Skip to main content
. 2020 Oct 23;22(10):e19810. doi: 10.2196/19810

Table 1.

Example sequence of sentences for an assigned category of Aim, Population, Methods, Interventions, Results, Conclusion, and Outcomes.

Sequence Category
The aim of the present study was to evaluate whether the Anterior communicating artery (A com) aneurysms behave differently from the aneurysms located elsewhere with respect to size being a rupture risk. To this end, we examined the clinical data of ruptured A com aneurysms and analyzed other morphological parameters, including size parameter, providing adequate data for predicting rupture risk of the A com aneurysms. Aim (A)
Between January 2010 and December 2015, a total of 130 consecutive patients at our institution with the A com aneurysms-86 ruptured and 44 unruptured-were included in this study. The ruptured group included 43 females (50%) and 43 males (50%) with the mean age of 56 years (range, 34-83 years). The unruptured group included 23 females (52%) and 21 males (48%) with the mean age of 62 years (range, 28-80 years). All patients underwent either digital subtraction angiography or 3-dimensional computed tomography angiography. The exclusion criteria for this study were the patients with fusiform, traumatic, or mycotic aneurysm. There were preexisting known risk factors, such as hypertension in 73 patients, who required antihypertensive medication; other risk factors included diabetes mellitus (9 patients), coronary heart disease (9 patients), previous cerebral stroke (18 patients), and end-stage renal disease (3 patients) in the ruptured group. In the unruptured group, 38 patients had hypertension, 4 had diabetes mellitus, 5 had coronary heart disease, 10 had a previous cerebral stroke, and 2 had end-stage renal disease. Population (P)
Four intracranial aneurysms cases were selected for this study. Using CT angiography images, the rapid prototyping process was completed using a polyjet technology machine. The size and morphology of the prototypes were compared to brain digital subtraction arteriography of the same patients. Methods (M)
After patients underwent dural puncture in the sitting position at L3-L4or L4-L5, 0.5% hyperbaric bupivacaine was injected over two minutes: group S7.5 received 1.5 mL, Group S5 received 1.0 mL, and group S4 received 0.8 mL. interventions after sitting for 10 minutes, patients were positioned for surgery. Intervention (I)
The ruptured group consisted of 9 very small (<2 mm), 38 small (2-4 mm), 32 medium (4-10 mm), and 7 large (>10 mm) aneurysms; the unruptured group consisted of 2 very small, 16 small, 25 medium, and one large aneurysms. There were 73 ruptured aneurysms with small necks and 13 with wide necks (neck size>4 mm), and 34 unruptured aneurysms with small necks and 10 with wide necks. Results (R)
The method which we develop here could become surgical planning for intracranial aneurysm treatment in the clinical workflow. Conclusion (C)
The prevailing view is that larger aneurysms have a greater risk of rupture. Predicting the risk of aneurysmal rupture, especially for aneurysms with a relatively small diameter, continues to be a topic of discourse. In fact, the majority of previous large-scale studies have used the maximum size of aneurysms as a predictor of aneurysm rupture. Outcome (O)