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Endothelial cells and endothelial progenitor cells in the 
pathogenesis of systemic sclerosis

Introduction
Systemic sclerosis (SSc) is a connective tissue disease characterized by a combination of excessive fibrosis, 
microvasculopathy, chronic inflammation, and autoimmunity (1). Vascular involvement in patients with 
SSc mainly affects small arteries and causes reduced blood flow and tissue ischemia, leading to clinical 
manifestations, such as digital ulcer and pulmonary arterial hypertension (PAH). The vascular pathologies 
unique to SSc include progressive intimal proliferation and fibrosis in small arteries, along with the loss of 
capillaries. The mechanism of SSc vasculopathy is not fully understood, but increasing evidence indicates 
that endothelial injury and subsequent endothelial dysfunction is a primary event that triggers the subse-
quent formation of typical vascular lesions (2). In addition, vascular recovery barely occurs in SSc patients, 
which indicates a defective vascular repair process (3). Postnatal vascular repair is mediated through the 
collaborative effects of two distinct processes: (1) angiogenesis, i.e., the formation of new blood vessels 
sprouting from preexisting vessels through proliferation and migration of mature endothelial cells (ECs), 
and (2) vasculogenesis, i.e., the de novo differentiation of mature ECs through recruitment and differentia-
tion of endothelial progenitor cells (EPCs) (4). This results in the activation of inflammatory and fibrotic pro-
cesses in perivascular lesions, leading to complex vascular remodeling and irreversible structural changes. 
This review focuses on the roles of two major cell types that contribute to the homeostasis of the vascular 
system, ECs and EPCs, in the pathogenic processes of vasculopathy and excessive fibrosis in SSc patients. 

Role of ECs in the pathogenesis of SSc

EC apoptosis as a trigger
It is believed that endothelial injury is an initial event that eventually leads to EC dysfunction in SSc patients, 
and can be triggered via a number of different mechanisms, including infection, ischemia-reperfusion reac-
tion caused by the vasospasm resulting from Raynaud’s phenomenon, oxidative stress through abnormal 
regulation of reactive oxygen species, turbulent blood flow and shear stress, and the imbalance between 
coagulation and fibrinolysis (5, 6). In this regard, an infection with human cytomegalovirus induces antibod-
ies to recognize an amino acid sequence on the human cytomegalovirus-derived protein UL94, which is 
homologous to NAG-2, a surface molecule highly expressed on ECs. Antibodies against UL94 peptide have 
been shown to induce apoptosis of ECs upon engagement with the NAG-2-integrin complex (7). Another 
potential contributor is anti-endothelial cell antibody (AECA), which is a heterogeneous antibody family 
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that reacts with various cell surface antigens 
on ECs (8). The mechanisms of AECA-mediated 
cytotoxicity against ECs include antibody-de-
pendent cell-mediated cytotoxicity (9, 10) and 
have direct effects through an interaction be-
tween the Fas and Fas ligands (11, 12). 

Defective angiogenesis
SSc patients represent clinical features that 
are consistent with insufficient vascular repair, 
but demonstrate up-regulation of a series of 
pro-angiogenic factors, including vascular 
endothelial growth factor (VEGF), fibroblast 
growth factor-2 (FGF-2), platelet-derived 
growth factor (PDGF), hepatocyte growth fac-
tor, placental growth factor, and CXCL12 (13). 
Increased levels of circulating VEGF have been 
reported in SSc patients (14, 15), but it has 
been shown that increased VEGF isoform is 
actually anti-angiogenic to VEGF165-b, rather 
than pro-angiogenic for VEGF165. In contrast, 
a soluble VEGF receptor (VEGFR)-1 in circula-
tion works as a decoy receptor for VEGF, and is 
decreased in SSc patients (16). Interestingly, all 
three forms of VEGFR were upregulated in the 
skin biopsies of SSc patients (17, 18), suggest-
ing that VEGF system, which plays a central role 
in the development and maintenance of the 
blood and lymphatic vascular systems, is totally 
disrupted in SSc patients. In addition, reduced 
levels of pro-angiogenic angiopoietin-1 along 
with increased levels of angiopoietin-2, an an-
tagonist of angiopoietin-1, were also observed 
in SSc patients. The expression of kallikreins 1, 
9, 11, and 12, which are powerful modulators 
of angiogenesis, was down-regulated in ECs 
derived from the affected skin of SSc patients 
(19, 20). Furthermore, circulating anti-angio-

genic factors, such as angiostatin, thrombos-
pondin-1, endostatin, angiostatin, platelet fac-
tor 4/CXCL4, and pentraxin 3, were increased in 
SSc patients as compared to healthy controls 
(13, 21-23). Endostatin was increased in all 
phases of the disease, while angiostatin levels 
were elevated only in the late phase and were 
correlated with the severity of interstitial lung 
disease (ILD) (24). 

Defective responses of ECs to pro-angiogen-
ic factors in SSc patients can be explained, in 
part, by the down-regulated expression of 
their receptors and/or impaired intracellular 
signaling. In fact, the reduced expression of 
CXCR4, a receptor of CXCL12, has been found 
in the affected skin of SSc patients, especially 
in the late stage of the disease (25). The an-
giogenic transcription factors implicated in 
the pathogenesis of SSc include the Friend 
leukemia integration-1 (Fli1) and Fos-related 
antigen 2 (Fra-2). Fli1 belongs to the Ets family 
of transcription factors, and acts as a repressor 
of collagen transcription in the human skin. A 
sustained down-regulation of Fli1 in the SSc 
fibroblasts has been correlated with abnormal 
matrix deposition in SSc-affected skin (26). Al-
though the Fli1 deficiency in ECs promotes mi-
gration, proliferation, and survival, it also sup-
presses tube formation, which suggests that 
Fli1 deficiency is potentially attributable to the 
development of both proliferative obliterative 
vasculopathy and the loss of vessels, which are 
characteristic of SSc vasculopathy (27). Fra-2 
is a member of the multifunctional activator 
protein 1 family, and mice overexpressing Fra-
2 replicate SSc phenotype, including prolifer-
ative obliterative vasculopathy (28, 29). Fra-2 
expression was upregulated in SSc fibroblasts, 
and has been potentially correlated with an in-
crease in the profibrotic effects of transforming 
growth factor-β  (TGF-β)  and PDGF (30). Fra-2 
appears to contribute to the development of 
microvasculopathy by inducing  EC apoptosis 
and reducing the migration of ECs (31).

Roles of EC interaction with other cell types in 
promoting fibrosis
Dysfunctional ECs are also involved in promot-
ing tissue fibrosis in SSc patients by cellular 
interactions with other cells types, including 
resident cells within the vascular wall and in-
flammatory cells infiltrated into the affected 
tissues. Specifically, ECs in the affected tissue 
recruit and activate skin fibroblasts by induc-
ing mesenchymal-to-mesenchymal transition 
through the secretion of a connective tissue 
growth factor, TGF-β  (32). On the other hand, 
dermal fibroblasts derived from SSc patients 
are known to overexpress matrix metallopro-
teinase (MMP)-12, which cleaves the uroki-

nase-type plasminogen activator receptor of 
microvascular ECs, resulting in the failure of ECs 
to induce an efficient angiogenic program (33). 
This bi-directional interaction of ECs and fibro-
blasts synergistically promotes fibrosis and in-
hibition of angiogenesis. The altered function 
of microvascular pericytes has also been re-
ported in patients with early SSc, which result-
ed from interactions with dysregulated ECs (34, 
35). In SSc-affected skin, pericytes expressed 
activation markers, including PDGF receptor b, 
high molecular weight melanoma-associated 
antigen, a regulator of G protein signaling 5 
(36), and secreted PDGF-BB that recruits and in-
duces proliferation of pericyte progenitors (37). 
Interestingly, the co-culture of SSc-derived 
pericytes with microvascular ECs from healthy 
controls resulted in an increased production of 
collagen (38). 

Endothelial-mesenchymal transition (Endo-MT)
Given the crucial role of myofibroblasts in the 
pathogenesis of systemic and organ-specific 
fibrotic diseases, such as SSc and idiopathic 
pulmonary fibrosis (IPF), extensive research 
has previously aimed at precisely identifying 
their cellular origin. Tissue myofibroblasts can 
originate from various sources, including qui-
escent resident tissue fibroblasts, pericytes, 
adipocytes, macrophages, and epithelial cells 
(39). Moreover, Karasek et al. (40) have demon-
strated that ECs are capable of trans-differ-
entiating toward myofibroblasts in a process 
called endothelial-to-mesenchymal transition 
(Endo-MT), by which ECs change their mor-
phological features and acquire a myofibro-
blast-like phenotype. In SSc patients, evidence 
has shown that Endo-MT plays a role in vas-
cular remodeling and tissue fibrosis (41). This 
process is mediated primarily through TGF-β, 
but the detailed intracellular pathways acti-
vated by TGF-β have not been entirely eluci-
dated. TGF-b induces Endo-MT through both 
Smad-dependent and independent pathways, 
such as c-Abl kinase, protein kinase c-d, and 
b-catenin (42). Moreover, various transcrip-
tional regulators, such as Snail1 and Snail2, 
Twist, and some members of the Zeb family of 
proteins, are associated with the regulation of 
TGF-b-induced Endo-MT (43-47). In addition, 
many other mediators collaboratively promote 
Endo-MT, as shown below:

Caveolin-1 (CAV1)
CAV1, a major protein component of caveolae, 
plays an important role in the pathogenesis 
of tissue fibrosis and various fibrotic diseases 
by regulating the internalization, transport, 
and degradation of TGF-β receptors, thereby 
modulating TGF-β signaling (48, 49). Indeed, 
the gene and protein expression of CAV1 was 
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Main Points
•	 Endothelial injury and subsequent en-

dothelial dysfunction by a variety of 
triggers is believed to be an initial event 
that leads to a vicious pathogenic cycle 
of SSc.

•	 Vascular repair is mediated through two 
distinct processes, angiogenesis and 
vasculogenesis, and endothelial cells 
(ECs) and endothelial progenitor cells 
(EPCs) play critical roles in each process, 
respectively, but contribute collabora-
tively to blood vessel formation.

•	 In SSc, dysfunctional ECs and EPCs do 
not only trigger the formation of typical 
vascular lesions but also promote inflam-
mation and excessive fibrosis through 
recruitment of monocytic cells with M2 
features, activation of fibroblasts, and 
transdifferentiation into myofibroblasts 
via Endo-MT.



decreased in the affected tissues of patients 
with SSc and SSc-associated ILD and in the 
lung tissue of patients with IPF (50-52). Del 
Galdo et al. (50) demonstrated that Cav1-/- mice 
readily developed pulmonary and skin fibrosis. 
Restoration of CAV1 function in vitro by sup-
plementing CAV1 with scaffolding domain 
peptide or overexpression of CAV1 using ad-
enovirus helped to normalize the phenotypes 
of SSc fibroblasts and suppress TGF-β-induced 
extracellular matrix production, by inhibiting 
Smad3 activation and regulation of the c-Jun 
N-terminal kinase pathway in vitro (50-52). It 
has also been demonstrated that the in vivo 
restoration of CAV1 by transfer via adenovirus 
or administration of a cell-permeable CAV1 
peptide prevented bleomycin-induced pul-
monary fibrosis and monocrotaline-induced 
PAH through inhibition of the STAT3 signaling 
cascade (52, 53). In cultures of pulmonary ECs 
derived from Cav1-/- mice, Endo-MT occurred 
spontaneously, as evidenced by the consti-
tutive expression of α-SMA, the high levels of 
production of type I collagen, and the high 
expression of Snai1 and Snai2. These observa-
tions suggest that CAV1 deficiency may partic-
ipate in the development of progressive tissue 
fibrosis and proliferative vasculopathy through 
the promotion of Endo-MT.

Endothelin-1 (ET-1)
Besides its crucial role in the development of 
PAH, ET-1 has been implicated in the develop-
ment of organ fibrosis and is an important trig-
ger of the fibrotic process in SSc (54-56). Recent 
studies have examined whether ET-1 may also 
play a role in the development of tissue fibrosis 
by inducing Endo-MT. For example, EC-derived 
ET-1 promotes cardiac fibrosis and heart failure 
in diabetic hearts through the induction of En-
do-MT (56). However, ET-1 alone was unable to 
induce Endo-MT in murine lung EC cultures, 
but did enhance TGF-β-induced Endo-MT (57). 
The subsequent study confirmed this finding 
and showed that cultured human ECs induced 
Endo-MT in vitro when treated with ET-1 in the 
presence of TGF-β (57), indicating a potent syn-
ergistic effect of TGF-β and ET-1 on Endo-MT. 
Endo-MT induced by TGF-β and ET-1 primarily 
involved the Smad pathway, and was blocked 
by an ET-1 receptor antagonist, macitentan 
(58). 

Notch pathway
Recent studies indicate that Notch pathways 
contribute to the pathogenesis of SSc and 
other fibrotic diseases (59-61), and may also be 
involved in the regulation of Endo-MT (62). The 
canonical Notch signaling can act in conjunc-
tion with TGF-β to induce Endo-MT by activat-
ing the expression of Snail and upregulate a 

subset of genes through recruiting Smad3 to 
Smad binding sites (63). However, it should 
be noted that Kaposi’s sarcoma-associated 
herpesvirus was found to induce Endo-MT via 
Notch signaling, which was independent of 
the TGF-β pathway (64). 

Wnt pathway
Wnt contains a multigene family of secreted 
glycoproteins that play important roles during 
embryogenesis through canonical and non-ca-
nonical pathways (65, 66). Recent studies using 
cultured ECs have demonstrated that canoni-
cal Wnt signaling activates Endo-MT pathways 
(67, 68). On the other hand, the Wnt/β-catenin 
pathway is involved in the activation of multi-
ple profibrotic steps in SSc pathogenesis (69-
72). In fact, increased Wnt activation has been 
found in skin biopsies from patients with SSc, 
and Wnt3a-induced myofibroblast differentia-
tion via Smad-dependent autocrine TGF-β sig-
naling has also been observed (70). In addition, 
the nuclear accumulation of β-catenin in acti-
vated fibroblasts was detected in fibroblastic 
foci in the lungs of patients with SSc-associat-
ed ILD (73). 

Hypoxia-inducible factor-1α (HIF-1α) 
The transcription factor HIF-1α is a key reg-
ulator responsible for inducing a number of 
cellular and molecular responses to hypoxia 
and is dysregulated in various pathologic con-
ditions, including SSc (74-76). The mechanisms 
involved in HIF-1α-induced fibrosis are very 
complex and may affect numerous gene ex-
pression changes, interaction with profibrotic 
factors (such as TGF-β and VEGF), and the in-
duction of Endo-MT (77-79). One study has 
shown that the important downstream effects 
of HIF-1α on Endo-MT induction involve a po-
tent activation of Snail that may ultimately lead 
to the development of cardiac fibrosis (80).

Roles of EPCs in pathogenesis of SSc 

Defective vasculogenesis by aberrant EPCs
Since EPCs are defined as circulating primitive 
cells that contribute to postnatal vasculogene-
sis (81), many studies have been conducted to 
clarify the contribution of EPCs to the patho-
genesis of various vascular and connective 
tissues diseases (82). In patients with SSc, we 
first reported a reduced number of circulating 
EPCs, compared with age- and sex-matched 
rheumatoid arthritis patients or healthy indi-
viduals (83). The subsequent analyses done by 
other groups confirmed our finding (84-86), 
but some showed a comparable or even in-
creased count of EPCs in SSc patients (87-91). It 
is now known that these contradictory results 
resulted from differences in experimental pro-

tocols used for quantifying EPCs. Circulating 
EPCs are identified as cells expressing CD34 
in combination with CD133 and/or CD309/
VEGFR2 by multi-color flow cytometry, but ac-
curate quantification is technically difficult due 
to the extreme rarity of this population in cir-
culation. To overcome this limitation, flow cy-
tometry was combined with procedures that 
enrich EPCs, such as sorting of CD34+ cells and 
lineage-negative cells, in some studies (83, 90). 
In these circumstances, the European League 
Against Rheumatism Scleroderma Trials and 
Research (EUSTAR) proposed recommenda-
tions for the standardization of EPC research 
(92). We have directly compared several dif-
ferent protocols for quantifying circulating 
EPCs, and confirmed that the EUSTAR recom-
mendations are valid when combined with 
an accurate quantification technique, which 
substantially improved the reproducibility of 
the results (93). Using standardized protocols, 
circulating EPCs were shown to be reduced 
in SSc patients in comparison with healthy 
controls. Recently, circulating lymphatic EPCs, 
identified by CD34+CD133+VEGFR3+ cells, were 
also decreased in SSc patients, and the lower 
counts were associated with the current digital 
ulcer (94). 

In terms of functional properties of EPCs, we 
previously reported an impaired potential 
of SSc-derived EPCs to differentiate into ma-
ture ECs using in vitro cultures with multiple 
pro-angiogenic factors (83). Another study 
utilizing cultured EPCs showed an impaired 
differentiation potential to ECs in SSc-de-
rived EPCs, as compared to EPCs derived from 
healthy controls (16). We recently developed a 
system to evaluate the in vivo differentiation 
potential of EPCs, using a murine tumor neo-
vascularization model, in which freshly isolat-
ed human CD133+ cells are transplanted into 
the skin of mice in conjunction with syngeneic 
mouse tumor cells (95). Using this system, the 
neovascularization capacity of circulating EPCs 
was impaired in SSc patients, partly due to a 
deficiency in their vasculogenic ability. There-
fore, defects in vasculogenesis observed in SSc 
patients are mediated through the impaired 
function of EPCs as well.

Studies examining the potential associations 
of EPC counts with clinical manifestations 
consistently reported an association between 
the presence of the digital ulcer and low EPC 
counts (85, 86, 88, 90). A recent prospective 
study revealed that low EPC counts were iden-
tified as independent predictors of the occur-
rence of new digital ulcer during follow-up 
(96) and were correlated with the late pattern 
of nailfold capillaroscopic findings (97). In SSc 
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patients, the upregulated expression of MMP-
10 in EPC-derived ECs was associated with PAH, 
and the histologic findings of pulmonary arteri-
al remodeling was suppressed by the blockade 
of MMP-10 in Fra-2-transgenic mice, a model 
mimicking the vascular and fibrotic aspects 
of SSc. These findings together suggest that 
defective EPC leads to the formation of digital 
ulcers and other vascular manifestations of SSc. 

Currently, little is known about the mechanisms 
behind decreased numeric and functional ab-
errations in EPCs in SSc patients. In this regard, 
Del Papa and colleagues reported an interest-
ing finding, i.e., EPCs in the bone marrow from 
SSc patients were defective in their ability to 
proliferate in long-term culture with pro-angio-
genic factors, suggesting that EPC precursors 
were functionally altered before their release 
into the bloodstream (88). The bone marrow 
of patients with diffuse cutaneous SSc showed 
markedly reduced microvascular density and 
increased fibrosis (98), indicating that the dys-
regulated microenvironment within the bone 
marrow may alter the EPC differentiation pro-
cess. In this regard, we recently found that EPC 
counts are inversely correlated with the level 
of circulating pentraxin 3, a multifunctional 
pattern recognition protein with a capacity to 
inhibit angiogenesis through suppression of 
FGF-2 (23). Pentraxin-3 is capable of inhibiting 
the differentiation of bone marrow stem cells 
into EPCs in in vitro cultures with FGF-2, indi-
cating that exposure to a high concentration 
of pentraxin-3 would suppress the FGF2-me-
diated EPC differentiation in the bone marrow. 
Finally, EPCs in circulation may be attacked 
though autoimmune mechanisms. In this re-
gard, Zhu and colleagues found that the sera 
from SSc patients were able to induce apopto-
sis of EPCs, which was mediated through the 
Akt-FOXO3a-Bim pathway (84). 

Heterogeneity of EPC subsets
There is a great deal of controversy about the 
definitions and roles of EPCs in postnatal vas-
cular formation (99). This is primarily because of 
the technical difficulty in identifying those cells 
due to their extreme rarity in circulation (100). 
The utilization of a variety of experimental pro-
cedures has resulted in a number of definitions 
of EPCs in the literature. Nevertheless, it is cur-
rently accepted that there are at least two EPC 
subsets that can be discriminated between, 
based on their surface antigen expression, 
proliferation potential, and time of emergence 
in the cell culture system (101). Endothelial 
colony-forming cells detected in cultures are 
lineage-restricted progenitor cells that only 
give rise to endothelium with a clonogenic 
expansion potential (101), although their cir-

culating origin has not been identified yet. On 
the other hand, the cells originally identified as 
“EPCs” are in fact hematopoietic lineage cells 
that display pro-angiogenic properties, and 
are now termed pro-angiogenic hematopoi-
etic cells (101). Pro-angiogenic hematopoietic 
cells are also heterogeneous cell population, 
including CD14+ monocytic origin (monocytic 
EPCs) and CD14- cells positive for CD34, CD133, 
and CD309 (narrowly defined or conventional 
EPCs) (102), which were initially termed circu-
lating endothelial progenitors (103). Currently, 
it is generally accepted that pro-angiogenic 
hematopoietic cells do not give rise to ma-
ture ECs efficiently, rather they work as vas-
cular regenerating and supporting cells (104). 
Monocytic EPCs especially lack the capacity 
to proliferate or form tubular structures in the 
absence of mature ECs. On the other hand, 
conventional EPCs have typical features of pro-
genitors, including the capacity to proliferate 
and to differentiate into ECs, however, their 
efficiency is much lower in comparison with 
endothelial colony-forming cells. Nevertheless, 
pro-angiogenic hematopoietic cells, either in a 
monocytic or conventional subset, are capable 
of promoting blood vessel formation through 
multiple mechanisms, including the secretion 
of a series of pro-angiogenic factors, including 
VEGF, granulocyte colony-stimulating factor 
(G-CSF), and stromal cell-derived factor-1 (SDF-
1) (105, 106), and differentiation into other el-
ements of the vasculature, such as pericytes 
and smooth muscle cells. Theoretically, pro-an-
giogenic hematopoietic cells play a major role 
in the very early phase of vascular repair by at-
taching to the denuded vascular endothelium 
immediately after injury and taking advantage 
of the large number of ECs in circulation (102). 
In the following vascular processes, endothe-
lial colony-forming cells and pro-angiogenic 
hematopoietic cells work in conjunction with 
platelets and residential ECs to form new blood 
vessels. 

Potential roles of monocytic EPCs in tissue fibrosis
When the number of circulating monocytic 
EPCs was examined in SSc patients using a cul-
ture system developed to enrich this cell popu-
lation, circulating monocytic EPCs were found 
to be paradoxically increased in SSc patients as 
compared to age- and sex-matched healthy 
controls (107). Intriguingly, monocytic EPCs 
derived from SSc patients showed enhanced 
in vitro tubular structure formation compared 
with the structures seen in healthy controls. 
Furthermore, in a murine tumor neovascular-
ization model, the transplantation of SSc-de-
rived monocytic EPCs dramatically promoted 
tumor growth and tumor vessel formation in 
vivo, indicating that monocytic EPCs derived 

from SSc patients have enhanced angiogenic 
activity. The increased number and enhanced 
pro-angiogenic potency of monocytic EPCs is 
likely to be a compensatory response to im-
paired vasculogenesis due to the malfunction 
of conventional EPCs. Circulating monocytic 
EPCs are mobilized from the bone marrow 
and recruited to affected lesions of SSc in re-
sponse to chemokines such as monocyte 
chemoattractant protein-1/CCL2 and SDF-1, 
which are upregulated in the affected skin 
of SSc patients (108, 109). In addition, the hy-
poxic condition of the affected tissues of SSc 
patients are known to stimulate the differenti-
ation of monocytic EPCs through activation of 
HIF-1α (110). These local stimuli promote the 
accumulation of functionally altered monocyt-
ic EPCs into the affected lesions of SSc. Since 
monocytic EPCs are capable of differentiating 
into cells that produce extracellular matrix 
proteins (111-115), they might participate in 
the fibrotic process in the affected organs in 
an CCL2/CCR2-dependent amplification loop 
(114, 115). In this regard, the fibrotic clinical 
features in SSc patients were correlated with 
an increased proportion of CXCR4+ circulating 
cells with monocytic and endothelial markers, 
which correspond to monocytic EPCs (116). 
Interestingly, monocytic EPCs have common 
phenotypic features of alternatively activated 
or M2 macrophages, which are appreciated 
increasingly as important cells that contribute 
to the pathogenic process of SSc (117). Recent 
studies have shown that circulating monocytes 
with combined classically and alternatively ac-
tivated features are increased in SSc patients 
(118, 119). Furthermore, in a phase II clinical 
trial of tocilizumab in early, active patients with 
diffuse cutaneous SSc, tocilizumab treatment 
resulted in down-regulation of M2-associated 
genes in the skin and a sustained reduction 
of circulating CCL18, a chemokine associated 
with M2, in association with the improvement 
of skin sclerosis (120). Therefore, the pathogen-
ic process of SSc is likely triggered by recruit-
ment and accumulation of circulating mono-
cytic EPCs with M2 features into the affected 
sites, where they acquire profibrotic properties, 
i.e., the production of a variety of profibrotic 
growth factors, cytokines, and chemokines 
to stimulate resident mesenchymal cells, and 
their own trans-differentiation into extracellu-
lar matrix-producing cells.

Summary: A potential link between aberrant EPC/
EC and the pathogenic processes of SSc
Current insights raise the intriguing hypothe-
sis that ECs and EPCs are directly involved in 
the pathogenesis of SSc by virtue of partici-
pating in two major pathologic aspects of the 
disease; vascular remodeling and excessive 
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fibrosis (Figure 1). Specifically, in early phase 
of SSc, a variety of triggers damage the endo-
thelium, leading to subsequent expression of 
a series of angiogenic factors, growth factors, 
and chemokines, including VEGF, MCP-1, and 
SDF-1. Normally, the denuded vessels would 
be rapidly fixed by a highly regulated angio-
genic and vasculogenic process, but, in SSc 
patients, the vascular repair machinery is im-
paired, which results in disrupted EC functions. 
Dysregulated ECs promote excessive fibrosis 
through the activation of fibroblasts by a direct 
interaction and their trans-differentiation into 
myofibroblasts via Endo-MT. Additionally, in 
compensation for the insufficient vascular re-
pair process, monocytic EPCs with M2 features 
are recruited into circulation instead and are 
made to function to enhance angiogenesis. 
However, this mechanism eventually fails to 
repair vessels because the local environment 

suppresses angiogenesis, a process which is 
mediated primarily by dysregulated ECs. Final-
ly, monocytic EPCs accumulate at affected sites 
and acquire profibrotic characteristics, which 
enables them to participate in the progression 
of excessive fibrosis. Further investigation into 
the mechanisms underlying dysregulated en-
dothelial homeostasis in the disease process of 
SSc may be key in dissecting its pathogenesis 
and developing novel therapeutic strategies.
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