorts were extracted from the

Cerner HealthFacts database, a deidentified EHR database extracted

from over 600 hospitals with which Cerner has a data use agree-

ment. The original diagnosis data are coded with a unique diagnosis

identifier (Cerner-Diagnosis ID) that can be mapped to ICD-9, ICD-

10-CM, or ICD-10-CA codes in a one-to-one manner. For compari-

son, we further mapped the diagnoses codes to 6 terminologies, in-

cluding UMLS concept unique identifier (CUI),24 ICD-9,25 ICD-

10,25 PheWAS,26 and CCS codes in both the single-level27,28 and its

refined version (CCSR).29 We compared the performances using L2

penalized LR (L2LR) and a bidirectional recurrent neural network

(RNN)-based predictive model.

MATERIALS AND METHODS

Prediction tasks and cohort description
We evaluated the use of patients’ diagnosis information in different

terminology representations on 2 different prediction tasks. The first

task is to predict DHF in patients with DMII after at least 1 month

of their first DMII diagnosis. The second task is to predict whether

the patient will be diagnosed with pancreatic cancer (PC) in the next

visit. The second task is more like a diagnosis aid, as we did not

specify a prediction window.

We extracted our cohorts from the Cerner HealthFacts dataset

version 2017,30 which includes deidentified patient information

from more than 600 hospitals for more than a 15-year period. The

full cohort for the DHF prediction in DMII patients consists of

70 782 cases and 1 095 412 controls denoted as the “DHF full

cohort,” out of which we randomly selected a sample of 60 000

cases and 60 000 controls for terminology evaluations further

denoted as the “DHF cohort.” Table 1 shows the descriptive analy-

sis of the selected sample versus the full cohort. For PC prediction,

we found 11 486 eligible cases in the population who were 45 years

or older and did not report any other cancer diseases before their

first PC diagnosis. From a pool of more than 25 million matched

controls, we randomly selected 17 919 controls to build our PC ex-

perimental cohort, which was denoted as the “PC cohort.” We fur-

ther randomly split each sample cohort into training, validation, and

test sets using the ratio of 7:1:2.

We used the patients’ diagnosis information only before the in-

dex visit, which is commonly the last eligible visit before prediction,

to train the predictive models. Details of the cohorts’ composition

are presented in Supplementary Appendix A.

Diagnosis terminology
Cerner HealthFacts v. 2017 includes 17 629 ICD-9 codes, 94 044

ICD-10-CM codes, and 16 044 ICD-10-CA codes, each of which is

mapped to a unique Cerner-Diagnosis ID that is used to unify the

representation of diagnosis among all hospitals’ diagnoses data

within the Cerner HealthFacts database. The patient’s diagnosis in-

formation is stored mainly through the use of Cerner-Diagnosis ID.

The main advantage of using this raw data is that they include the

information of the original code types used for documentation and

can be directly used without any further processing. This dilutes the

actual value of the patient diagnosis, however, as the same diagnosis

may be represented by multiple codes. We also included the raw
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data using the Cerner-Diagnosis ID as a baseline terminology. Fig-

ure 1 shows our diagnosis terminology mapping roadmap.

We used official resources for code mappings. For example, we

used the Center of Medicare and Medicaid Services’ (CMS) most re-

cent general equivalence mapping GEM version 201825 to map be-

tween ICD-9 and ICD-10 codes. For UMLS mapping, we used the

UMLS knowledge resources available on the UMLS Terminology

Services website,24 and we used the latest version of ICD-9 and

ICD-10 to CCS single-level mapping available on the Agency of

Healthcare Research and Quality website27,28 as well as the CCS re-

fined version.29 For PheWAS mapping, we used the Phecode maps

available in the PheWAS catalog.26 We had to review the mappings

to the raw data due to some typos in the Cerner diagnosis dictionary

table that led to ICD-9/10 codes not exactly matching the corre-

sponding records in different mapping files (mainly missing the last

digit, which can be either 0 or 9).

All of the Cerner-Diagnosis IDs in our cohort were successfully

mapped to CCS and ICD-9 codes, regardless of those that were

mapped to “noDx” for no mapping as existing in the original map-

ping files. There were approximately 300 ICD-10 codes in our co-

hort that were not mapped that were associated with approximately

100 UMLS codes. We decided to ignore those codes, as they

appeared only a maximum of 10 times in our cohort. Details of the

different terminologies used and the mapping are provided in Sup-

plementary Appendix B.

To understand whether the difference in the predictive model accu-

racy is due to the terminology representation itself or to the informa-

tion loss induced by the mapping process, we focused on the ICD-9/

ICD-10 conversion as an example. We converted the previously con-

verted ICD-9 codes to ICD-10 and named them ICD-10 revert prime

(ICD-100). We did the same for the previously converted ICD-10 codes

and converted them back to ICD-9 and named them ICD-9 revert

prime (ICD-90). For the revert prime mappings, we used only the origi-

nal mapping files provided by CMS without any further review or im-

provement. For reproducibility, we share our codebase and mappings

on https://github.com/ZhiGroup/terminology_representation.

Tasks and models
We evaluated the usefulness of the terminologies described above

for 2 tasks. The first task is the prediction of the DMII patients’ risk

of DHF after 30 days from their first diabetes diagnosis. The second

task is the calculation of the risk score of the patient to be diagnosed

with PC based on the patient’s history until the most recent visit.

For both tasks, we evaluated 2 models: L2LR and RNN. LR is a

popular model for its accuracy and interpretability. The majority of

currently implemented predictive models are based on LR. We used

one-hot encoding for the presence/absence of any diagnosis code as

input for LR. We used the default LR implementation available in

the Scikit-Learn31 package which includes L2 penalty for regulariza-

tion. We also experimented with hyperparameter grid search for the

L2 penalty. In addition, we evaluated a bidirectional RNN. RNNs

are appropriate for modeling the sequential nature of patient medi-

cal records and have been shown to provide high predictive accuracy

in the healthcare domain.1,2,4,32 Following Choi et al,2–4,33 we rep-

resented a patient record as a sequence of visits (encounters) and

each encounter as a set of diagnosis codes. We used an embedding

layer to transform one-hot input diagnosis vectors into dense vectors

and then used a bidirectional gated recurrent unit for propagating

information across visits and a fully connected layer for the output

label. Hyperparameters were chosen by Bayesian optimization. This

architecture was shown to be very competitive in our previous

benchmark.34 We used our previously published code on https://

github.com/ZhiGroup/pytorch_ehr. A detailed description of our

model implementation is available in Supplementary Appendix C.

Statistical analysis for model comparison
We used the area under the receiver operating characteristic curve

(AUROC) as the evaluation metric for the model prediction accu-

Table 1. Description of cohortsa

Characteristic DHF full cohort DHF cohort (study sample) PC cohort (study sample)

Case Controls Case Controls Case Controls

Cohort size (n) 70 782 1 095 412 60 000 60 000 11 486 17 919

Male % 49% 47% 49% 46% 47% 43%

Age [mean (std. dev.)] 70 (12) 60 (14) 70 (12) 60 (14) 69 (19) 63 (13)

Race

White (%) 76% 70% 77% 71% 80% 75%

African American (%) 17% 16% 16% 16% 14% 12%

Average number of visits 13 16 14 15 7 7

Average number of codes 28 32 30 31 23 21

Abbreviations: DHF, development of heart failure; PC, pancreatic cancer.
aWe used the patients’ diagnosis information only before the index visit, which is commonly the last eligible visit before prediction, to train the predictive mod-

els. Details of the cohorts’ composition are presented in Supplementary Appendix A.

Figure 1. Terminology roadmap.
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racy. For deterministic methods, such as L2LR, we apply the Delong

test35 to calculate the significance of the difference between different

models’ AUROC. For probabilistic methods, such as RNN (due to

random initialization of model parameters), we repeated the analy-

ses for RNN models of each terminology 10 times, and multi-group

1-way ANOVA tests (unpaired t-tests for 2 groups) were used for

comparing the means of each terminology. All-pairwise Tukey-

Kramer analysis was used to identify significant group-wise differen-

ces.

RESULTS

As noted, the description of both cohorts is presented in Table 1.

Also as noted, we lost some patient information for the incomplete

terminology mapping, mainly for the primary ICD-10 to 9 code

mappings and the reversed prime conversions. Nevertheless, that

rarely leads to loss of a complete patient sample for the initial rules

of the minimum number of visits, and original diagnosis codes were

redefined before the random sample selection in the DHF cohort.

Thus, our test set of 24 000 patients remains consistent along with

the evaluations of all of our models. For the PC cohort, only a cou-

ple of patients from our test set of 5881 patients were not included

in the ICD-9 mappings; those patients were excluded from the

reported results.

As shown in Table 2, for the DHF prediction, the test AUROC

ranges between 78% and 81% for L2LR and between 83% and

85% for RNN. For the PC prediction, the test AUROC ranges be-

tween 77% and 80.5% for L2LR and between 79% and 82.5% for

RNN. The difference between the RNN and L2LR AUROCs

remains nearly the same among all diagnosis terminologies, approxi-

mately 4.9% on average for DHF and 1.5% for PC. The best L2LR

models’ AUROC is associated with the use of UMLS-CUI on both

tasks, whereas single-level CCS shows the worst AUROC in all tasks

and models. The findings remain consistent even with the DHF full

cohort (Supplementary Appendix D), for which UMLS showed the

highest AUROC (82%). Also, our results remained consistent using

LR with different regularization hyperparameters for both L1 and

L2 regularizations (Supplementary Appendix E).Using the Delong

test to understand the difference in the AUROC significance and

with a P value of .0024 after Bonferroni correction (Figure 2A), we

find that the UMLS results are significantly better than those for the

other terminologies except for the raw data in PC prediction and

PheWAS in DHF prediction. For RNN models, UMLS showed the

highest AUROC for PC prediction, whereas PheWAS was associated

with the best AUROC for DHF prediction. These pairwise compari-

son results are statistically significant based on the Tukey-Kramer

procedure, as shown in Figure 2B and Supplementary Appendix F.

We train and test the RNN models only once on the DHF full cohort

(Supplementary Appendix D). UMLS was the second-best per-

former, with an AUROC of 85.52%, which is 0.34% less than that

of the raw data, which showed the highest AUROC at 85.86%. The

AUROC of PheWAS was lower at 85.07%.

The mapping to ICD-9 is always better than mapping to ICD-10,

although those differences were not significant for L2LR models,

based on the Delong test, but were significant for RNN models. We

hypothesize that the result is due to the majority of the original data

having been recorded in ICD-9, and, thus, mapping to ICD-10 will

incur a loss of information during the terminological translation.

We further investigated this loss-in-translation effect and report the

results in the next section.

Effect of information loss due to terminology mapping
Mapping back from earlier converted ICD-10 codes to ICD-9 was

associated with clear information loss that can be seen in the differ-

ence in the number of codes in our cohort; for example, our cohort

originally had a 26 427-diagnosis code that mapped to a combina-

tion of ICD-9 and ICD-10 codes (Table 2). Approximately 70% of

our patient diagnosis data already were coded in ICD-9 codes; so,

after mapping the ICD-10 codes to ICD-9 and combining the codes

Table 2. Prediction performance of different diagnosis terminologies for the DHF and PC tasksa

Diagnosis terminology Diabetes heart failure cohort (DHF) Pancreatic cancer cohort (PC)

Number of unique codes L2LR RNN Number of unique codes L2LR RNN

Raw data (Cerner-Diagnosis ID) 26 427 80.61 85.48 (0.10) 13 071 80.30 81.43 (0.37)

CCS-single level 284 78.07 82.96 (0.15) 253 77.23 79.03 (0.36)

CCSR 538 78.87 84.17 (0.21) 538 77.92 79.63 (0.34)

ICD-9 11 187 80.12 85.20 (0.13) 7055 79.15 80.78 (0.32)

ICD-10 22 893 79.78 84.35 (0.20) 13 620 78.95 79.27 (0.44)

PheWAS 1820 80.71 85.87 (0.10) 1715 78.82 81.15 (0.31)

UMLS CUI 29 491 81.15 85.55 (0.06) 14 551 80.53 82.24 (0.29)

Abbreviations: AUROC, area under the receiver operating characteristics; DHF, development of heart failure; L2LR, L2 penalized LR; PC, pancreatic cancer;

RNN, recurrent neural network.
aL2LR and RNN show the average and the standard deviation for AUROC on the test set. Bold indicates the values with the highest AUROC per task/model.

Figure 2. Significance of AUROC difference. (A) Logistic regression pairwise

AUROC difference significance calculated using Delong test; P values less

than .0024 are significantly different. (B) For the Tukey-Kramer honest signifi-

cant difference test value, levels not connected by the same letter are signifi-

cantly different.
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with those data originally mapped to ICD-9 codes, we had 11 187

ICD-9 codes in our cohort. Thus, we can explain the decrease in the

number of codes as a result of the grouping effect of the lower di-

mension ICD-9 codes, but, on mapping back to ICD-10 codes, the

number of codes increases only to 14 644 codes, which is approxi-

mately 50% of the number of original diagnosis codes, or a little

higher percentage of the primarily converted ICD-10 codes (22 893

codes). Such information loss may explain the significant decrease in

AUROC, using the ICD-90 and ICD-100 sets (Table 3).

DISCUSSION

For L2LR models, the results were consistent between the 2 predic-

tion tasks. UMLS showed the best performance, whereas CCS

single-level mapping was associated with the lowest AUROC on

both prediction tasks and on both models, which is consistent with

our previous experiments.4 There were no significant differences be-

tween ICD-9 and ICD-10 code mapping, although ICD-9 mappings

are always higher in our experiments. The findings remain consis-

tent even when we evaluated the differences using the DHF full co-

hort (Supplementary Appendix D). There were no significant

differences between CCS and CCSR codes in PC prediction, but the

difference was significant for DHF prediction, which can be

explained by the larger test set in the DHF cohort. In general, al-

though LR models are not longitudinal, they are simple to use and

have been the most commonly used models in EHR predictive

modeling. Our results indicated that UMLS is often the top choice

for predictive modeling when using LR models in our datasets.

For RNN models, the results vary between the different predic-

tion tasks or between different cohort sizes. Whereas UMLS and

PheWAS were the top-performing terminologies, their relative rank-

ings change depending on the tasks. PheWAS was the best-

performing model for DHF in the selected sample cohort, whereas

UMLS was the best-performing for PC prediction. When evaluated

using the DHF full cohort, raw data were associated with the best

AUROC.

We note that it is not our main goal to benchmark models for re-

alistic clinical tasks; therefore, the performance documented here

does not necessarily translate to applicability in the real world. For

example, PC risk prediction is a notoriously difficult task. Our PC

performance may be due to biases in the data preparation. Nonethe-

less, our reported AUROCs are consistent with the range reported in

previous studies for both DHF prediction1,2,4 and PC prediction.6,7

We admit that, although the differences among groups are often

statistically significant, the actual effect sizes are not necessarily

large. For RNN models, the maximum difference in mean AUROC

among UMLS, PheWAS, and raw data in the DHF, and the PC

cohorts were 0.4% and 1%, respectively. The lower difference seen

in the DHF cohort were owing to the larger cohort size, as RNN

models can easily overfit on smaller cohorts. Nonetheless, the effect

of terminologies appears independent of model architecture, and

thus terminology choice has a real impact on predictive modeling.

Although the choice of model architecture (LR vs RNN) has a

major impact on prediction performance, the choice of terminolo-

gies also has a small but significant impact. Moreover, this impact is

on top of the performance difference for model architectures. There-

fore, terminology choice is a decision that has real-world impact.

To understand the key factors of terminologies that have an im-

pact on prediction performance, we look at the characteristics of the

best- and the worst-performing terminology mappings. There are 2

factors related to terminology mapping’s influence on the accuracy

of clinical prediction models from EHRs: quality of the terminology

and the quality of mapping. Although mapping to more expressive

terminology is a common practice for expressive deep-learning mod-

els, it is common for traditional machine-learning methods, such as

LR, to reduce dimensionality in search of a parsimonious model.

Our results showed that, for both L2LR and RNN, large vocabulary

sizes are associated with better performance. UMLS showed both

the best performance in LR models and high performance with

deep-learning models; it is the vocabulary with the highest number

of codes and has the advantage of better semantic consistency and

hierarchical relationships. Surprisingly, PheWAS, with a vocabulary

size of only 1820, showed good performance compared to other ter-

minologies with higher levels of granularity. This can be attributed

to the careful definitions of the mapping, as it was revised based on

statistical co-occurrence, code frequency, and human review.12,13,26

While the performance of the CCS- and CCSR-trained models were

suboptimal during our experiments—mainly due to their smaller vo-

cabulary sizes (284 and 538, respectively)—they may be still a good

choice in practice due to their human readability. Not surprisingly,

the use of raw data provides 1 of the best results as compared to

other terminology-mapping exercises. Such a conclusion can give us

assurance that models can learn from the current data without any

further preprocessing. We can explain the good performance of the

raw data-based models through 2 factors. First, the original coding

type includes a level of important information for our prediction

tasks. Second, the preprocessing and mapping exercise, although of

high quality and including attention to detail, introduces some noise

that may have impact on the model’s learning ability. In our study,

the raw data are represented by the Cerner-Diagnosis ID that maps

to different terminologies, such ICD-9 and ICD-10.

Mapping structured raw data to UMLS-CUI can lead to better

integration with diagnosis information extracted from the unstruc-

tured text as well as data recorded in other terminologies, such as

SNOMED-CT. Further, it will be easier to embed knowledge about

relationships between different clinical entities, including diseases,

medications, procedures, laboratory tests, and so forth.

There are several limitations to this study. The first is the lack of

measurement of the quality of the codes’ mapping. We had observed

a few incorrect ICD-9/ICD-10 codes in the Cerner diagnosis dictio-

nary table, which could be due to data-entry typos. In addition, as

Table 3. Difference in AUROC between primary mapping to ICD-9/10 codes and reversed mapping to ICD-90/100 codes

Number of Codes L2LR AUROC Delong P value RNN AUROC Unpaired t-test P-value

ICD-9 11 187 80.12 P < .0001 85.20 (0.13) P < .0001

ICD-90 9063 79.28 84.18 (0.09)

ICD-10 22 893 79.78 P < .0001 84.35 (0.20) P < .0001

ICD-100 14 644 79.23 83.12 (0.21)

Abbreviations: AUROC, area under the receiver operating characteristics; L2LR, L2 penalized LR; RNN, recurrent neural network.
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we kept the hierarchical mapping especially when using the UMLS

codes, the one-to-many mappings of codes may require extra scru-

tiny. The second is that the prediction labels are derived from the

raw data that are coded in either ICD-9 or ICD-10. This is reflected

by the superior performance of ICD-9 over ICD-10, as the majority

of data were coded in ICD-9. In addition, this may create a bias that

favors ICD-9 or ICD-10 over other terminologies. The third is that

our findings are shown to be valid for only the tested terminologies,

tasks, models, and data sets. The generalizability of our results to

other scenarios warrants further study. The fourth is that, for the

sake of simplicity, we focused on only a single element of the EHR

data: the diagnosis information. Future work that evaluates the ter-

minology representation on other elements, including medication,

procedures, and laboratory tests, as well as the interactions between

the terminology of those elements is warranted. We also plan to

evaluate the same on different tasks to validate the generalizability

of our conclusion.

CONCLUSION

Through benchmarking, we found that the normalization of EHR

diagnosis data to the UMLS standard was the best (or second best)

performing among tested terminologies for both prediction tasks

and both prediction models. For research purposes or local model

development, raw data, when the sample size is large enough, are of-

ten sufficient to achieve decent accuracy. If there is a need for diag-

nosis code grouping for dimension reduction, however, PheWAS,

with fewer than 2000 codes, is the best option. The quality of map-

ping had an impact on our study findings. In our data set, ICD-9

had better results did than ICD-10 mainly because a larger propor-

tion of the raw data was coded in ICD-9.

For a real-world project, when generalizability is a priority and

the quality of terminology mapping is assured, we recommend nor-

malization of terminologies to an expressive common terminology,

such as UMLS. Due to information loss in translation in existing

mapping tools, however, evaluation of mapping quality may be

needed before determining the optimal target terminology for pre-

dictive modeling.
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