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ABSTRACT

Many human genetic diseases, including Hutchinson-
Gilford progeria syndrome (HGPS), are caused by single
point mutations. HGPS is a rare disorder that causes
premature aging and is usually caused by a de novo
point mutation in the LMNA gene. Base editors (BEs)
composed of a cytidine deaminase fused to CRISPR/
Cas9 nickase are highly efficient at inducing C to T base
conversions in a programmable manner and can be
used to generate animal disease models with single
amino-acid substitutions. Here, we generated the first
HGPS monkey model by delivering a BE mRNA and

guide RNA (gRNA) targeting the LMNA gene via
microinjection into monkey zygotes. Five out of six
newborn monkeys carried the mutation specifically at
the target site. HGPS monkeys expressed the toxic form
of lamin A, progerin, and recapitulated the typical HGPS
phenotypes including growth retardation, bone alter-
ations, and vascular abnormalities. Thus, this monkey
model genetically and clinically mimics HGPS in
humans, demonstrating that the BE system can effi-
ciently and accurately generate patient-specific disease
models in non-human primates.

KEYWORDS base editing, non-human primate, HGPS

INTRODUCTION

The vast majority of human genetic diseases are caused by
single-nucleotide substitutions or point mutations (Landrum
et al., 2016). These include the dozens of diseases collec-
tively termed “laminopathies”, which are caused by a variety
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of mutations in the genes encoding the nuclear lamina pro-
teins (Liu et al., 2011b). A premature aging human disorder,
HGPS, is caused by a mutant LMNA gene (Capell and
Collins, 2006; Liu et al., 2011a; Kubben et al., 2016).
Approximately 90% of HGPS cases are caused by a de novo
mutation (1824 C>T, Gly608Gly) in LMNA, which activates a
cryptic splice donor site, resulting in an mRNA that lacks 150
nucleotides. The resultant mRNA is subsequently translated
into a truncated prelamin A without the ZMPSTE24 cleavage
site, generating a toxic protein called “progerin”. The accu-
mulation of progerin leads to pathologies associated with
premature aging including growth impairment, dermal and
bone abnormalities, lipodystrophy, and progressive
atherosclerosis, all of which lead to a shortened lifespan,
frequently via myocardial infarction.

Genetically engineered animal models, specifically non-
human primates, are a valuable tool used to study human
diseases and develop preclinical therapeutic strategies
(Chan, 2013). Several recent studies have shown that the
clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 system could be used to generate gene-
knockout or gene-knockin monkeys (Kang et al., 2019).
However, due to the low frequency of homologous recom-
bination (HR) in the presence of a donor DNA template, the
precise genome editing strategy, especially a single base-
pair modification, remains a challenge. Recent improve-
ments in base editing techniques have facilitated the direct
and permanent conversion of a base pair in a programmable
manner without introducing a double-strand break, which
can lead to off-target mutagenesis and/or reduce cell viability
due to DNA repair activation (Koblan et al., 2018b; Pickar-
Oliver and Gersbach, 2019). Cytidine BEs enable single-
nucleotide C- to -T conversions, which can install or correct
pathogenic SNPs in much higher editing frequencies in a
variety of mammalian cell types (Komor et al., 2016; Kim
et al., 2017; Liang et al., 2017; Zhou et al., 2017; Koblan
et al., 2018b; Liu et al., 2018a). The recently optimized BE,
BE4max, exhibited improvements in gene expression and
nuclear localization as well as highly increased editing effi-
ciency (Koblan et al., 2018a). Here, we employed BE4max to
explore the possibility of generating a LMNA (1824 C>T,
Gly608Gly) mutational Macaca fascicularis (cynomolgus
monkey) model for HGPS.

RESULTS

A single guide RNA (sgRNA) was designed to introduce the
LMNA (1824 C>T, Gly608Gly) mutation and was co-injected
into 86 monkey zygotes along with BE4max mRNA. Then,
41 well-developed embryos injected with sgRNA and BE4-
max mRNA that displayed normal morphology were trans-
ferred into 11 surrogate mothers (Figs. 1A and S1A). Six
surrogates were successfully impregnated. Five of the six
completed the pregnancy cycle (∼150 days) and success-
fully birthed one infant (referred as to BE #1, 2, 3, 5, and 6,
respectively, Fig. 1B) via caesarean delivery. One male

infant (BE #4) died before the caesarean operation (∼150
days). Two monkeys (BE #5 and BE #6, female and male,
respectively) died when they were five months old (Figs. 1B
and Fig. S1A; Table S1).

PCR and Sanger sequencing were performed to dissect
the flanking sequences of the target loci of the sgRNA.
Genotyping of fibroblasts and peripheral blood isolated from
the genetically engineered monkeys showed that five out of
six monkeys (BE #1, BE #3, BE #4, BE #5, and BE #6)
carried the expected C to T mutation at position 6, the target
locus, and were subsequently renamed HGPS #1, HGPS
#3, HGPS #4, HGPS #5, and HGPS #6 (Figs. 1C, 1D, S1C;
Table S2). Notably, three (HGPS #4, #5, and #6) out of the
six monkeys were homozygous for the expected nonsense
mutation at the target site, and the single C-to-T conversion
successfully generated cryptic splice sites (Figs. 1C and
S1C). HGPS #1 and HGPS #3 were mosaic mutants
(Figs. 1C, S1B and S1C).

To further evaluate the on-targeting efficiency of the
LMNA locus, we performed whole-genome DNA sequencing
(WGS) for six tissues isolated from HGPS and wild type
(WT) monkeys, respectively. Chromosomal variation analy-
sis did not reveal any genomic instability (Fig. S2). The
editing efficiencies of the 1824 C>T (position 6) conversion
were up to 100% in all three homozygous monkeys (HGPS
#4, #5, and #6), and did not affect other nucleotides flanking
the canonical base editing window (Figs. 1E, S1D, S1E, and
Table S2). HGPS #1 harbored an editing frequency of
around 50% at the target site (position 6) with two additional
endogenous sites containing cytidines at positions 11 and 12
that also harbored the same C>T mutation in a heterozygous
manner (Figs. 1E, S1D, S1E, and Table S2). Mutant monkey
model (HGPS #3) harbored a mutation frequency of
11%–35% at the LMNA locus (Figs. 1E, S1D, S1E, and
Table S2). To evaluate whether base editing in monkey
zygotes results in genetic mosaicism after birth, we isolated
five additional tissue types from the three homozygous
HGPS monkeys (HGPS #4, #5, and #6) immediately after
individual death, and subjected them to WGS. All tissues of
the three monkeys were 100% edited, and we detected no
WT version of LMNA by sequencing (Figs. 1E, S1F–H, and
Table S2).

To characterize the potential genome-wide effects of base
editing in newborn monkeys, we performed both gRNA-de-
pendent and deaminase-dependent off-target analysis for
BE4max. First, the potential genome-wide off-target sites for
sgRNA were predicted by Cas-OFFinder (Bae et al., 2014)
and analyzed by searching the WGS dataset for promiscu-
ous editing. These sites in HGPS monkeys did not reveal
any notable sequence alterations, in comparison to the WT
(Table S3). For the deaminase-dependent off-target analy-
sis, WGS analysis was performed in both HGPS and WT
monkeys to identify fetus-specific de novo single nucleotide
variations (SNVs) and indels. The genome-wide number and
proportion of SNVs in both HGPS and WT offspring were
extracted by referencing the SNVs of corresponding parents.
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corresponding data obtained from the WT monkeys. Data shown as mean ± SD, n = 4 wells per condition, ****P < 0.0001 (t-test).

(C and D) Western blots showed the expression of progerin in the fibroblasts (C) and skin (D) of HGPS monkeys. For uncropped gels,

refer to Source Data. (E–H) Immunofluorescence staining showed the expression of the progerin in the fibroblasts (E), skin (F), heart

(G), and aorta (H) of HGPS monkeys. Right panels: the percentages of progerin positive cells. Scale bar, 25 μm, (zoom: 10 μm). Data
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#6) for (H). ***P < 0.001, ****P < 0.0001 (t-test for E, F, G and one-way ANOVA for H).
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Comparison of the WT and HGPS monkeys indicated no
difference in the number or proportion of de novo SNVs at
the genome-wide level (Fig. S3). Given that this compre-
hensive WGS analysis failed to detect any gRNA-indepen-
dent random conversions, BE4max appears to be an
effective base editor in the cynomolgus monkey. A previous
study reported that the cytosine base editor 3 (BE3) induced
de novo SNVs in mouse embryos via genome-wide off-target
analysis by two-cell embryo Injection (GOTI) (Zuo et al.,
2019). However, this method is difficult to perform in non-
human primates, especially throughout the embryonic
stages. In a recent attempt to study human embryos, the off-
target effects of BE3 were analyzed only within the 8-cell
stage embryos by GOTI (Zhang et al., 2019a). Therefore, to
accurately evaluate both Cas9-dependent and deaminase-
dependent off-target mutations by base editing in newborn
monkeys, further WGS strategies, which are technically
similar to the GOTI method, will be needed.

Next, we examined whether BE4max-mediated 1824 C>T
editing in LMNA results in the production of progerin in
monkeys. Quantitative RT-PCR (qRT-PCR) showed that
progerin-specific mRNA was highly expressed in the
fibroblasts, skin and the other nine tissues, such as heart
and muscle, sampled from homozygous (HGPS #4, #5, and
#6) and heterozygous HGPS monkeys (HGPS #1), but not in
those from low efficiently edited or non-edited monkeys
(HGPS #3 and BE #2), and their age and gender-matched
WTcounterparts (Figs. 2A, 2B, and S4A). Similar to the qRT-
PCR results, Western blot and immunofluorescence analy-
ses both demonstrated the presence of progerin in HGPS
fibroblasts and tissues but not in WT tissues (Fig. 2C–H).
Progerin was expressed in a tissue-specific manner, with
high levels in the skin, heart, and blood vessels, which are
known tissues affected by HGPS (Figs. 2D–H and S4B–F)
(Aktas et al., 2013; Ullrich and Gordon, 2015). Progerin and
Lamin A/C were hardly detected in the brain (Fig. S4D),
which is consistent with the neuronal LMNA silencing and
absence of cognitive defects in HGPS patients (Jung et al.,
2012). Although HGPS #3 exhibited a mutation frequency of
roughly 11%–35%, progerin was nearly undetectable in the
fibroblasts (Fig. 2A and 2C). These results demonstrate that
the engineered heterozygous and homogenous LMNA 1824
C>T monkeys, like HGPS patients, express pathogenic
levels of progerin across various tissues. Interestingly,
homozygous mice with the Gly609Gly mutation live for
roughly 3 months and recapitulate the premature aging of
HGPS (Osorio et al., 2011). Homozygous HGPS human
stem cells also exhibit the accelerated cellular senescence,
compared to their WT counterparts (Wu et al., 2018).

We subsequently investigated whether the characteristic
clinical phenotypes of HGPS patients were recapitulated in
HGPS monkeys. Highly similar to HGPS human infants
(Korf, 2008; Merideth et al., 2008), which appear normal at
birth but grow into so-called “wizened dwarves” (Capell and
Collins, 2006; Merideth et al., 2008; Ullrich and Gordon,
2015), the three liveborn HGPS monkeys (HGPS #1, #5, #6)
had a normal stature at birth, but failed to thrive as WT
monkeys (Fig. 3A and 3B). WT monkeys showed an average
weight increase of 119 g/month in the first six months of life,
whereas HGPS monkeys gained only 15 g/month with a
normal head circumference (Figs. 3A, 3B, and S5A).
Although HGPS monkeys were born with normal hair cov-
ering, excessive hair loss began in the temporal area one
month after birth (Fig. 3C). HGPS monkeys also suffered
from loss of subcutaneous fat (Fig. 3D). At two months post-
birth, all three liveborn HGPS monkeys developed the
characteristic craniofacial deformations, including a large
bald skull, prominent forehead, protuberant eyes, and a
hypoplastic mandible (Fig. 3E and 3F), which mirrors char-
acteristics seen in HGPS patients (Capell and Collins, 2006;
Merideth et al., 2008; Ullrich and Gordon, 2015).

HGPS monkeys were unable to extend their fingers
(Figs. 3A, 3E, and S5), indicating joint contractures similar
to those present in their human counterparts (Ozonoff and

Figure 3. HGPS monkeys exhibited clinical features of

HGPS children. (A) Representative photographs showing the

appearance of WT monkey (WT #6) and HGPS monkey (HGPS

#6) at 87 days of age. The typical phenotypes of growth

retardation, bone abnormalities, and hair loss were overserved

in HGPS monkeys. Scale bar: left panel, 9 cm; right panels, 4.5

cm. (B) Body weight and length of WTand HGPS monkeys after

birth. Data are displayed as mean ± SD, n = 3 (WT #1, #5, #6

versus HGPS #1, #5, #6), nsP > 0.5, *P < 0.5, ****P < 0.0001

(two-way ANOVA). (C) Quantitative analysis of hair loss in WT

monkeys and HGPS monkeys at 100 days of age. The

percentage of the area with hair was calculated in the top, left,

and right side of the monkey head. Data were presented as

mean ± SD, n = 3 (WT #1, #5, #6 versus HGPS #1, #5, #6), **P

< 0.01, ****P < 0.0001 (one-way ANOVA). (D) Body fat

percentage of HGPS monkeys and WT monkeys measured

by dual-energy X-ray absorptiometry (DXA). Data were pre-

sented as mean ± SD, n = 3 or 5 (5 WT monkeys versus HGPS

#1, #5, #6), *P < 0.5 (two-tailed Student’s t-test). (E) The

radiographs of the skull anteroposterior of a WT monkey (WT

#6) and a HGPS monkey (HGPS #6). Showing disproportionate

large calvarium and contractures finger bone (indicated by

yellow arrows) in the HGPS monkey. (F) The smaller mandible

(yellow box) and open anterior fontanel (yellow arrow) of the

HGPS monkey revealed by skull radiography. Data (right) were

presented as mean ± SD, n = 3 (WT #1, #5, #6 versus HGPS

#1, #5, #6), **P < 0.01 (t-test). (G) Decreased range of motion in

HGPS monkeys determined by the motion tracking. Data are

presented as mean ± SD, n = 3 (WT #1, #5, #6 versus HGPS

#1, #5, #6), *P < 0.05 (t-test). (H) Masson’s trichrome staining of

the aorta showing early features of atherosclerosis (c) and

vascular fibrosis (d) in HGPS monkeys. Scale bar, 800 μm,

100 μm, 25 μm, 25 μm. n = 2 slices per monkeys (WT #5, #6

versus HGPS #5, #6). Data are mean ± SD, ****P < 0.0001

(one-way ANOVA).
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Clemett, 1967). Radiographs showed skeletal system
aberrations, including overcrowded and small sharpened
teeth and a short chin (Fig. 3E and 3F). Although HGPS
monkeys began sitting, standing, and walking, bone dam-
age greatly affected their motor abilities, characterized by a
notable decrease in distance traveled in the infant incuba-
tors (Figs. 3G, S5C and S5D). Serum analysis revealed
levels of blood glucose, cholesterol, triglyceride, liver and
kidney function (such as alanine aminotransferase [ALT]
and aspartate aminotransferase [AST]), and growth hor-
mones, all of which were within the normal range (Fig. S5E
and Table S4). All of the HGPS mutant phenotypes
appeared to replicate the clinical manifestations of HGPS in
humans (Fig. S5F) (Ozonoff and Clemett, 1967; Khalifa,
1989; Monu et al., 1990; Erdem et al., 1994; Stehbens
et al., 1999; Gordon et al., 2005; Hennekam, 2006; Mer-
ideth et al., 2008; Rastogi and Chander Mohan, 2008;
Doubaj et al., 2011; Gordon et al., 2011; Ullrich et al., 2012;
Silvera et al., 2013; Chu et al., 2015; Ullrich and Gordon,
2015; Rivera-Torres et al., 2016; Prakash et al., 2018; Xu
and Jin, 2019).

HGPS children suffer from global atherosclerosis and
vascular complications (Xu and Jin, 2019). To dissect the
early onset of disease-associated changes at the tissue
level, a histopathological examination was performed on
aortic biopsies of the deceased HGPS monkeys at five
months old, which is equivalent to the human age of 1.5
years. Identical aortic anatomy was isolated from HGPS
monkeys and their age-matched WT counterparts. An
increase in vascular wall fibrosis was observed in the HGPS

monkeys, which is associated with increased collagen for-
mation and vessel stiffness during normal and pathological
aging (Fig. 3H) (Selvin et al., 2010). Besides, the growing
endothelium lesion began to encroach on the arterial lumen
of HGPS monkeys, which is made evident by the appear-
ance of intimal hyperplasia (Fig. 3H). These histological
studies demonstrate that the HGPS monkey model captures
the early events of atherosclerosis, which may help identify
new biomarkers and preventative interventions to extend the
lifespan of HGPS patients, and other individuals susceptible
to atherosclerosis.

Skin phenotypes are usually apparent as the initial signs
of HGPS within the first year of life (Rork et al., 2014).
Dermatologic examination showed HGPS monkeys had
sclerodermatous skin that is thin and dry with stippled pig-
mentation and increased vascular markings on the skull and
eyelids (Figs. 1D and 3A). A decrease in epidermal prolif-
eration of HGPS skin was also observed (Fig. 4A), which is
in agreement with that of aged human skin (Giangreco et al.,
2008). Consistently, fibroblasts from HGPS monkeys had a
compromised proliferative ability, increased SA-β-gal stain-
ing (Senescence Associated β-galactosidase staining), and
heterochromatin loss in culture (Fig. 4B–E). To explore the
transcriptomic changes during an early stage of HGPS
progression, we isolated skin samples from five-month-old
HGPS monkeys and their WT counterparts and sequenced
the RNA. Comparisons between WT and HGPS monkeys
revealed 201 genes that were upregulated and 248 that were
downregulated in HGPS skin (Fig. 5A). Subsequent GO
analysis showed that the most significant biological path-
ways enriched by the upregulated genes were “cytokine and
cytokine receptor interaction” and “regulation of inflammation
response”, while for the downregulated genes, the most
significantly enriched pathway was “keratinization” (Fig. 5B
and 5C). We also investigated the genome-wide gene
expression changes of HGPS monkeys across multiple-tis-
sues, which has not been reported in any HGPS patient
(Gordon Leslie et al., 2016; Fleischer et al., 2018). RNA
sequencing identified a total of thousands of differentially
expressed genes (DEGs) in HGPS monkey tissue, com-
pared to age-matched wild type controls, with more DEGs in
the skin and lungs (Figs. 5D and SF6; Tables S5 and S6). It
was also found that progerin led to an enrichment of “chronic
inflammation” across tissues, which is consistent with the
GO enrichment analysis of the dataset from the skin samples
(Fig. 5E, 5F; Tables S5 and S6). These results highlight
systemic inflammation as an early and likely critical response
to progerin accumulation during the initial stage of HGPS
progression and imply that early anti-inflammatory treatment
may help mitigate some of the symptoms in HGPS patients.

CONCLUSIONS

This study demonstrates that BE4max enables efficient and
precise base editing in the cynomolgus monkey and that the
creation of HGPS monkey models can be used for future

Figure 5. Transcriptome features in HGPS monkeys.

(A) Scatter plot showed the DEGs between the skin samples

of WT (WT#1, WT#5 and WT#6) and HGPS (HGPS #1, HGPS

#5 and HGPS #6) monkeys. The number in red showed the

count of upregulated DEGs [log2 (Fold change) > 1, adjusted-

P < 0.05]; the number in blue shows the count of downregulated

DEGs [log2 (Fold change) < −1, adjusted-P < 0.05]. (B and C)

Dot plot showed the enriched GO-terms or pathways for

upregulated (B) and downregulated (C) genes in skin samples

of HGPS (HGPS #1, #5 and #6) compared to WT (WT #1, #5

and #6) monkeys. The color key from white to red (B) and white

to blue (C) indicates low to high enrichment level [-log10 (P-

value)] for each GO-term or pathway. The circle size indicates to

the ratio of genes enriched in the GO-term or pathway.

(D) Wind-rose plot showed the numbers of DEGs between

WT (WT #5 and WT #6) and HGPS (HGPS #5 and HGPS #6)

monkeys in various tissues. Red represents the count of

upregulated genes and blue represents the count of downreg-

ulated genes between WT monkeys and HGPS monkeys. (E

and F) Heat maps showed the enriched GO-terms or pathways

for upregulated (E) and downregulated (F) in tissues of the

HGPS #5 and HGPS #6 monkeys compared with the matched

WT #5 and WT #6 monkeys. The color keys from white to red

(E) and white to blue (F) indicate low to high enrichment level

[−log10(P-value)] for each GO-term or pathway.
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biomedical research. The HGPS monkeys expressed the
mutant progerin protein and exhibited the typical HGPS
phenotype. Due to the relatively long reproductive cycle and
life span of cynomolgus monkeys, this model may represent
a more valuable experimental model than the mouse (Osorio
et al., 2011), rabbit (Liu et al., 2018b) or pig (Dorado et al.,
2019), in terms of assessing HGPS pathogenesis and the
efficacy of related therapeutic intervention.

MATERIAL AND METHODS

Animals

Healthy female cynomolgus monkeys (Macaca fascicularis), ranging

in age from five to eight years with body weights of four to six kg,

were selected for use in this study. All animals were housed at the

Yunnan Key Laboratory of Primate Biomedical Research (LPBR). All

animal procedures were performed following the association for

Assessment and Accreditation of Laboratory Animal Care Interna-

tional (AAALAC) for the ethical treatment of primates.

Preparation of mRNA and sgRNA

PCMV_BE4max_P2A_GFP plasmids were obtained from Addgene

(#112099). The plasmid was linearized with the restriction enzyme

PmeI, and mRNA was synthesized and purified using an In Vitro

RNA Transcription Kit (mMESSAGE mMACHINE T7 Ultra kit,

Ambion). SgRNA oligos were amplified and transcribed in vitro using

the GeneArt Precision gRNA Synthesis Kit (Thermo) and purified

with the MEGAclear Kit (Thermo) according to the manufacturer’s

instructions.

Oocyte collection and in vitro fertilization

Oocyte collection and fertilization were performed as previously

described (Niu et al., 2010). In brief, 10 healthy female cynomolgus

monkeys aged 5–8 years with regular menstrual cycles were

selected as oocyte donors for superovulation, which was performed

by intramuscular injection with rhFSH (recombinant human follitropin

alpha, GONAL-F, Merck Serono) for 8 days, then rhCG (recombinant

human chorionic gonadotropin alpha, OVIDREL, Merck Serono) on

day 9 Oocytes were collected by laparoscopic follicular aspiration

32–35 h after rhCG administration. Follicular contents were placed in

Hepes-buffered Tyrode’s albumin lactate pyruvate (TALP) medium

containing 0.3% BSA at 37 °C. Oocytes were stripped of cumulus

cells by pipetting after a brief exposure (<1 min) to hyaluronidase

(0.5 mg/mL) in TALP-Hepes to allow visual selection of nuclear

maturity metaphase II (MII; first polar body present) oocytes. The

maturity oocytes were subjected to intracytoplasmic sperm injection

(ICSI) immediately and then cultured in CMRL-1066 containing 10%

fetal bovine serum (FBS) at 37 °C in 5% CO2. Fertilization was

confirmed by the presence of the second polar body and two

pronuclei.

BE4max injection, embryo culture, and transplantation

Six to eight hours after ICSI, the zygotes were injected with a mixture

of BE4max mRNA (100 ng/μL) and sgRNA (50 ng/μL) with total

volume 5 pL for each zygote. Microinjections were performed in the

cytoplasm of oocytes using a microinjection system under standard

conditions. Zygotes were then cultured in the chemically defined

hamster embryo culture medium-9 (HECM-9) containing 10% fetal

bovine serum (FBS, GIBCO) at 37 °C in 5% CaO2 to allow embryo

development. The culture medium was replaced every other day

until the blastocyst stage. The cleaved embryos with high quality at

the two-cell to blastocyst stage were transferred into the oviduct of

the matched recipient monkeys. Eleven monkeys were used as

surrogate recipients. The earliest pregnancy diagnosis was per-

formed by ultrasonography about 20–30 days after the embryo

transfer. Both clinical pregnancy and the number of fetuses were

confirmed by fetal cardiac activity and presence of a yolk sac as

detected by ultrasonography.

Genomic DNA extraction and sequencing

The genomic DNA from total blood cells and tissues of newborns

was extracted by Wizard Genomic DNA Purification Kit (Promega

#A1125) according to the manufacturer’s instructions. Sanger

sequencing after PCR was performed with primers as follows: F: 5′-

ATGTCTTCCCTCCCCTCCTC-3′; R: 5′-ATCTCTCACACTCCAGCC

CT-3′.

Behavioral analysis

Behavioral recording and analysis were performed by three inde-

pendent trained technicians blinded to the genotypes of the mon-

keys. The behavior of monkeys in the observation cages was video

record without interruption for 30 min between 10:00 a.m. to 11:00 a.

m. each day for five days. The observation cage for video recording

was the same as the incubator (40 × 85 × 36 cm, W × L × H) for

feeding monkeys. For local motion tracking, the trajectory was

extracted from the video recorded by a Kinect 2.0 camera (Microsoft,

CA). For action analysis, the actions of monkey movement were

analyzed by PrimateScan software Version 1.00 (Clever Sys Inc,

VA). The PrimateScan can detect monkey behaviors including

arousal, awaken, bounce, circle, climb, come down, crouch, drink,

eat, hang, jump, land, move, pace, pause, prostrate, remain, rock,

scratch, shake the cage, sitting, sleep, somersault, stand, swing,

turn, twitch, and urinate. In this analysis, the actions of sit, pause,

and sleep were defined as non-activity behavior, and the others

were activity behaviors. The duration of activity and non-activity

were statistically compared between wild type and HGPS monkeys.

Hematology

Human growth hormone was detected in machine cobas e-411

(Roche) by hGH Elecsys and cobas -e analyzers kit. The routine

blood and biochemical analyses were performed using a BC-

2800Vet (Mindray) and VetTest 8008 (BTAP).

Fibroblast isolation and cell culture

The primary fibroblasts of ear skin were obtained according to pre-

viously established methods (Zhang et al., 2018). Briefly, the skin

samples were sterilized with 75% ethyl alcohol and washed with

PBS, then cut into pieces and adhered to the culture dish after
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removing the hair and fat tissues. The fibroblasts can be outgrown in

about one week. All cells were cultured in DMEM high glucose

(Hyclone) medium containing 10% FBS (Gibco), 1% glutamax

(Gibco), 1% penicillin/streptomycin (Gibco), 2.5 μg/mL plasmocin

(Invitrogen) and 1 mol/L tenofovir under 37 °C, 5% CO2 conditions.

Clonal expansion assay

Fibroblasts at 9th passage were seeded in a 12-well plate (Corning)

at a density of 3 × 103 cells per well and cultured for approximately

10 days. Then cells were fixed with 4% formaldehyde for 10 min and

stained with crystal violet for 15 min. The cellular colonies were

photographed and calculated by ImageJ software.

Western blot

Western blot was performed according to previous work (Zhang

et al., 2018). For tissue protein analysis, frozen samples were

ground to a fine powder in liquid nitrogen and lysed with 2× SDS

lysis buffer, and for cultured cell protein analysis, cells were har-

vested and washed with cold PBS and lysed with 2× SDS lysis

buffer. Total lysates were quantified using the NANOGROP ONEc

(Thermo scientific), approximately 40 μg proteins per lane were

separated by SDS-PAGE gel and transferred to polyvinylidene

difluoride membranes (Millipore). The membrane was blocked with

5% non-fat milk and probed with the indicated primary antibodies

overnight at 37 °C. Antibodies for Western blot were anti-progerin

(sc-81611, 1:1,000, Santa Cruz Biotechnology); anti-Lamin A/C (sc-

7293, 1:1,000, Santa Cruz Biotechnology), and anti-β-actin (sc-

69879, Santa Cruz Biotechnology). After incubating with the horse-

radish peroxidase-linked secondary antibodies, the signal was

detected with an ECL kit (Thermo Fisher). β-actin was used as the

loading control.

qPCR

Total RNA was extracted with TRIzol reagent (Invitrogen) and

quantified by NANOGROP ONEc (Thermo scientific). 2 μg of total

RNA was reverse transcribed to complementary DNA using the

Reverse Transcription Master Mix (Promega). qPCR was carried out

with iTaq Universal SYBR Green Supermix (Bio-Rad). The expres-

sion level of indicated genes was normalized to GAPDH. The pri-

mers used for qPCR: GAPDH-F, 5′- TCGGAGTCAACGGATTTGGT-

3′; GAPDH-R, 5′-TTGCCATGGGTGGAATCATA-3′; Progerin-F, 5′-

ACTGCACCAGCTCGGGG-3′; Progerin-R, 5′-TCTGGGGGCTCTG

GGC-3′.

X-ray detection

X-ray autoradiography pictures of whole-body skeletons and bones

of interest were taken with a digital camera attached (Ralco, SPAIN)

on X-ray film (SEDECAL, SPAIN). Body fat detection was measured

using hologic discovery wi (HOLOGIC, USA).

Histology staining

Fresh tissues were fixed with 4% PFA and dehydrated using a

gradient alcohol soak, xylene, and then finally embedded in paraffin.

Embedded tissues were sliced into sections with a thickness of 5 μm

for hematoxylin and eosin staining, according to standard protocols.

Fibrosis was examined by Masson staining according to the protocol

previously described (Debacq-Chainiaux et al., 2009).

SA-β-Gal staining

The senescence-associated β-galactosidase assay was performed

according to a universally accepted method (Ding et al., 2015;

Zhang et al., 2019b).

Immunofluorescence assay

For cell immunofluorescence staining, about 105 cells were seeded

into 24-well plates containing coverslips. After one day of adherent

culturing, the cells were fixed with 4% paraformaldehyde for ten

minutes, then permeabilized with 0.1% Triton X-100 in PBS and

blocked with donkey serum for one hour. For the tissue

immunofluorescent staining, tissues were sliced and washed with

PBS and blocked with donkey serum in PBS for one hour at room

temperature. Subsequently, the cells/tissues were incubated with

primary antibodies overnight at 4 °C, washed with PBS three times,

followed by incubation with Alexa Fluor 488 (goat anti-rabbit) and

Alexa Fluor 633 (goat anti-mouse) conjugated secondary antibodies

for one hour. The nuclei were stained with Hoechst 33324 (Invitro-

gen). TrueVIEW Autofluorescence Quenching Kit (Vector, SP-8400)

was applied to slices to reduce tissue autofluorescence. Finally, the

coverslips or the tissue slices were mounted with antifade mounting

medium (Vectashield) and photographed under a laser scanning

confocal microscope (Leica SP5).

Whole-genome sequencing and bioinformatics analyses of copy-

number variations, repeated sequences, and single nucleotide

variants

The genomic DNA from 17 monkeys and five untreated blastocyst

embryos were used in the WGS analysis. The 15 monkeys included

the newborn monkeys and their parents (HGPS #1, BE #2, HGPS

#3, HGPS #4, HGPS #5, HGPS #6, WT #1, F #1, F#2, F #3, M #1, M

#2, M#3, M #4, and M #5). Five untreated blastocyst embryos (BC

#1, BC #2, BC #3, BC #4, and BC #5) and their corresponding

parents (F #C and M #C) were used as a control in the analysis of

the genome-wide de novo mutations (DMNs). The genomic DNA of

all samples was extracted by Wizard Genomic DNA Purification Kit

(Promega #A1125) according to the manufacturer’s instructions.

WGS was performed at mean coverages of 30× by Illumina HiSeq X

Ten. The raw data were filtered and trimmed using fastp software

(v0.20.0) with the base quality value ≥ 25 (-q 25) (Chen et al., 2018).

The qualified short reads were mapped to the reference genome

(Macaca_fascicularis_5.0.91_release91 from the ensemble) using

BWA (v0.7.17) MEM algorithm (Li and Durbin, 2009). After the initial

alignment, Samtools (v1.9) was used to filter multiple mapping reads

(mapping quality < 30) and sort aligned BAM files (Li et al., 2009).

After Q30 filtering, sambamba markdup was run (v0.7) to remove

duplicate reads in the mapped BAM files (Tarasov et al., 2015). The

uniquely mapped reads were retained for the copy-number variation

(CNV), repeat-sequence analysis and the single-nucleotide variants

(SNVs) analysis.
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In the CNV analysis, chromosomal sequences were placed into

bins of 500 kb in length. The normalized coverage depth for each bin

was calculated by dividing the raw coverage depth by the average

sequencing depth. The repeat regions annotated for Macaca fasci-

cularis by RepeatMasker (db20140131) (http://www.repeatmasker.

org) were removed from the genomic sequences before coverage

was calculated. The CNV scatterplot was generated using ggplot2.

For the repeat-sequence analysis, Repbase (v.21.11) annotated

repeat sequences were used to construct the reference sequence

index. Reads were mapped to the indexed repeat sequences, and

the mapped reads were grouped into long or short interspersed

elements (LINEs or SINEs, respectively), long terminal repeats

(LTRs), ribosomal RNAs (rRNAs), and other types of repeats. The

number of reads mapped to each type of repeat was normalized

concerning the total sequencing depth.

The pipeline for variant analysis was shown in the Fig. S2A. The

SNVs and Indels were called out from de-duplicated bam files using

Strelka (v2.9.0) (Kim et al., 2018). Then the raw variants were filtered

using the following thresholds: “QUAL > 30,” “MQ > 30,” “FILTER==

‘PASS,’” “GQ > 30,” and “DP > 20.” Heterozygosity distribution of

each filtered SNV was shown in Fig. S3C, which was calculated as

the depth of the enriched second base divided by the reference base

depth. To identify DMNs with higher confidence, we used TrioDe-

Novo software (v.0.06) (Wei et al., 2015) to remove background

variants in the offspring samples with their corresponding parents as

control, following the author’s recommended setting and filter. After

obtaining the results from running TrioDeNovo (Raw DNMs), only

DMNs with the allele balance between 0.3 and 0.7 that were not

shared among offspring (Final DMNs) remained. The number of

variants and DMNs after each of the filters were shown in the

Fig. S2B. Possible off-target sites with up to five mismatched sites

were identified using Cas-OFFinder (http://www.rgenome.net/cas-

offinder/). 11,483 possible off-target sequences were identified.

RNA sequencing data processing

The processing pipeline for RNA-seq data has been reported pre-

viously. Pair-end reads were trimmed using Trim Galore (https://

github.com/FelixKrueger/TrimGalore). Cleaned reads were mapped

to UCSC Macaca fascicularis (version macFas5) genome using

hisat2 (Kim et al., 2015). Trimmed reads with a mapping quality

exceeding 20 were counted by HTSeq (version 0.11.0) (Anders

et al., 2015). Differentially expressed genes (DEGs) were revealed

using DESeq2 R package (version 1.22.2) using a Benjamini-

Hochberg adjusted P value (adjusted-P value) of less than 0.05 and

absolute Log2(fold change) of more than 1 (Love et al., 2014). A

subsequent GO enrichment analysis was conducted using Metas-

cape (Zhou et al., 2019).

Data availability

The raw sequence data reported in this paper have been deposited

in the Genome Sequence Archive (Wang et al., 2017; National

Genomics Data Center and Partners, 2020) in BIG Data Center

(Nucleic Acids Res 2018), Beijing Institute of Genomics (BIG), Chi-

nese Academy of Sciences, under accession number CRA002684

that are publicly accessible at https://bigd.big.ac.cn/gsa.
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