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Introduction: : The recent pandemic outbreak of SARS-CoV-2 has been associated with a lethal atypical 

pneumonia, making COVID-19 an urgent public health issue with an increasing rate of mortality and mor- 

bidity. There are currently no vaccines or therapeutics available for COVID-19, which is causing an urgent 

search for a new drug to combat the COVID-19 pandemic. The lipid membrane alternation efficiency of 

small antimicrobial lipopeptides enables them to block viral membrane fusion to the host cell. Lipopep- 

tides could serve as potential antiviral agents, by interacting or competing with viral fusion proteins. 

Methods: : This study screened seven different lipopeptides (tsushimycin, daptomycin, surfactin, bacil- 

lomycin, iturin, srfTE, and LPD-12) and docked them individually against the spike (S)-glycoprotein of 

SARS-CoV-2. 

Results: : Based on the maximum docked score and minimum atomic contact energy, LPD-12 (–1137.38 

kcal) was the appropriate molecule for proper binding with the S-glycoprotein of SARS-CoV-2 and thus 

significantly interrupted its affinity of binding with angiotensin-converting enzyme-2 (ACE2), which is 

the only receptor molecule found to be facilitating disease development. The results confirmed a strong 

binding affinity of LPD-12 with ACE2, with a binding free energy of –1621.62 kcal, which could also re- 

ciprocally prevent the binding of S-protein. 

Conclustion: : It can be concluded that LPD-12 may act as a potential therapeutic drug, by reducing the 

entry of SARS-CoV-2 to the human cells via the ACE2 receptor and related infections. 

© 2020 Elsevier Ltd and International Society of Antimicrobial Chemotherapy. All rights reserved. 
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. Introduction 

A previously unknown and potentially lethal coronavirus SARS- 

oV-2 was reported in December 2019 in Wuhan, Hubei province 

f China [1] . SARS-CoV-2 was associated with an ongoing out- 

reak of lethal atypical pneumonia named COVID-19 and its pos- 

ible origin was suggested to be from bats [2] . SARS-CoV-2 in- 

ections are now pandemic and were declared a public health 

mergency of international concern by the World Health Organi- 

ation. MERS-CoV, SARS-CoV and SARS-CoV-2 are the three highly 

athogenic zoonotic coronaviruses that all belong to β-coronavirus 

3] . Apart from the highly pathogenic zoonotic pathogens, MERS- 

oV, SARS-CoV and SARS-CoV-2, which cause severe disease in 

umans, four low pathogenic coronaviruses are endemic in hu- 

ans and cause disease with mild symptoms: HCoV-HKU1, HCoV- 

L63, HCoV-OC43, and HCoV-229E [3] . To date there are no an- 

ivirals, vaccines or therapeutic strategies approved against any of 
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he seven human-infecting coronaviruses. All of the coronaviruses 

hat have caused pandemics were finally controlled by conven- 

ional control measures like travel restrictions, patient isolation 

nd strategic social distancing. 

The first instance of the viral infection is mediated by a homo- 

rimers form of trans-membrane spike (S)-glycoprotein in the sur- 

ace of SARS-CoV-2 [4] . Coronaviruses use distinct binding recep- 

ors of the host cells that are recognized by specific domains 

resent in the S1 subunit of different viral species. SARS-CoV and 

ARS-CoV-2 bind to angiotensin-converting enzyme 2 (ACE2) and 

nter target host cells using the S B domain of the S1 subunit of 

he S-glycoprotein [5] . Therefore, coronavirus entry into the sus- 

eptible host cells is a complex process involving specific receptor 

inding and host protease-mediated proteolytic cleavage of the S- 

lycoprotein. 

Conventional antiviral drugs have been designed to target viral 

roteins and host cell elements that are involved in the infection 

rocess. However, the first step of viral infection needs the involve- 

ent of lipid membranes of both virus and host cells that are con- 

erved in nature. Small antimicrobial peptides have been reported 

o disrupt cell membranes of various pathogens, including bacteria, 
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Table 1 

Determination of binding energy from the docking anal- 

ysis of different lipopeptides with spike glycoprotein (S- 

protein) of SARS-CoV-2 (PDB ID: 5 × 5B). 

INTERACTION BINDING FREE ENERGY (kcal) 

Tsushimycin (1W3M) –1055.60 

Daptomycin (1XT7) –550.98 

Surfactin (2NPV) –539.61 

Bacillomycin (2IGZ) –493.44 

Iturin (2IHO) –311.53 

srfTE (1JMK) –343.45 

LPD12 (3CAY) –1137.38 
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ungi and cancer cells [6] . Surfactins are cyclic lipopeptides natu- 

ally produced by various strains of Bacillus subtilis and reported 

o have a broad spectrum of bioactivities [7] . Surfactin has shown 

ntiviral activity against several enveloped viruses such as herpes- 

implex-virus (HSV-1, HSV-2), vesicular stomatitis virus, simian im- 

unodeficiency virus, Newcastle disease virus, and porcine epi- 

emic diarrhea virus [8–10] . The antiviral activity of surfactin is 

ue to the inhibition of membrane fusion events between the 

irus and host cells [11] . Entry of the Influenza A viruses (IAV) 

as been shown to restrict by inhibiting the membrane fusion 

vent by blocking or interacting with the HA2 subunit of hemag- 

lutinin [12] . Another study confirmed that coiled-coil interac- 

ion of MERS-CoV and IAVs spike proteins to host cell membranes 

ere inhibited by short α-helical lipopeptides, thus showing the 

otential of lipopeptides being used as broad-spectrum antiviral 

gents. In the focus of the same concern, the present study sug- 

ested small lipopeptides as potential tools to combat SARS-CoV-2 

nfections. 

. Materials and Methods 

.1. Molecular docking 

Molecular docking was performed to monitor the interaction 

f the surface spike glycoprotein (S protein) of SARS-CoV-2 (PDB 

D: 5 × 5B) with seven different lipopeptides (tsushimycin, dap- 

omycin, surfactin, bacillomycin, iturin, srfte, and LPD-12) using 

ATCHDOCK, and images were visualized using PyMOL. Protein- 

igand Interaction Profiler (PLIP) was used to understand the point 

f contact between the receptor and ligand. Based on the better 

fficacy of binding, the ligand was chosen. After the first stage of 

creening, the compound showing greater affinity of binding was 

ocked with ACE2 (PDB1R42), where ACE2 acted as the recep- 

or and lipopeptide as the ligand. The resultant docked complex 

as again docked with SARS-CoV-2, which ultimately hindered the 

inding of SARS-CoV-2 with ACE2 by forming a barrier in-between. 

. Results and Discussion 

With the potential of lipopeptides to inhibit viral membrane 

usion with the host, this study screened available crystal struc- 

ures of potential lipopeptides. Interestingly, a few potentially in- 

eracting lipopeptides with strong binding affinity to SARS-CoV- 

 spike (S)-glycoprotein were found ( Table 1 ). These lipopeptides 

ay serve as potential drugs to combat the COVID-19 pandemic; 

owever, further in vitro and in vivo validation is required. Fur- 

her, these results provide a relatively broad scope for development 

f lipopeptide-based drug development to treat COVID-19 and re- 

ated viral diseases. The docking results of all tested lipopeptides 

nd their interaction residues, along with bond distances, are de- 

cribed in detail in Figure S1 and Table S1. 

In silico analysis of seven of the most abundant lipopeptides 

ith the S-protein of SARS-CoV-2 revealed that LDP-12 (Lipopep- 
2 
ide detergent-12) was the best one among them ( Table 1 ). The in-

eraction between LPD-12 and S-protein was higher than S-protein 

ith its receptor ACE2. The binding free energy was calculated as 

1137.38 kcal, which was the best among all the tested lipopep- 

ides and significantly higher than the –866.21 kcal of S-protein 

nd ACE2 complex ( Table 1 ). The binding free energy of LPD-12 

nd S-protein interaction was –1137.38 kcal, which suggests that 

DP-12 has more affinity to bind with S-protein. Again, a similar 

ype of docking was performed with ACE2, to see how strongly it 

inds with LPD-12 and helps in hindering the entry of virus within 

he body (Figure S2). In silico docking of ACE2 with LPD-12 clearly 

epicted strong binding energy of –1621.62 kcal. 

LPD-12 and ACE2 complex again interacted with the S-protein 

f SARS-CoV-2 ( Figure 1 ). The binding free energy of the SARS- 

oV-2 complex with the ACE2-LPD-12 complex was calculated as –

55.66 kcal. In this docking, the binding free energy between LPD- 

2-ACE2 complexes with SARS-CoV-2 was dramatically reduced 

ue to the strong binding affinity of LPD-12 with ACE2. ACE2 has 

lways been prone to binding with S-protein. As LPD-12 came into 

lay between the two molecules, the affinity of binding of ACE2 

as much reduced. The bond distance was also calculated between 

he SARS-CoV-2 with ACE2, SARS-CoV-2 with LPD-12 and LPD-12 

ith ACE2, showing maximum binding affinity between the two 

ifferent atoms present in each chain (Table S1). In the S-protein 

f SARS-CoV-2 and ACE2 docking, it was clearly seen that the bond 

istance between C:ILE 1097 of S-protein and A:ASP 615 of ACE2 

as measured as 6.645 Å, whereas in S-protein-LPD-12-ACE2 dock- 

ng, the similar bond distance was increased to 108.690 Å, which 

howed that the binding site changed where LPD-12 came into 

lay. Similarly, in SARS-CoV-2 and LPD-12 docking, the bond dis- 

ance between B:PRO 547 of SARS-CoV-2 and H:ALA 25 of LPD-12 

as measured as 3.387 Å, which was the same in SARS-CoV-2/LPD- 

2/ACE2 complex docking. This data signifies that the docking po- 

ition of the S-protein with LPD-12 remains unchanged. Again, in 

PD-12-ACE2 docking, the bond distance was measured between 

:TYR 12 of LPD-12 and A:ASP 615 of ACE2 as 5.555 ̊A, which was

lso similar in SARS-CoV-2-LPD-12-ACE2 docking. This highlights 

hat there was no change in the bonding position of ACE2 and 

PD-12, whereas a change occurred for the S-protein and ACE2 

omplex. Moreover, the complex formation between S-protein and 

CE2 was significantly reduced in the presence of LPD-12. 

S-glycoprotein contains two functional subunits – S1 and S2 –

hich are responsible for binding to the host cell receptor and 

usion of the viral and host cell membrane, respectively [5] . The 

-glycoprotein is cleaved by host proteases at the interface of 

1/S2 subunits, which remain non-covalently bound in the prefu- 

ion conformation before infection [13] . The distal S1-subunit with 

eceptor-binding domain(s) plays a role in stabilization of the pre- 

usion conformation of the membrane-anchored S2-subunit that 

as fusion machinery [5] . Further, proteolytic cleavage at the S2’ 

ite (located immediately upstream to the fusion peptide in the 

2 domain) within the S2 subunit is needed for the fusion of vi- 

al and host cell membranes, which includes extensive irreversible 

onformational changes [13] . Lipopeptides are well known for their 

ntimicrobial activity with the mechanism of membrane disrup- 

ion [ 7 , 14 , 15 ]. Lipopeptide detergents (LPDs) are a class of am-

hiphiles, which are designed for the structural study of the in- 

egral membrane proteins [16] . LPDs are designed as α-helices, 

hich may self-assemble into cylindrical micelles to provide a 

losely mimicking environment of acyl chain packing-like lipid bi- 

ayers. LPD-12 is good enough to mimic the lipid bilayer width. 

PD-12 monomers successfully adopt lipid bilayer conformation 

nd are associated into cylindrical octamers [17] . LPD-12 proved 

o be a very well behaving lipopeptide detergent with acetyl- 

(O12)AEAAEKAAKYAAEAAEKAAKA(O12)A-amide sequence, where 

12 refers to modified ornithine residues. 
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Figure 1. Docked image of LPD12/ACE2/ S-protein of SARS-CoV-2 complex viewed in PyMOL. (a) Protein-ligand interaction site between LPD-12 with S-protein of SARS 

CoV-2; (b) protein-ligand interaction site between LPD-12 with ACE2; and (c) LPD-12-ACE2 complex with S-protein. 
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LPD-12 is designed to have a high propensity of α-helices for- 

ation, which might interact more efficiently with integral mem- 

rane lipids and disintegrate the lipid membrane. Interestingly, 

 recent study showed that α-helical lipopeptides efficiently tar- 

eted viral membrane fusion proteins, suggesting it as a potentially 

road-spectrum antiviral therapy. By considering this fact, LPD-12 

ould be used as a docking ligand against SARS-CoV-2 S-protein, 

ue to its strong binding efficiency. LPD-12 was found to alter the 

inding of S-protein with ACE2 and reduce their affinity by block- 

ng the target site. These results suggest that LPD-12 may be used 

s a potential therapeutic agent to treat COVID-19; however, fur- 

her experimental validation is needed. 
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