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ABSTRACT

Objective: Machine learning (ML) diagnostic tools have significant potential to improve health care. However,

methodological pitfalls may affect diagnostic test accuracy studies used to appraise such tools. We aimed to

evaluate the prevalence and reporting of design characteristics within the literature. Further, we sought to em-

pirically assess whether design features may be associated with different estimates of diagnostic accuracy.

Materials and Methods: We systematically retrieved 2 � 2 tables (n¼281) describing the performance of ML di-

agnostic tools, derived from 114 publications in 38 meta-analyses, from PubMed. Data extracted included test

performance, sample sizes, and design features. A mixed-effects metaregression was run to quantify the associ-

ation between design features and diagnostic accuracy.

Results: Participant ethnicity and blinding in test interpretation was unreported in 90% and 60% of studies, re-

spectively. Reporting was occasionally lacking for rudimentary characteristics such as study design (28% unre-

ported). Internal validation without appropriate safeguards was used in 44% of studies. Several design features

were associated with larger estimates of accuracy, including having unreported (relative diagnostic odds ratio

[RDOR], 2.11; 95% confidence interval [CI], 1.43-3.1) or case-control study designs (RDOR, 1.27; 95% CI, 0.97-

1.66), and recruiting participants for the index test (RDOR, 1.67; 95% CI, 1.08-2.59).

Discussion: Significant underreporting of experimental details was present. Study design features may affect

estimates of diagnostic performance in the ML diagnostic test accuracy literature.

Conclusions: The present study identifies pitfalls that threaten the validity, generalizability, and clinical value of

ML diagnostic tools and provides recommendations for improvement.
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INTRODUCTION

Machine learning (ML) diagnostic tools may improve the delivery of

health care. Some ML tools demonstrate promising accuracy versus

physicians in diagnosing various diseases.1,2 A variety of ML tools

have even successfully received Food and Drug Administration ap-

proval for commercialization.3 Some ML models are attractive due

to their ability to evaluate massive amounts of data,4–7 low cost of

operation,6,7 and potential to be readily updated if new information
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or training data are available.4,6 The performance of ML tools is

expected to improve over time, given the emergence of improved al-

gorithm architectures, computing capabilities, and availability of

training data.6

Despite these promises, the evidence on the performance of most

ML diagnostic tools is thin. Clinical studies of effectiveness and im-

proved outcomes are sparse. Most ML tests are at best evaluated in

diagnostic test accuracy (DTA) studies. Yet, the methodological

quality of DTA studies is on average relatively poor.8–11

Specifically, it has been demonstrated in metaepidemiological

reviews that various design characteristics, including case-control

designs with healthy controls and severe cases, differential verifica-

tion, and inadequate blinding are associated with higher estimates

of accuracy in conventional diagnostic tests.11–13 Moreover, under-

reporting of key methodological details is common in DTA studies,

greatly decreasing their reproducibility and generalizability.14 The

STARD (Standards for Reporting of Diagnostic Accuracy Studies)

2015 guidelines were proposed to provide reporting standards for

DTA studies,11,15 including aspects of the study design, participant

flow, recruitment criteria, and details of index and reference test ex-

ecution.15 However, the magnitude of potential biases has not been

quantitatively determined for ML DTA studies. ML tools could war-

rant special consideration as they bring new methods and research

communities into the diagnostic testing field. These communities

may not be as familiar with biases identified in the DTA literature to

date, and their work may thus be susceptible to these biases.

ML tools could also be associated with forms of bias that may

not be as important or prevalent in traditional diagnostic tests. For

example, because ML tools rely heavily on training data, it is crucial

that training datasets are large and diverse enough (eg, in severity of

disease, demographics) for models to be generalizable in actual clini-

cal practice.16–19 Safeguards should be in place to keep training and

test datasets distinct to avoid overinflating accuracy estimates.18–21

Algorithms must also be capable of dealing with missing data in

training datasets without introducing bias, especially given that

missing data is common in real-world clinical datasets.7 Finally, cau-

tion must be exercised when assessing models developed on data

that is missing in a nonrandom fashion.22

Some prior work has already started to describe areas for improve-

ment. ML algorithms designed for health care have poor reproducibil-

ity when compared with other ML fields.23 Previous analyses of deep

learning diagnostic tools have also indicated that few such models are

externally validated and that validation is often underreported or

prone to bias.24,25 A systematic review of articles published in 2018

examining ML tools for the diagnostic analysis of medical images

reported that most studies failed to use external validation, cohort

designs, and prospective data collection.26 In this work, we assessed

studies without publication year restrictions and examined a greater

variety of ML diagnostic tools, beyond deep learning or medical imag-

ing. Additionally, we aimed to systematically address a wide variety

of design features, as has been previously done for DTA studies in

conventional diagnostic tools. Furthermore, we utilized a metaregres-

sion approach to empirically assess the association between design

characteristics and estimates of diagnostic accuracy.

MATERIALS AND METHODS

We sought to assess the prevalence of design features and associa-

tion between these features and estimates of accuracy in a systemati-

cally curated sample of ML DTA studies. This sample was compiled

by identifying systematic reviews containing meta-analyses of ML

DTA studies on PubMed. This approach was selected to identify

similar ML DTA studies grouped within meta-analyses in order to

facilitate modelling of the association between estimates of accuracy

and presence of design features among similar studies.

Inclusion and exclusion criteria for systematic reviews
Systematic reviews containing meta-analyses of ML DTA studies

were identified from PubMed using the search strategy detailed in

Supplementary Appendix 1, Box S1-1 (search date, January 13,

2019). Studies were excluded if they did not include meta-analyses,

did not analyze DTA studies of ML diagnostic tools, had inaccessi-

ble primary articles, or contained primary articles not written in En-

glish. ML was broadly defined to include artificial neural networks,

support vector machines, naive Bayes, decision trees and random

forest models, k-nearest neighbors, linear discriminant analysis,

Bayesian networks, classification and regression trees, linear classi-

fiers, and logistic regression models. Studies of any disease and any

publication date were eligible. Article eligibility was assessed inde-

pendently by 2 authors (Y.J.T. and R.J.C.). J.P.A.I. adjudicated any

unresolved discrepancies.

Inclusion and exclusion criteria for individual DTA studies
Only DTA studies with binary classification results (ie, 2 � 2 tables)

analyzed in meta-analyses within the identified systematic reviews

were eligible for inclusion. The grouping of specific binary classifica-

tion tables within specific published meta-analyses was retained. Bi-

nary classification results of studies were excluded if the index test

was not based on a ML algorithm or if binary classification tables

were not available or possible to reliably reconstruct. Binary classifi-

cation tables that were present in more than 1 meta-analysis (n¼3)

were retained in our analysis to preserve the structure of the meta-

analyses. Independent assessment was conducted by 2 authors.

Data extraction
A variety of different study characteristics were extracted from primary

research articles and systematic reviews by 2 authors independently.

Sensitivity, specificity, and numbers of true positives, true nega-

tives, false positives, and false negatives were extracted from pri-

mary research publications or systematic reviews. Occasionally, in

DTA studies, many estimates of diagnostic performance are pro-

vided with subtle differences and different reviewers may extract

data from different binary classification result tables. In cases in

which the data within systematic reviews differed from the data that

we extracted ourselves from the primary publication, the values

from the systematic review were used for analysis in order to align

with the overall intention that each systematic review had in sum-

marizing the data across different studies.

Information on index test modality and the ML algorithm was

extracted. Modality refers to the method by which index tests diag-

nose diseases (eg, by processing images or by evaluating patient

characteristics such as biomarkers), while algorithm refers to spe-

cific ML approaches (eg, artificial neural networks, support vector

machines). We determined if authors of the DTA study had also

designed the algorithm they were evaluating. Additional information

on reference test modality was also extracted.

We also extracted information relevant to 5 design features

shown in prior metaepidemiological studies to be associated with

higher estimates of accuracy in conventional diagnostic tests12:

study design, recruitment criteria, blinded interpretation of tests,

verification procedure, and reporting of population details. Scoring
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of these characteristics was performed in the same manner as in the

corresponding previous metaepidemiological review showing statis-

tically significant evidence for the association of the characteristic

with bias.11,13 Additionally, methodological characteristics not pre-

viously evaluated and considered to be of importance to ML were

also assessed, including appropriateness of validation method and

reporting of both the number of model features and the number of

observations in the training dataset. Specific coding of each feature

is shown in Supplementary Appendix 1 (Supplementary Table S1-1;

Supplementary Figure S1-1).

Metaregression
A metaepidemiologic regression approach utilizing a mixed model

was fit to quantitatively assess the association between study design

features and estimates of diagnostic accuracy. This model is an ex-

tension of the summary receiver-operating characteristic model pre-

viously used to assess the degree of design-related bias in

conventional diagnostic tests.27 The diagnostic odds ratio (DOR)

was utilized as the measurement of diagnostic tool performance.

The DOR incorporates both sensitivity and specificity as:

DOR ¼ Sensitivity � Specificity

ð1� SpecificityÞ � ð1� SensitivityÞ

As previously applied to conventional diagnostic tests,11,13 the log

(DOR) of a particular DTA was modeled as a normally distributed

variable and as a function of the pooled summary DOR for that meta-

analysis, the threshold for positivity used in the particular DTA study,

the effect of design features, and residual error. With this regression

approach, the effect of individual methodological factors was adjusted

for the potentially confounding effect of other design features. For the

a priori defined primary analysis, we specified random effects for only

the intercept and the positivity threshold and fixed effects for all de-

sign feature covariates.13 Design feature covariates were also defined

a priori and included the previously described 5 design features shown

in prior studies to be associated with higher estimates of accuracy,

along with the 2 novel methodological characteristics considered to be

of importance to ML. No feature selection was conducted, and inter-

actions between design feature covariates were not explored. After an-

tilogarithm transform, the coefficients of the terms representing

individual design features can be interpreted as a relative DOR

(RDOR). The RDOR indicates the diagnostic accuracy of a test in

studies lacking a specific design feature, relative to studies with the

corresponding feature. For RDORs >1, studies that fail to implement

the design feature are associated with larger estimates of accuracy as

compared with studies with that design feature. Several secondary

analyses were also conducted (modeling design feature covariates as

random effects; univariable analysis; and complete-cases analysis).

Supplementary Appendix 1 contains additional details on the meta-

regression approach (Supplementary Box S1-2) and secondary analy-

ses (Supplementary Box S1-3).

Data availability
Datasets and analysis scripts used in this study have been deposited on

the Open Science Framework and are available for access online (https://

osf.io/2csz4/?view_only¼45566b4ff7524234947fb4c62b9f90d8).

RESULTS

A total of 275 publications were initially identified from PubMed.

Following exclusion of ineligible publications, 10 systematic

reviews, each containing 1 or more meta-analyses of DTA studies on

ML diagnostic tools, remained (Figure 1). Publication dates of the

systematic reviews ranged from 2009 to 2018. The topics of the sys-

tematic reviews were breast cancer (n¼2), skin cancer (n¼2), intra-

cranial malignancies (n¼2), ovarian cancer (n¼1), Down

syndrome (n¼1), ectopic pregnancies (n¼1), and respiratory disor-

ders (n¼1). The 38 meta-analyses present within the systematic

reviews contain 310 sets of binary classification results. Each sys-

tematic review publication had a median of 2.5 (interquartile range

[IQR], 1-5.75) meta-analyses, and each meta-analysis consisted of a

median of 4 (IQR, 2-14.25) sets of binary classification results. Sup-

plementary Appendix 2 contains the references of the included sys-

tematic reviews.

After further screening for data eligibility and availability, 281

sets of binary classification results were retained. These results

belonged to a total of 114 primary research publications, with publi-

cation dates ranging from 1992 to 2018. Tables 1-4 list additional

characteristics of the included primary research articles and sets of

binary classification results. Supplementary Appendix 3 lists the

references of these primary research publications.

Characteristics of primary research publications
Among the 114 primary research articles included, the majority

of publications (n¼75, 66%) investigated ML tools that aimed

to diagnose diseases by analyzing images such as scans. The top 3

algorithm types used were regressions (n¼31, 27%), artificial

neural networks (n¼27, 24%), and support vector machines

(n¼14, 12%). The majority of the ML diagnostic tools were

compared against histological reference standards (n¼66, 58%).

In 87 (76%) articles, authors investigated the performance of a

diagnostic tool that they had designed within the same

publication.

In most studies (n¼73, 64%), authors directly recruited the

study population. A total of 21 studies (18%) used an existing, pub-

lished dataset instead. The source of the study population was not

reported in 19 (17%) studies. The majority of these study popula-

tions were recruited through a cohort study design (n¼55, 48%). A

total of 27 (24%) studies used a case-control design, and the study

design was not clearly reported in the remainder (n¼32, 28%). Sub-

jects were most commonly recruited solely based on clinical symp-

toms and signs (n¼36, 32%) or based on other test results (n¼33,

29%). A total of 7 (6%) studies recruited patients referred specifi-

cally for the index test. In 37 (33%) studies, recruitment criteria

were unclear.

A total of 23 (20%) studies used blinding in the interpretation of

test results. A total of 20 (18%) studies reported no blinding, 1 study

used different blinding practices for different sets of binary classifi-

cation results, and the remainder did not report blinding (n¼70,

61%). Most studies used the same reference test for all individuals

(n¼69, 61%), and 31 (27%) studies used different reference tests

for subsets of participants. The remainder failed to report sufficient

experimental details to determine if a single reference standard was

used (n¼14, 12%). A total of 37 (33%) studies trained and tested

ML algorithms using internal validation with appropriate safe-

guards. A total of 50 (44%) studies used internal validation without

appropriate safeguards. The remaining studies used external valida-

tion (n¼27, 24%). These characteristics, delineated on the level of

sets of binary classification results, are described in Supplementary

Appendix 4 (Supplementary Boxes S4-1, S4-2). To determine if re-

search practices changed over time, we also compared the character-
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istics of studies that were published before and after the median pub-

lication date, as shown in Supplementary Appendix 4 (Supplemen-

tary Tables S4-1 to S4-4).

Sample sizes
The sample size distributions of the assessed studies are right-

skewed, with most studies having sample sizes toward the lower end

as described in Supplementary Figure S4-1 and Table 3. The median

number of participants in the training dataset was 300 (IQR, 102-

681), and the median sample size for the reported test dataset was

120 (IQR, 54-300). In terms of the number of events, defined as the

minimum of the number of diseased or healthy individuals, medians

were 27 (IQR 12-47) for the test dataset and 47.5 (IQR 26.8-98) for

the training dataset.

Systema�c Reviews 
Extracted from PubMed

N = 275

Systema�c Reviews 
Rejected at Abstract

N = 195 

Systema�c Reviews 
Rejected at Full Text

N = 70

Systema�c Reviews 
Included in Analysis

N = 10

No meta-analyses: 35
Does not analyze DTA studies: 60
Does not analyze machine learning diagnos�c 
tools: 99
Full text unavailable: 1

No meta-analyses: 17
Does not analyze DTA studies: 5
Does not analyze machine learning diagnos�c 
tools: 45
Unable to access primary ar�cles: 1
Does not study diagnos�c models with binary 
outcomes: 2

Sample size of 2x2 table not reported1: 22
Index test not machine learning: 3
Full text unavailable: 1
Sensi�vity or specificity mismatch2: 3

1. Only sensi�vity/specificity pairs were reported and raw  
numbers were not reported for 2x2 table.
2. Sensi�vity or specificity reported in systema�c review 
and the primary 2x2 table do not match and prognos�c 
models are present in systema�c review so a risk of 
erroneously including prognos�c models is present.

2x2 Tables Rejected 
at Data Extrac�on

N = 29

2x2 Tables Included in Analysis
N = 281

(in 114 primary research 
publica�ons)

MA’s Conducted Within 
Included Systema�c 

Reviews
N = 38

2x2 Tables Within 
Included MA’s 

N = 310

Figure 1. Study flowchart showing publications excluded or included in the analysis. DTA: diagnostic test accuracy; MA: meta-analysis.
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Reporting of experimental details
The level of unreported experimental details in primary research

articles varied across the different reporting items assessed (Figure 2,

Supplementary Table S5-1). To assess reporting, we looked only at

the main text and supplementary material of the primary publica-

tion and not in any cited references. The 3 categories with highest

unreported details were ethnicities of participants (90%, n¼102),

blinding in interpretation of test results (62%, n¼70), and age of

participants (49%, n¼56). Underreporting was also relatively high

for rudimentary methodological characteristics including study de-

sign type (28%, n¼32), number of features in the algorithm (22%,

n¼25), recruitment criteria (33%, n¼37), and the sample size of

the training set (28%, n¼32). The proportion of unreported details

on the level of binary classification result tables is described in Sup-

plementary Appendix 5.

Among the 73 studies that directly recruited their study popula-

tion, 7 (10%) studies did not report the type of study design and 12

(16%) did not report the recruitment criteria. In contrast, among

the remaining 41 studies that either used a previously published

dataset or did not clearly define the source of their dataset, the cor-

responding number of studies was 25 (61%) for both of these cate-

gories.

In the 87 studies in which the authors assessed the performance

of a diagnostic test they had designed within the same publication, 7

(8%) failed to report the sample size of the training dataset. Con-

versely, among the remaining 27 studies that assessed the perfor-

mance of a previously published diagnostic test, the corresponding

number of studies was 25 (93%).

Association of study design characteristics with

estimates of diagnostic accuracy
The relative effects of all assessed characteristics are depicted in Fig-

ure 3 for the primary analysis using the multivariable mixed model

with design covariates modeled as fixed effects.

Most of the assessed characteristics were associated with a

RDOR point estimate above 1, indicating a trend toward potential

association with higher estimates of accuracy (Figure 3). The 3 de-

sign characteristics with the greatest RDOR magnitudes were having

an unreported study design (RDOR, 2.11; 95% CI, 1.43-3.1),

recruiting participants specifically for the index test (RDOR, 1.67;

95% CI, 1.08-2.59), and employing a case control study design

(RDOR, 1.27; 95% CI, 0.97-1.66).

Results for the secondary analyses are detailed in Supplementary

Appendix 6.

DISCUSSION

Our systematic review of ML DTA studies covered a diverse set of

different diagnostic tools that utilized a broad range of different al-

gorithm types and test modalities, and were designed to diagnose a

variety of diseases. The majority of assessed diagnostic tools aimed

Table 1. Key characteristics of primary research articles included in

the analysis (n¼ 114 unique primary research articles)

Primary article characteristics n %

Index test type

Patient characteristics 34 30

Image processing 75 66

Combination of above 3 3

Other 2 2

Type of algorithm of index test

Regression 31 27

ANN 27 24

SVM 14 12

KNN 3 3

Decision trees 3 3

Bayesian methods 1 1

Other methods 14 12

Multiple types within 1 primary article 11 10

Unclear 10 9

Reference standard type

Histology 66 58

Genetic marker 11 10

Physician interpretation 2 2

Combination of above 16 14

Other 5 4

Unclear 14 12

Recruitment of study population

Recruited by authors of primary paper 73 64

Sourced from existing dataset 21 18

Unclear 19 17

Multiple types within 1 primary article 1 0

Designing of index test algorithm

Designed by authors of primary paper 87 76

Not designed by authors of primary paper 27 23

ANN: artificial neural network; KNN: k-nearest neighbors; SVM: support

vector machine.

Table 2. Breakdown of study design characteristics (n¼ 114 unique

primary research articles)

Primary article study design characteristics n %

Study design

Cohort 55 48

Case control 27 24

Unclear 32 28

Recruitment criteria

Symptoms and signs 36 32

Other test results 33 29

Referral for index test 7 6

Unclear 37 33

Multiple types within 1 primary article 1 0

Reporting of population characteristics

Age 58 51

Gender 64 56

Distribution of symptoms 76 67

Ethnicity 12 11

Blinded interpretation of test results

Blinded as reported 23 20

Not blinded as reported 20 18

Unclear 70 61

Multiple types within 1 primary article 1 0

Reporting of number of features and training data sample size

Reported 69 57

Not reported 45 42

Verification procedure

Same reference standard 69 61

Differential verification 31 27

Unclear 14 12

Validation

External validation 27 24

Appropriate internal validation 37 33

Inappropriate internal validation 50 44
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to detect various malignancies, although other diseases such as

Down syndrome and ectopic pregnancies were also represented. We

found that there were no substantial differences in research practices

between studies published before or after the median publication

date, indicating that our observations are likely broadly generaliz-

able over time.

Reporting of experimental details
Overall, we observed significant underreporting of study design

characteristics. The ethnicities of participants and the presence of

blinding in the interpretation of test results were not reported for the

overwhelming majority of publications. Many articles do not even

report enough information to effectively describe the basic structure

of the ML algorithm or the DTA study. For instance, details regard-

ing the type of study design, number of features included in the algo-

rithm, recruitment criteria, and sample size of the training set were

frequently unreported. A recent systematic review of ML prognostic

tools found similarly poor reporting of experimental details,25 and

poor reporting may be a systemic problem within the ML field cur-

rently. This lack of methodological transparency is a considerable

impediment to physicians seeking to evaluate ML diagnostic tools in

terms of their validity, generalizability, and clinical value.13 Further-

more, this underreporting hinders future replication efforts.

In terms of population characteristics of the participants en-

rolled, underreporting was highest for ethnicity, compared with age,

gender, and distribution of symptoms. The somewhat higher,

though still lacking, awareness in reporting of the latter 3 character-

istics might stem from long-standing emphasis on the importance of

such reporting in meta-epidemiological studies conducted on con-

ventional diagnostic tests.12,13 However, ethnicities of participants

remains an important characteristic to report. Different racial

groups have differential susceptibility to a variety of diseases.28,29

Additionally, ML tools in various applications sometimes use train-

ing datasets skewed toward particular ethnic groups.30 As such,

reporting of participant ethnicity remains a key factor in determin-

ing generalizability of a diagnostic tool.

For type of study design and recruitment criteria, lack of reporting

is especially severe when authors used a previously published dataset

instead of recruiting study participants on their own. Similarly, the

proportion of studies that did not report training dataset sample size

was much higher for publications assessing the performance of a pre-

viously published algorithm. This may result from difficulty in eluci-

dating these characteristics from published resources; a perception

that simply citing the reference of the resource is a sufficient substi-

tute, especially for more established resources; a lack of appreciation

of the value in reporting these characteristics; or worse, an outright

failure of authors to consider how these characteristics relate to bias

when using published resources for convenience. Authors who use

such resources should do so with due consideration of whether they

are valid and appropriate for the questions they want to address.

Table 3. Key characteristics of diagnostic tests included in this anal-

ysis (n¼ 281 sets of binary classification results)

Diagnostic test characteristics Median IQR

Diagnostic odds ratio 20.5 10.7-45.7

Sample size of reported binary classification

result tables

120 54-300

Sample size of training dataa 300 102-681

Number of featuresb 4 3-7

Index test type n %

Patient characteristics 179 64

Image processing 94 34

Combination of above 5 2

Other 3 1

Type of algorithm of index test n %

Regression 148 53

ANN 67 24

SVM 21 8

KNN 6 2

Bayesian method 6 2

Decision trees 5 2

Other methods 17 6

Unclear 11 4

Reference standard type n %

Histology 200 71

Genetic marker 16 6

Physician interpretation 3 1

Combination of above 26 9

Other 15 5

Unclear 21 8

Recruitment of study population n %

Recruited by authors of primary paper 205 73

Sourced from existing dataset 49 17

Unclear 27 10

Designing of index test algorithm n %

Designed by authors of primary paper 130 46

Not designed by authors of primary paper 151 54

ANN: artificial neural network; KNN: k-nearest neighbors; SVM: support

vector machine.
aTraining dataset sample size was not reported for 157 sets of binary classi-

fication results.
bNumber of features was not reported for 29 sets of binary classification

results.

Table 4. Breakdown of covariates used in the metaregression

(n¼ 281 sets of binary classification results)

Metaregression covariates n %

Study design

Cohort 185 66

Case-control 52 19

Unclear 44 16

Recruitment criteria

Symptoms and signs 167 59

Referral for index test 10 4

Other test results 50 18

Unclear 54 19

Reporting of population characteristics

Age 167 59

Gender 213 76

Distribution of symptoms 186 66

Blinded interpretation of test results

Blinded as reported 28 10

Not blinded as reported or unclear 253 90

Reporting number features and number of observations in training data

Reported 109 39

Not reported 172 61

Verification procedure

Same reference standard 202 72

Differential verification or unclear 79 28

Validation

External validation 151 54

Appropriate internal validation 48 17

Inappropriate internal validation 82 29
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Figure 2. Plot describing the proportion of unreported experimental details across primary research articles included in the analysis (n¼ 114 primary research

articles).

Figure 3. Forest plot describing the effect of study design characteristics on estimates of diagnostic accuracy. Plotted are relative diagnostic odds ratios (RDORs)

and their 95% confidence intervals (95% CIs) estimated in a multivariable mixed-effects metaregression with the design covariates modeled as fixed effects. The

reference categories are indicated with [ref].
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Effect of study design characteristics on estimates of

diagnostic accuracy
Overall, we observed that various study design characteristics were

associated with different estimates of diagnostic accuracy. The

results largely trended in the same direction as previous metaepide-

miological studies of traditional diagnostic tests.11–13 These design

features likely play a similar role in both ML and conventional diag-

nostic tools. For example, features such as study design, blinded in-

terpretation of tests, differential verification, and recruitment

criteria are likely to be important considerations regardless of what

test is being evaluated, even though substandard studies may not al-

ways be biased to the same extent in their results.

In addition to the covariates previously assessed, we also investi-

gated the effect of validation methods. We found that external valida-

tion was less common than internal validation. A recent systematic

review of artificial intelligence algorithms for image analysis also

found similar results.26 Compared with external validation, studies

employing either appropriate or inappropriate internal validation

were possibly more likely to be associated with higher estimates of ac-

curacy, though this was not statistically significant at the 5% level of

significance. This observation is in line with a recent systematic review

assessing deep learning algorithms as diagnosis tools.24 Inappropriate

internal validation was also more commonly used than appropriate in-

ternal validation. Qualitatively, we noted that authors frequently

tuned their models (in terms of inputs, hyperparameters, or algorithm

types) on the same dataset that was used to derive the reported mea-

sure of diagnostic test accuracy.31–34 Additionally, we observed that

some authors used different datasets for training and tuning the algo-

rithm (through cross-validation or split sample) but selectively

reported only the algorithm that performed optimally on the tuning

dataset as their measure of diagnostic test accuracy.35–38 These obser-

vations are corroborated by a recent systematic review on ML clinical

prediction models demonstrating widespread use of validation proce-

dures that could be prone to bias, such as conducting tuning or vari-

able selection on data eventually used to test models.25

Encouragingly, however, we observed that newer studies appear to be

adopting better validation practices, with higher proportions of stud-

ies utilizing external validation or appropriate internal validation as

compared with older studies. Overall, we believe that validation meth-

ods merit great consideration as well as continued investigation to

track changes in practices over time.

Recruitment of participants specifically for the index test was

demonstrated to be associated with a larger estimate of accuracy in

our study but was previously associated with lower estimates of ac-

curacy.11 The authors of the prior metaepidemiological study pro-

posed that patients referred for the index test are likely to have

uncertain disease status, thus leading to a decrease in proportion of

true positives and true negatives.11 Perhaps, specifically for ML di-

agnostic tools, investigators who refer patients for the index test

might be selecting patients for whom the algorithm is most likely to

perform well. For instance, investigators might select patients with

characteristics most similar to the training dataset.

Similarly, in our study, insufficient reporting of population char-

acteristics was associated with lower estimates of accuracy (though

not significant at the 5% level), while in a prior study the same co-

variate was associated with a higher estimate of accuracy.13 The

prior study’s authors highlight that it is unclear how this covariate

influences measures of accuracy, as reporting practices are not di-

rectly related to methodological design.13 Indeed, unreported experi-

mental details are a soft indicator of quality that can be difficult to

interpret.

Recommendations
Throughout this study, we identified areas of possible improvement

that we believe should be emphasized.

First, for authors of ML DTA studies, we recommend a greater

emphasis on methodology reporting and awareness of potential

biases. The STARD 2015 guidelines for general DTA studies is a

natural starting point.15 Items of extra importance for ML DTA

studies may include details of validation methods, description of the

feature selection methods, and details of missing data and missing

data handling methods.

Second, for metaresearchers in the field, transparency can be im-

proved. The binary classification result tables reported in systematic

reviews do not always match those reported within the primary re-

search publication.34,39–43 Often, documentation of reasons behind

this discrepancy was absent or poor. Careful definitions and prespe-

cification thereof may avoid having multiplicity and ambiguity in di-

agnostic performance estimates.

Third, there are no consensus identifiers for publicly available

datasets or published algorithms, unlike in other fields of research

with formalized databases (eg, PubChem). This makes it extremely

difficult for researchers to track the performance of specific algo-

rithms across different patient populations. Improved tracking

through consensus identifiers would greatly improve transparency

and ease evidence synthesis.

Finally, DTA studies provide important metrics when assessing

the diagnostic accuracy of ML diagnostic tools, but accuracy may

not directly correspond to improved clinical outcomes. Hence, we

recommend that, following DTA studies, researchers should also

conduct clinical studies of effectiveness and improved outcomes to

assess clinical efficacy.

Limitations
We wish to highlight several limitations of the present study. First,

we used unclear reporting as inherently imperfect, soft indicators of

poor quality for several covariates. When studies failing to report

experimental details are associated with an RDOR >1, the implicit

assumption is that these studies implemented suboptimal practices

that were not reported. However, having an RDOR around 1 for

such studies does not necessarily indicate that studies reporting

details and studies not reporting details both utilized optimal practi-

ces. It is also possible that both categories of studies implemented

suboptimal practices.

Second, in our metaregression, sets of binary classification

results are grouped in the same meta-analyses that they appeared in

within the published literature. In previous metaepidemiological

studies using the same approach, grouped studies for the metaregres-

sion utilized the exact same diagnostic test applied to different popu-

lations, settings, or experimental designs. This was not possible to

replicate, as not every published meta-analysis comprised studies

evaluating the exact same ML test. Frequently, these were distinct

tests deemed similar enough to group within a meta-analysis by re-

spective authors, based on algorithm type, test modality, or other

characteristics. We preserved this grouping, as any attempts to re-

group binary classification results would have been arbitrary.

Third, our PubMed search strategy is unable to capture unpub-

lished ML models and ML models not included in prior meta-

analyses. The prevalence of design features and their true effects on

accuracy could well be different if the population of models not cap-

tured is markedly different from the assessed studies. To quantify

the generalizability of our findings, we compared the fields of study
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captured using our search strategy with those captured by recent sys-

tematic reviews of ML tools that were not limited to meta-analy-

ses.25,26 Our search strategy captured some of the main fields that

use ML tools for diagnosis including radiology, oncology, and der-

matology.25,26 However, it missed some fields such as cardiovascu-

lar medicine, critical care, ophthalmology, and endocrinology.

Studies from each of these fields represented about 10% to 14% of

studies captured by the other systematic reviews.25,26

Last, DOR is an imperfect measurement of accuracy. Individual

study design characteristics may have opposing effects on sensitivity

and specificity.12,44,45 These opposing effects on sensitivity and spe-

cificity may result in a relatively unchanged DOR and are not read-

ily captured by analyses using the DOR as a metric of accuracy.

CONCLUSION

Our review of ML diagnostic tools reveals key areas for improve-

ment, spanning multiple groups of stakeholders. For authors of

DTA studies, reporting of key methodological details is poor, espe-

cially among studies using publicly available datasets or algorithms.

In addition, classically emphasized methodological pitfalls first de-

scribed in conventional diagnostic tests likely hold true for ML tools

as well.11,13 We also urge designers of algorithms to critically evalu-

ate the suitability of their validation procedures. Finally, in address-

ing the field as a whole, we argue that there is great value in

improving the tracking of databases and algorithms. Our work

builds on the existing body of evidence examining pitfalls in both

conventional diagnostic tools and other applications of

ML11,13,22,24–26 and underscores the importance of addressing these

shortcomings as ML grows in prominence within medicine.
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