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ABSTRACT

Objective: Normalizing clinical mentions to concepts in standardized medical terminologies, in general, is chal-

lenging due to the complexity and variety of the terms in narrative medical records. In this article, we introduce

our work on a clinical natural language processing (NLP) system to automatically normalize clinical mentions to

concept unique identifier in the Unified Medical Language System. This work was part of the 2019 n2c2 (Na-

tional NLP Clinical Challenges) Shared-Task and Workshop on Clinical Concept Normalization.

Materials and Methods: We developed a hybrid clinical NLP system that combines a generic multilevel match-

ing framework, customizable matching components, and machine learning ranking systems. We explored 2

machine leaning ranking systems based on either ensemble of various similarity features extracted from pre-

trained encoders or a Siamese attention network, targeting at efficient and fast semantic searching/ranking. Be-

sides, we also evaluated the performance of a general-purpose clinical NLP system based on Unstructured In-

formation Management Architecture.

Results: The systems were evaluated as part of the 2019 n2c2 challenge, and our original best system in the

challenge obtained an accuracy of 0.8101, ranked fifth in the challenge. The improved system with newly

designed machine learning ranking based on Siamese attention network improved the accuracy to 0.8209.

Conclusions: We demonstrate the successful practice of combining multilevel matching and machine learning

ranking for clinical concept normalization. Our results indicate the capability and interpretability of our pro-

posed approach, as well as the limitation, suggesting the opportunities of achieving better performance by

combining general clinical NLP systems.
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INTRODUCTION

Electronic health records (EHRs), which detailly document patient’s

medical history and clinical activities, contain a lot of useful infor-

mation such as diseases, symptoms, medications, treatments, and so

on.1 This information holds great value for various applications in

both the healthcare industry and academia, including clinical deci-

sion support, risk evaluation, disease modeling, healthcare quality

measurements, etc.1–4 However, much of the information is embed-

ded in unstructured data of EHRs such as progress notes, discharge

summaries, procedure notes, and so on, which typically are difficult

for direct use or query compared with structured data.
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Clinical natural language processing (NLP), which serves to un-

lock the information by processing those free-text clinical notes in

EHRs, has gained great interest recently from the healthcare indus-

try and medical informatics community. In clinical NLP, one of the

critical tasks is information extraction which typically consists of 2

steps: (1) named entity recognition, which locates or extracts the

syntaxial mentions from the text, and (2) named entity normaliza-

tion, which maps the extracted mentions to concept identifiers in a

standardized terminology. The concept unique identifier (CUI) in

the Unified Medical Language System (UMLS)5 is one of the most

widely used medical terminologies. The clinical concept normaliza-

tion task is critical as it generalized the extracted medical informa-

tion crossing different contexts, notes, and patients, leading to more

exchangeable and effective medical data usage. However, it is also

challenging because of the variation and ambiguity of the terms used

in clinical notes. Therefore, clinical NLP systems that can accurately

normalize the medical mentions to corresponding concepts are

highly desirable.

The 2019 National NLP Clinical Challenges (n2c2) Shared-Task

and Workshop on Clinical Concept Normalization6 was organized

for this topic. The challenge provided annotated medical mentions/

entities as well as the corresponding clinical notes, and asked for

NLP systems that can automatically process the mentions and nor-

malize them to CUI in UMLS.

In this article, we describe a hybrid clinical NLP system for clini-

cal concept normalization, which employs a generic multilevel

matching framework combining customizable matching compo-

nents and machine learning (ML) ranking systems. In addition, we

also investigated a general clinical NLP (GCNLP) system that is

built with Unstructured Information Management Architecture

(UIMA).7 Evaluation and analysis were conducted upon different

aspects between these systems with the n2c2 challenge data. Our

best system submitted to n2c2 was ranked fifth in the challenge. We

demonstrate the advantages of our approaches for feasible and reli-

able concept normalization as well as their limitations.

Clinical concept normalization links free-text mentions into

standardized clinical concepts. It increases the interoperability of

medical data and removes ambiguities associated with text, which is

critical for a wide range of applications in research and industry

such as cohort selection and clinical coding. For instance,

“cardiomegaly,” “enlarged heart,” and “increased heart size” are

semantically identical and all refer to the symptom of heart enlarge-

ment. If we want to select the patients with the heart enlargement

condition for a clinical trial based on their medical records, it could

be very difficult to recognize the similarity among patients without

clinical concept normalization, as different words and expressions

are used. For another instance, “ASA,” “Aspirin,” “Acetylsalicylic

Acid,” “Durlaza,” and “Ecotrin” are commonly used terms in clini-

cal notes referring to the same generic medication of aspirin. Varia-

tion in the expression of medical concepts is very common, which is

also the primary challenge a clinical concept normalization system

aiming to tackle.

Many previous studies, NLP systems, as well as competitions,

have focused on addressing this issue. Among them, several general

clinical NLP systems have been developed, such as MedLEE,8 Meta-

Map,9 cTAKES,10 CLAMP,11 etc. Those systems provide end-to-end

solutions for clinical concept extraction, including both mention ex-

traction and concept normalization. Though those general clinical

NLP systems have been widely used in the community, the normali-

zation is typically based on lexical or syntactic patterns and morpho-

logical variations. Though those systems can serve as decent

baselines, they are hard to be competitive against later on more so-

phisticated concept normalization systems due to the intrinsic limi-

tation of lacking semantic information.12,13 Besides, a series of

challenges have been organized and played as significant roles to

push forward state of the art, including ShARe/CLEF eHealth 2013

Task 1,14SemEval-2014 Task 7,15 and SemEval-2015 Task 14.16

Among the top-performing systems in those challenges, Leaman et

al17 introduced a normalization system with term frequency–inverse

document frequency (TF-IDF) representations of mentions and con-

cept descriptions and a scoring function trained with similarity ma-

trix and pairwise learning-to-rank technique. Zhang et al18

proposed a vector space model (VSM)–based approach in which the

cosine similarity over TF-IDF representations was adopted to rank

the candidates. Ghiasvand and Kate19 presented a pattern-based sys-

tem that combined exact match and edit distance patterns learned

from UMLS and training data. D’Souza and Ng20 introduced a sieve

system employing rule-based matching and lexical variations.

In recent years, deep learning-based approaches have been pro-

posed on this topic. Among them, convolutional neural networks,21

bidirectional long short-term memory networks,12 and more re-

cently, bidirectional encoder representations from transformers

(BERT)22 have been investigated for concept normalization in bio-

medical domain. With pretrained embeddings or language models,

those deep learning systems have intrinsic advantages in capturing

semantic information. And they typically outperform the traditional

systems, achieving state-of-the-art performance. However, typical

deep learning models require domain-specific pretrained models and

sufficient task-specific labeled data for fine-tuning. Besides, they typ-

ically require longer running time, are more sensitive to data quality

issues such as annotation errors or bias, and have a lack of interpret-

ability and transparency. Thus, traditional approaches at some point

still hold their own value for better efficiency, robustness, interpret-

ability, and transferability, and are still the mainstream methods in

commercial products.23

In this article, we propose a hybrid method that combines and

utilizes the traditional morphology-based dictionary lookup,

semantics-based text representations, and ML methods in an effi-

cient way. More specifically, we designed a generic multilevel

matching framework that can apply cascading matching and choose

the appropriate normalization methods for a given mention. The ra-

tionale is that there is no need to apply heavy deep learning models

or pretrained representations if the mention-concept linking can be

found by low-cost morphology-based dictionary matching. For

those cases cannot be solved by morphological matching, semantic

modeling, and ML ranking system are required.

For the ML ranking system design, we adapted the idea from

previous works12–22 that concept normalization benefits from either

task-specific similarity scoring functions or task-specific text repre-

sentations. We explored 2 lightweight ML ranking systems under

these 2 directions: (1) a system with trainable ensemble-based simi-

larity score but various predefined text representations (e.g. word

embedding, BERT) and (2) a system with predefined similarity score

(Cosine similarity) but trainable text representation with Siamese at-

tention networks. The first system aimed to leverage the advantages

of various pretrained representations and to be fine-tuned with en-

semble weights in the scoring function, while the second system

aimed to use a simple scoring function but with representation fine-

tuned with attention.

The multilevel matching framework not only combines tradi-

tional morphological matching and ML ranking, but also provides

the flexibility to define the usage and priority of each method,
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ensuring both accuracy and efficiency. Our hybrid systems were

evaluated using the 2019 n2c2 track3 corpus and achieved good per-

formance in the challenge. We also investigated an in-house general

clinical NLP system on this task for comparison.

MATERIALS AND METHODS

Task and data
In 2019 n2c2 challenge on clinical concept normalization, partici-

pants were provided with annotated clinical-related mentions as

well as the original notes and were asked to map those mentions to

CUIs in the UMLS 2017AB version. For example, “heart attack”

and “myocardial infarction” should be mapped to the same CUI of

C0027051. Furthermore, only 1 CUI was expected as the output per

mention. If there was no proper CUI to be assigned to the given

mention, a “CUI-less” label should be outputted. The n2c2 chal-

lenge used the Medical Concept Normalization corpus.24 The Medi-

cal Concept Normalization corpus contains 100 discharge

summaries from Partners HealthCare, which provides the normali-

zation for a total of 10 919 concept mentions, with 3792 unique

concepts from 2 vocabularies, SNOMED-CT (Systematized Nomen-

clature of Medicine Clinical Terms)25 and RxNorm,26 in UMLS. It

covers diverse categories of clinical concepts such as diseases, disor-

ders, symptoms, medications, exams, procedures, etc. Table 1 shows

more details of the data.

During the challenge, these 100 discharge summaries were split

into training and testing datasets with a 50/50 split. All the mentions

extracted from those notes were annotated with span locations and

corresponding CUI or “CUI-less” label. Only the training dataset

was released during the development phase, and the final evaluation

was performed by the organizer against the held-out test dataset.

Systems overview
We developed 3 NLP systems for this task: (1) a hybrid multilevel

matching system embedded with an ensemble-based ML ranking

subsystem with similarity features extracted from pretrained

encoders; (2) a hybrid multilevel matching system embedded with

an attention-based ML ranking subsystem trained with Siamese at-

tention networks; and (3) an in-house general clinical NLP

(GCNLP) system based on UIMA framework and Lucene27 lookup

to serve as the baseline.

As a comparison, the 2 hybrid systems shared the same set of

methods in each matching level and only differed in the ML ranking

method. The cascading design of the multilevel matching system

ensures both effectiveness and efficiency of applying normalization

methods. As mentioned above, the rationale of exploring these 2

ML ranking methods is to benefit from either a trainable task-

specific similarity scoring function or text representation. In contrast

to these hybrid systems, the GCNLP system was not conducted with

fine-tuning with n2c2 data, and it searched among all the CUIs in

UMLS without considering the annotation preference from the

training data. Besides, the GCNLP system used a more sophisticated

disambiguation module pretrained with a much larger dataset.

These facts indicate its potential of being a good complement of the

hybrid systems and draw our interest to test it on this task.

Multilevel matching system
This matching system employs a generic multilevel matching frame-

work. The basic operation in this system is “matching,” which con-

sists of 5 components: term modification, dictionary, query, T
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matching and ranking, and disambiguation. Figure 1 shows the

high-level architecture of this system. With this framework, one can

customize the criteria of the components in each matching level and

define the sequence of matching to be performed. For the n2c2 task,

we specifically implemented the following components and 11

matching levels according to error analysis during the development

process. More details of the development process and the matching

levels can be found in the Supplementary Appendix. The compo-

nents are:

• Term modification: This component defines the form of the given

mention to be used for searching. 5 modification methods were

employed, including lower case, removing stop words, lemmati-

zation, abbreviation replacement, and medication normalization.

In this study, we used the default English stop words from

NLTK28 package and list of medical abbreviations from Wikipe-

dia29 for abbreviation replacement. A medication brand name to

generic name mapping table extracted from UMLS was used for

medication normalization.
• Dictionary: Dictionary contains the mapping between CUIs and

their synonyms/descriptions. This component defines the range

of CUI and synonyms to be used for matching. Three levels of

dictionaries were used, including annotated Term-CUI mapping

from the training data, UMLS subset (with CUI included in train-

ing dataset), and the UMLS full set.
• Query: Considering the computing cost and speed, not all the

synonyms in the dictionary should be considered for matching

with the given mention. Thus, this component defines the criteria

for selecting synonym or CUI candidates. Two types of queries

were considered: (1) the synonyms should contain all words

from the mention and (2) the synonyms should contain at least 1

word from the mention.
• Matching and ranking: This component defines the method to be

used for concept lookup. In this study, exact match of the men-

tion with modifications against CUI synonyms was used as the

baseline. However, for cases without any exact match, 2 ML

ranking systems considering semantic information were devel-

oped. More details regarding these 2 ranking systems can be

found in the following section.
• Disambiguation: Sometimes, a given mention can trigger multi-

ple CUIs with the matched synonyms. This component defines

the method to select the preferred CUI among them. Two meth-

ods were considered in this component: (1) the majority class

from training data (ie, the preferred CUI from the training set)

and (2) similarity scores of other synonyms instead of the best-

matching one.

The process performed in each matching level is (1) by given a

“term” or modification of the term, generate “query” to fetch the

CUI candidates from the “dictionary”; (2) then use one method

from “matching and ranking” to select the matched CUIs; and (3)

use “disambiguation” system to select only one best CUI if the

matching triggered multiple CUIs. This operation is performed re-

cursively with different combinations of the methods until an appro-

priate CUI has been found.

ML ranking systems
Two ML ranking systems based on semantic similarity were devel-

oped as part of the multilevel matching system: (1) an ensemble sys-

tem based on similarity features extracted from word embedding,

TF-IDF vectors, WordNet,30 and BERT/BioBERT31,32 and (2) a sim-

ple similarity system merely based on Siamese attention networks

and word embedding.

Instead of classifying whether yes or no for each candidate to

be selected as the preferred CUI, we approached this task as a

ranking problem which focused more on the relative similarity

scores among the candidates. Both of the ML systems employed

the same processes of candidate generation, training sample

preparation and loss function. For candidate generation, we used

the average-pooling of the word embedding as the default repre-

Figure 1. Architecture of the hybrid system combining the multilevel matching with machine learning ranking systems. BERT: bidirectional encoder representa-

tions from transformers; CUI: concept unique identifier; UMLS: Unified Medical Language System; VSM: vector space model.
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sentations of the mentions and CUI synonyms. The word embed-

ding was trained with word2vec algorithm and MIMIC III (Med-

ical Information Mart for Intensive Care-III)33 data, and with a

dimension of 200. Cosine similarities between the mention and

CUI synonyms were calculated as the default ranking scores to

select the candidates. Then top 30 CUIs with the highest scores

(maximum score among all synonyms of each CUI) were selected

as the candidates.

The triplet loss algorithm is a widely used algorithm for ranking

problems originally introduced in face recognition.34 Here, we used

it as our loss function and prepared samples accordingly. The triplet

loss is defined as:

L ¼ maxðD a; pð Þ �D a;nð Þ þmargin;0Þ (1)

Where a, p, n represents anchor input, positive input, and nega-

tive input, respectively. D is the distance function and margin is a

positive hyperparameter. The basic idea of triplet loss is to guide the

ML model to minimize the anchor-positive distance and maximize

the anchor-negative distance. In the training dataset, the given men-

tion which was asked for a matched CUI was regarded as the an-

chor. The synonyms of the annotated CUI (ground truth) were

regarded as positive inputs. And the synonyms of other candidate

CUIs were regarded as negative inputs. The distance was defined as

negative value of the final similarity score outputted from the mod-

els. During training, samples were prepared in form of triplets and

were fed into the ML ranking models.

For the ensemble model, we directly trained a single layer dense

neural network with the similarity features extracted from pre-

trained encoding representations of the mentions and CUI syno-

nyms. The similarity features are:

• Word embedding–based: An average-pooling or max-pooling of

the word embeddings were used as the representations. For each

pooling method, we calculated the cosine similarity and Manhat-

tan similarity as features.
• VSM-based: The mention was treated as query and CUI syno-

nyms were treated as documents in VSM model. The cosine simi-

larity and Manhattan similarity over TF-IDF representations

were calculated as features.
• WordNet-based: Similarity score based on WordNet and corpus

statistics30 was generated as a feature. This similarity score was

implemented as a linear combination of semantic similarity and

word order similarity as introduced by Li et al,30 where the se-

mantic similarity was calculated based on the hierarchical se-

mantic distance between words in WordNet.
• BERT-based: Sentence-level vectors generated by pretrained

encoders, BERT31 and BioBERT,32 were used as the representa-

tions. Here, we only encoded the given mention or CUI syno-

nyms themselves without considering the surrounding context.

Then cosine similarity and Manhattan similarity for each

encoded mention-synonym pair were calculated as features.

In order to obtain a better mention and synonym representation

for fast and low-cost pairing or searching, we developed another

simple ML ranking system based on Siamese attention networks.

The system contains 4 parts, as shown in Figure 2:

• Preprocessing: This module takes in the triplet inputs consisted

of anchor, positive, and negative phrases. Stop words and special

characters are removed or replaced during this process.

• Embedding layer: In this layer, the input phrases are tokenized.

And each word in a phrase is transferred into a real-valued vec-

tor. Then the phrase initially as a sequence of words is repre-

sented as a sequence of word embedding vectors.
• Siamese attention layer: Attention provides a trainable weight

vector that guides the system to focus on task-specific semantic

information. Here, weighted-pooling is applied among word

embeddings to generate phrase-level vectors. More details can be

found in Supplementary Appendix.
• Output layer: After gathering the vector representations of the

anchor, positive, and negative phrases, cosine similarities of

anchor-positive and anchor-negative pairs are calculated and fed

into the triplet loss.

In contrast to the arbitrary average-pooling or max-pooling, the

attention layer provides a more sophisticated way of pooling the

word-level encodings into a phrase-level representation. The atten-

tion layer can help the system to focus more on the words with

higher task-specific semantic importance, leading to better perfor-

mance for other NLP tasks, as reported elsewhere.35–37 In addition,

compared with the ensemble system that relies on various pretrained

encoders, this system only uses word embedding and cosine simi-

larly. This simple design leads to a faster, lighter, and more inter-

pretable solution for semantic searching or matching.

GCNLP system
The GCNLP system was modified from an in-house general medical

information extraction system that was initially designed for

computer-assistant coding.38 This system provides an end-to-end so-

Figure 2. Architecture of the machine learning ranking system based on the

Siamese attention network.
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lution for clinical concept extraction, covering both mention and en-

tity extraction and concept normalization. This UIMA-based system

contains 5 modules, as shown in Figure 3. For medical entity extrac-

tion, it employs Lucene27 lookup of CUI in UMLS. A disambigua-

tion submodule based on PageRank algorithm39 and VSM40 is also

included considering context information, semantic type as well as

the co-occurrence among concepts. More details about this system

can be found in our previous works37,41 and the Supplementary

Appendix.

RESULTS

The systems were evaluated as part of the 2019 n2c2 challenge.

System-generated CUIs are compared against the ground-truth CUIs

provided by the organizers, and the overall accuracy was considered

as the evaluation metric. Table 2 shows the results (accuracy) of our

systems: (1) GCNLP: the general clinical NLP system; (2) Hybrid1:

the hybrid system combing multilevel matching with the ensemble-

based ML ranking; (3) Hybrid2: the hybrid system combing multile-

vel matching with the attention-based ML ranking; (4) Meta1: a

meta system used the Hybrid1 as the base but replaced some of the

predictions (predictions with low confident scores or trigging disam-

biguation) with the GCNLP outputs; and (5) Meta2: a meta system

similar to Meta1 by replacing some Hybrid2 outputs with the

GCNLP outputs.

Among these systems, the GCNLP system, the Hybrid1 system,

and the Meta1 system were developed during the 2019 n2c2 chal-

lenge time frame and submitted for official evaluation. The Hy-

brid2 and the Meta2 system were developed after the challenge. As

shown in Table 2, our Hybrid1 and Meta1 system achieved high

accuracies of 0.8009 and 0.8101, respectively, and both were

within the scope of the top 10 teams’ best systems. And the Meta1

system won the fifth place among 33 teams in the challenge. More-

over, the Hybrid2 and Meta2 system, which replaced with the new

ML ranking system based on Siamese attention, obtained even

higher accuracy, of 0.8116 and 0.8209, respectively, indicating the

importance of using attention in this task. Figure 4 provides 2

examples to demonstrate the effect of attention. For each case, a

triplet of anchor, negative, and positive phrases are given with the

weight of each word under either average-pooling or attention-

based pooling algorithm. And then cosine similarity scores of

anchor-negative, anchor-positive pairs are calculated for ranking.

For average-pooling, every word is equally weighted. However,

with attention, each word is weighted based on its task-specific se-

mantic importance. In Case1 the attention layer helps the system to

recognize that “fever” carries more important information than

“general.” As a result, the system prefers the positive phrase with a

higher semantic similarity. Similarly in Case2, “abnormal” is

assigned with the highest weight by attention in the negative

phrase, which plays a key role for the system to distinguish the neg-

ative and anchor phrases semantically.

The system performances regarding mention length (number of

words) are established in Table 3. As shown in Table 3, in general,

all the systems experienced performance drop with the increase of

mention length. In addition, the performance of Hybrid1 and Hy-

brid2 systems were initially pretty close when the mention length

equaled 1. However, with the increase of mention length, the Hy-

Figure 3. Architecture of the general clinical natural language processing system. This system is based on the Unstructured Information Management Architec-

ture framework and Lucene lookup. NER: named entity recognition; POS: part of speech.

Table 2. Overall systems’ performance

Our Systems Score

GCNLP (General Clinical NLP)a 0.6974

Hybrid1 (Matching with Ensemble-Ranking)a 0.8009

Hybrid2 (Matching with Attention-Ranking)b 0.8116

Meta1a 0.8101

Meta2b 0.8209

GCNLP: general clinical natural language processing.
aSystems submitted to n2c2 2019 for official evaluation.
bSystems developed after n2c2 challenge.
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brid2 system with attention-based ML ranking remarkably outper-

formed the Hybrid1 system, with accuracy difference as high as

1.9%-5.5% when mention length equaled to 2-4. This result pro-

vides another aspect supporting our explanation of the advantages

of using attention for semantic ranking. Table 4 also provides the

system performances on each semantic type. Here, the

“SignSymptom,” “Concept,” and “Medication” groups form the

high-performance tier with accuracy over 85% for all the Hybrid or

Meta systems, which may due to the high population of short men-

tions in these groups. Besides, almost all systems didn’t perform well

on “Anatomy,” “Others,” and “CUI-less” groups with accuracy be-

low 70%. Especially for “CUI-less,” the most of the correct predic-

Figure 4. Examples to demonstrate the effect of attention on semantic similarity ranking.

Table 3. Systems’ performance on mention length with test dataset

Number of words Mention GCNLP Hybrid1 Hybrid2 Meta1 Meta2

1 3840 0.7698 0.8586 0.8607 0.8711 0.8753

2 1778 0.6755 0.7570 0.7762 0.7559 0.7733

3 858 0.5175 0.7389 0.7576 0.7448 0.7634

4 272 0.5588 0.6581 0.7132 0.6875 0.7279

5 87 0.3793 0.4828 0.5172 0.4828 0.5172

�6 90 0.4889 0.5333 0.5111 0.5889 0.5667

CUI: concept unique identifier; GCNLP: general clinical natural language processing.

Table 4. Systems’ performance on semantic type with test dataset

Semantic Type Mention GCNLP Hybrid1 Hybrid2 Meta1 Meta2

DiseaseDisorder 1218 0.7118 0.8177 0.8268 0.8333 0.8489

Exam 1121 0.7743 0.8359 0.8385 0.8475 0.8519

Concept 951 0.7466 0.8738 0.8707 0.8864 0.8864

Medication 857 0.8588 0.8670 0.8775 0.8646 0.8798

Finding 746 0.6005 0.7359 0.7507 0.7386 0.7547

Procedure 565 0.5504 0.6973 0.7133 0.7115 0.7274

SignSymptom 457 0.8468 0.9081 0.9190 0.9234 0.9234

Activity 305 0.7574 0.7902 0.8197 0.8098 0.8295

Anatomy 282 0.4468 0.6489 0.6844 0.6596 0.6950

Others 206 0.4951 0.6893 0.6748 0.6990 0.6845

CUI-less 217 0.2028 0.5300 0.5899 0.5023 0.5207

CUI: concept unique identifier; GCNLP: general clinical natural language processing.
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tions were contributed from the already labeled mention in training

data. For an unknown mention, the systems were trying to assign a

CUI in UMLS instead of “CUI-less.”

Without any fine-tuning using the training data, the GCNLP sys-

tem obtained the lowest performances on the overall test data as

well as on almost all the subcategories as shown in Tables 2, 3, and

4. However, the GCNLP system has its own value and served as a

good complement to our Hybrid systems. As shown in Table 2, both

the Meta1 and Meta2 systems gained �1% accuracy enhancement

comparing to Hybrid1 and Hybrid2 systems, respectively. The

GCNLP system assisted the Hybrid systems in the following aspects.

First, for the CUI candidates, the queries used in Hybrid systems re-

quired the synonyms of CUI candidates to contain either one or all

word from the mention. Thus, mentions with spelling errors or lexi-

cal variants could end up with no CUI candidates or CUIs with low

confident scores. Thus, the GCNLP with spelling check and greedy

searching for all the CUI in UMLS served as an alternative solution.

Second, in disambiguation, our Hybrid systems employed a simple

disambiguation module without considering the context around the

mention. In contrast, the GCNLP system used a more sophisticated

disambiguation module considering context information, semantic

type of CUIs and pretrained with a much larger dataset. These facts

indicate the opportunities of achieving better performance by either

combining the general clinical NLP and the hybrid systems or devel-

oping more sophisticated algorithms for CUI candidate generation

and disambiguation.

CONCLUSION

In this study, we have described a hybrid clinical NLP system that

can automatically normalize clinical mentions into concepts in stan-

dardized medical ontologies such as CUIs in UMLS. This hybrid sys-

tem is based on a generic multilevel matching framework that

integrates customizable matching components and ML ranking sys-

tems. We also demonstrated 2 simple ML ranking systems based on

either ensemble of various similarity features extracted from pre-

trained encoders or a Siamese attention network, targeting at effi-

cient and fast semantic searching and ranking. The evaluations of

our systems with the data from 2019 n2c2 challenge on Clinical

Concept Normalization task fully demonstrated the capability of

our approaches. In addition, we also discussed the limitation of our

current systems and the opportunities for achieving better perfor-

mance by combining general clinical NLP systems. Besides, we be-

lieve our concept normalization approaches are designed in a

generic manner with good transferability and interpretability, which

can be applied to applications in other terminologies or domains

such as International Classification of Diseases–Tenth Revision

mapping, or entity linking in general NLP domain. Moreover, the

ML ranking systems can be used independently for applications re-

lated to semantic searching and ranking.
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