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ABSTRACT Streptococcus agalactiae (group B streptococcus [GBS]) is a major cause
of infections in newborns, pregnant women, and immunocompromised patients.
GBS strain CNCTC10/84 is a clinical isolate that has high virulence in animal models
of infection and has been used extensively to study GBS pathogenesis. Two unusual
features of this strain are hyperhemolytic activity and hypo-CAMP factor activity.
These two phenotypes are typical of GBS strains that are functionally deficient in the
CovR-CovS two-component regulatory system. A previous whole-genome sequenc-
ing study found that strain CNCTC10/84 has intact covR and covS regulatory genes.
We investigated CovR-CovS regulation in CNCTC10/84 and discovered that a single-
nucleotide insertion in a homopolymeric tract in the covR promoter region underlies
the strong hemolytic activity and weak CAMP activity of this strain. Using isogenic
mutant strains, we demonstrate that this single-nucleotide insertion confers signifi-
cantly decreased expression of covR and covS and altered expression of CovR-CovS-
regulated genes, including that of genes encoding �-hemolysin and CAMP factor.
This single-nucleotide insertion also confers significantly increased GBS survival in
human whole blood ex vivo.

IMPORTANCE Group B streptococcus (GBS) is the leading cause of neonatal sepsis,
pneumonia, and meningitis. GBS strain CNCTC10/84 is a highly virulent blood isolate
that has been used extensively to study GBS pathogenesis for over 20 years. Strain
CNCTC10/84 has an unusually strong hemolytic activity, but the genetic basis is un-
known. In this study, we discovered that a single-nucleotide insertion in an inter-
genic homopolymeric tract is responsible for the elevated hemolytic activity of
CNCTC10/84.

KEYWORDS CNCTC10/84, CovR-CovS two-component regulatory system,
Streptococcus agalactiae, homopolymeric tract, hyperhemolytic phenotype, single-
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Streptococcus agalactiae (group B streptococcus [GBS]) is a leading cause of neonatal
sepsis, pneumonia, and meningitis (1–3). It also causes invasive infections in preg-

nant women and immunocompromised patients (1, 4–11). GBS strains are commonly
epidemiologically classified into one of 10 known serotypes (Ia, Ib, and II to IX) based
on the antigenicity of capsular polysaccharide variants (12–14). Among these variants,
serotypes Ia, Ib, II, III, and V cause the majority of infant invasive GBS infections (15).

GBS strain CNCTC10/84 is a capsule serotype V strain that was isolated from the
blood of a septic neonate (16). It is highly virulent in animal models and has been used
extensively in many laboratories for molecular pathogenesis investigations (17–33).
CNCTC10/84 has strong hemolytic activity due to the overproduction of �-hemolysin,
a key virulence factor of GBS (16, 21, 34–41). The �-hemolysin made by GBS is a
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pigmented cytotoxic lipid synthesized and transported by proteins encoded by the
cyl operon (cylX-cylK) (29, 41–44). Multiple studies have demonstrated that strain
CNCTC10/84 is hyperhemolytic and highly pigmented due to �-hemolysin overpro-
duction (16, 45, 46). However, the genetic basis underlying the overproduction of
�-hemolysin by CNCTC10/84 is unknown.

In GBS, the CovR-CovS (control of virulence) two-component system is a major
global regulator that controls the expression of many virulence factors and metabolic
enzymes (47). CovR-CovS regulation suppresses GBS production of �-hemolysin and,
conversely, promotes that of CAMP factor (47). Typically, as a consequence, GBS strains
that are functionally deficient in CovR-CovS regulation have enhanced beta-hemolytic
activity and diminished CAMP factor activity (47–49). Given that CNCTC10/84 is phe-
notypically similar to a CovR-CovS-deficient strain (i.e., hyperhemolytic and with hypo-
CAMP activity) (16, 50), we hypothesized that CNCTC10/84 would likely have a loss of
function (frequently a reading frameshift) mutation in either the covR or covS gene.
However, a genome sequencing study done by Hooven et al. found that CNCTC10/84
has intact covR and covS genes (50), and therefore factors other than covR or covS gene
disruption are responsible for the hyperhemolytic phenotype of CNCTC10/84.

In this study, we demonstrate that a single-nucleotide insertion in the covR pro-
moter region is responsible for the unusual hyperhemolytic and hypo-CAMP factor
activities of CNCTC10/84. We also show that this insertion is beneficial for GBS survival
in human whole blood ex vivo.

RESULTS
A single-nucleotide insertion in the covRS promoter confers altered hemolytic

activity and CAMP factor activity on GBS strain CNCTC10/84. Given that strain
CNCTC10/84 is phenotypically like GBS strains lacking CovR-CovS regulation but has
intact covR-covS genes, we inspected the covRS upstream untranslated region for
polymorphisms that potentially affect promoter function. Compared to GBS strains
with the wild-type allele of the covRS promoter (such as serotype 1a strain A909),
CNCTC10/84 has a single-nucleotide insertion in a homopolymeric nucleotide tract
in the covRS promoter region (Fig. 1A). The wild-type covRS promoter has 9
consecutive “Ts” downstream of the CovR binding motif and upstream of the covR
start codon (48), while the CNCTC10/84 covR promoter allele has 10 Ts (Fig. 1A).
Because the CovR-CovS two-component system directly regulates its own expres-
sion along with that of �-hemolysin and CAMP factor (47), we hypothesized that
this single-nucleotide insertion alters covR and covS expression and consequently
causes aberrant regulation and production of �-hemolysin and CAMP factor in
CNCTC10/84. To test this hypothesis, we generated an isogenic mutant strain of
CNCTC10/84 (i.e., CNCTC10/84-9T) with 9 Ts in the homopolymeric tract (Fig. 1A).
An isogenic covR-covS knockout strain (i.e., CNCTC10/84-ΔcovRS) was also gener-
ated for use as a CovR-CovS regulation-lacking control (Fig. 1). Our results show that
both CNCTC10/84 and CNCTC10/84-ΔcovRS were strongly hemolytic on sheep
blood agar and highly pigmented on Todd-Hewitt broth supplemented with yeast
extract (THY) agar (Fig. 1B). In contrast, both CNCTC10/84-9T and A909 with the
wild-type promoter (9 Ts), were weakly hemolytic and produced little pigment (Fig.
1B). Quantitative assay of hemolytic activity showed that strains CNCTC10/84 and
CNCTC10/84-ΔcovRS caused significantly more hemolysis than strains CNCTC10/
84-9T and A909 with the wild-type covR promoter (Fig. 1C). We also found that
CNCTC10/84 and CNCTC10/84-ΔcovRS had diminished CAMP activity, while strains
CNCTC10/84-9T and A909 with the wild-type covR promoter had robust CAMP
activity (Fig. 1D). In summary, we demonstrate that deleting a single nucleotide
from the poly(T) tract of the CNCTC10/84 covR promoter region restores what
appears to be near-wild-type levels of hemolysin and CAMP activity.

A single-nucleotide insertion in the covR promoter significantly alters the
expression of CovR-CovS-regulated genes in GBS strain CNCTC10/84. We examined
the effects of the covRS promoter region single-nucleotide insertion on CovR-CovS-
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regulated gene expression. Relative transcription was determined using quantitative
reverse transcription PCR (qRT-PCR) for strains cultured in Todd-Hewitt broth supple-
mented with yeast extract (THY). CNCTC10/84 with the native 10-T covRS promoter
allele had very low covR and covS transcript levels (Fig. 2A). The CNCTC10/84-9T
isogenic mutant with one T deleted from the homopolymeric tract had significantly
increased transcript levels of both covR and covS (Fig. 2A). Not surprisingly, A909 with
the wild-type covR promoter (9 Ts) had significantly higher levels of covR and covS
transcripts than those of CNCTC10/84. As expected, covR and covS expression was
undetectable in the covR-covS deletion strain CNCTC10/84-ΔcovRS (Fig. 2A). These
results show that the single-nucleotide insertion impairs the expression of covR and
covS in CNCTC10/84.

We next examined the expression of �-hemolysin synthesis genes. The cyl operon that
encodes genes required for the production of �-hemolysin is negatively regulated by the
CovR-CovS two-component system (47). As expected, the covR-covS deletion strain
CNCTC10/84-ΔcovRS had high cylE and cylI transcript levels consistent with the lack of
CovR-CovS repression (Fig. 2B). Similarly, CNCTC10/84 also had high cylE and cylI transcript
levels (Fig. 2B), again consistent with a loss of CovR-CovS repression. In contrast, the
isogenic mutant strain CNCTC10/84-9T had significantly lower cylE and cylI relative tran-
script levels (Fig. 2B, 10/84-ΔT), consistent with the single T deletion in the covR promoter
restoring normal (wild-type-like) CovR-CovS repression/regulation. Strain A909 with the
wild-type covR promoter had low transcript levels of the cyl genes, similar to those of
CNCTC10/84-9T (Fig. 2B).

Inversely to the repression of the �-hemolysin synthesis genes, the CAMP factor-
encoding cfb gene is positively regulated by CovR and CovS (47, 49). Consistent with
the CAMP factor activity results (Fig. 1D), cfb expression was high in strains CNCTC10/
84-9T and A909 with a wild-type 9-T covR promoter and normal covR-covS transcript
levels but low in CNCTC10/84 and CNCTC10/84-ΔcovRS with significantly lower covR-
covS transcript levels (Fig. 2B).

FIG 1 A single-nucleotide insertion in the covR promoter confers altered hemolytic activity and CAMP
activity on CNCTC10/84. (A) Schematic depiction of the covR upstream sequences of assayed strains.
CovR binding sequence is underlined. (B) Hemolytic and pigmentation phenotypes of GBS strains. (C and
D) Hemolytic activity (C) and CAMP activity (D) of GBS strains. OD, optical density. *, P � 0.05 versus 10/84
(n � 4, one-way analysis of variance with Dunnett’s multiple-comparison test).
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Lastly, to further investigate the effects of the single-nucleotide difference in the
covR promoter poly(T) tract on GBS gene expression, we examined the three additional
genes negatively regulated by CovR-CovS (47). These genes are 0429, encoding a
putative secreted protein, bibA, encoding a cell wall-anchored adhesin (51), and fbsA,
encoding a fibrinogen-binding protein (52). We found that compared to CNCTC10/84,
strain CNCTC10/84-9T had significantly lower expression of these three genes (Fig. 2D
to F). Consistent with these genes being under CovR-CovS system repression, the
covR-covS deletion strain CNCTC10/84-ΔcovRS had relative transcript levels of these
three genes that were significantly higher than those in strain CNCTC10/84 (Fig. 2D
to F).

In summary, our gene expression data show that the single-nucleotide insertion
in the covR promoter resulted in significantly decreased expression of covR and
covS, as well as derepression of all CovR-CovS negatively regulated virulence factors
examined.

A single-nucleotide insertion in covR promoter confers increased survival of
CNCTC10/84 in human whole blood. Because CNCTC10/84 was isolated from the
blood of a septic neonate, we examined the effect of the single-nucleotide insertion
on GBS growth in human whole blood collected from two healthy donors (Fig. 3). Our
results show that the strongly hemolytic strains CNCTC10/84 and CNCTC10/84-ΔcovRS
grew significantly better than the weakly hemolytic strain CNCTC10/84-9T in whole
blood obtained from both donors (Fig. 3A and B). GBS causes hemolysis when inter-
acting with human whole blood. After a 6-h incubation in the whole blood, strains
CNCTC10/84 and CNCTC10/84-ΔcovRS caused significantly more hemolysis than strain
CNCTC10/84-9T (Fig. 3C and D). Moreover, the extent of hemolysis caused by the
covR-covS knockout mutant was significantly higher than that for CNCTC10/84 (Fig. 3C
and D). None of the GBS strains grew significantly differently in THY (Fig. 3D), suggest-
ing that the differences in hemolysis observed in human whole blood are likely not
attributable to basic differences in capacity of the strains to grow in a nutrient-rich

FIG 2 A single-nucleotide insertion in the covR promoter confers altered expression of CovR-CovS-
regulated genes in CNCTC10/84. Data are expressed as means � standard deviation (SD). *, P � 0.05
versus 10/84 (one-way analysis of variance with Dunnett’s multiple-comparison test). (E and F) A909 was
not included because for bibA and fbsA, TaqMan primers and probes designed for strain CNCTC10/84 are
not compatible with strain A909 due to sequence dissimilarity. (D) Locus number 0429 is relative to the
genome of CNCTC10/84.
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environment. In summary, our results show that the single-nucleotide insertion in the
covR promoter confers significantly increased GBS survival in human whole blood ex
vivo. Also, GBS strains with this single-nucleotide insertion caused significantly higher
hemolysis when incubated with human whole blood.

Inserting a single T into the homopolymeric tract of the wild-type covR pro-
moter is sufficient to confer hyperhemolysis. We showed that deleting a single T
from the CNCTC10/84 covR promoter abolished the hyperhemolytic phenotype of this
strain (Fig. 1). To examine if this is a strain-specific phenomenon unique to CNCTC10/84
or a strain-independent mechanism that has evolved in GBS for altering virulence
factor expression by changing covRS expression, we constructed isogenic mutant strain
A909-10T by adding a T to the covR promoter of strain A909, a GBS isolate with the
wild-type allele of the covR promoter (9 Ts) (Fig. 4A). Our results showed that compared
to the wild-type parental strain A909, the isogenic mutant strain A909-10T had signif-
icantly decreased expression of covR, significantly increased expression of the hemo-
lysin gene cylE, and significantly decreased expression of the CAMP factor gene cfb (Fig.
4B to D). Consistent with the gene expression profile, isogenic mutant strain A909-10T
had markedly increased beta-hemolysis and pigment production, yet decreased CAMP
factor activity, similarly to CNCTC10/84 (Fig. 4E and F). In summary, our results show
that adding a T to the wild-type covR promoter is sufficient to confer hyperhemolysis
in A909.

covR promoter region polymorphisms in a large collection of GBS clinical
isolates causing invasive infections. To study if the CNCTC10/84-like insertion in the
covR promoter region is present in GBS clinical isolates, we investigated the extent of
natural variation in the homopolymeric T-nucleotide tract in the covR promoter among
6,516 GBS invasive infection isolates using kmer counting as previously described for a
homopolymeric nucleotide tract in Streptococcus pyogenes (53). The 6,516 isolates were
collected and whole-genome sequenced as part of the Active Bacterial Core surveil-
lance program of the Emerging Infections Program of the Centers for Disease Control

FIG 3 A single-nucleotide insertion in the covR promoter contributes to CNCTC10/84 survival in human whole
blood. (A and B) Growth of GBS strains in human whole blood. (C and D) Hemolysis caused by GBS strains after a
6-h incubation in human whole blood. (E) Growth of GBS strains in THY. (A to D) *, P � 0.05 versus 10/84 (n � 4,
one-way analysis of variance with Dunnett’s multiple-comparison test).
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and Prevention (54) (BioProject accession number PRJNA355303). The number of
sequencing reads matching from 6 Ts to 13 Ts was determined for 6,509 of the 6,516
isolates (Fig. 4). Nearly all of the covRS promoters, 6,495 (99.8%), were wild type/A909
like and had 9 Ts. Eleven isolates had 8 Ts, and only 3 isolates were CNCTC10/84 like and
had 10 Ts. None of the isolates were found to have 6, 7, 11, 12, or 13 Ts. Thus, the covRS
promoter T-nucleotide tract was nearly invariant among the GBS invasive infection
isolates examined.

DISCUSSION

In this study, we discovered the genetic basis underlying the hyperhemolysis of GBS
strain CNCTC10/84, a highly virulent strain that has been used extensively to study GBS
pathogenesis. Our results show that a single-nucleotide insertion in the covR promoter
area is responsible for the enhanced hemolytic activity of CNCTC10/84. This mutation
is beneficial for GBS survival in human whole blood ex vivo.

The CovR-CovS two-component system is an important global regulator of virulence
in GBS (47, 48). CovR positively autoregulates its own expression via binding to the
covR promoter (Fig. 1) (48). In this study, we demonstrate that CNCTC10/84 carries a
single-nucleotide insertion in the covR promoter that results in strongly reduced
promoter activity (Fig. 2). This insertion increases the length of the homopolymeric
tract; however, it does not alter the covR binding motif (48) (Fig. 1A). We speculate that
the insertion does not affect CovR binding to the CNCTC10/84 covR promoter but
instead affects interaction between CovR and RNA polymerase. Proper interaction
between CovR and the RNA polymerase complex is essential for covR expression (55).

FIG 4 Inserting a single T into the wild-type covR promoter of strain A909 is sufficient to confer
hyperhemolysis. (A) Schematic depiction of the covR upstream sequences of assayed strains. (B to D)
Transcript levels of covR, the hemolysin gene cylE, and the CAMP factor gene cfb. *, P � 0.05 versus A909
(n � 4, one-way analysis of variance with Dunnett’s multiple-comparison test). (E) Hemolysis and pigment
phenotype of GBS strains. (F) CAMP factor activity of GBS strains.
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In bacterial pathogens, it is not uncommon for intergenic homopolymeric tracts to play
a role in gene regulation and virulence (56). For example, small insertions or deletions
within an intergenic homopolymeric tract result in fimbrial phase variation in Bordetella
pertussis (57). Similarly, length variation in a homopolymeric tract in the promoter
region of nspA has been demonstrated to affect factor H-mediated serum resistance in
Neisseria meningitidis (58). We recently discovered that a one-nucleotide indel in an
intergenic homopolymeric tract significantly alters global transcript profiles and viru-
lence of Streptococcus pyogenes (53, 59). In this study, we provide another example of
intergenic homopolymeric tract polymorphism that affects promoter activity, specifi-
cally by altering hemolysin production and potentially virulence of GBS. Further study
is needed to unravel the exact biological function of the homopolymeric tract in the
covR promoter area.

Many studies have found that CNCTC10/84 is phenotypically similar to a covR-
covS-deficient strain, due to its strong hemolytic activity and weak CAMP activity
(16, 50, 60, 61). Here, we showed that CNCTC10/84 is a weak expresser of covR and
covS, although it has intact covR and covS genes. We also show that CNCTC10/84 is
phenotypically similar but not identical to an isogenic covR-covS knockout mutant
strain (Fig. 2). For example, the expression of CovR-suppressed genes (cylE, cylI,
0429, bibA, and fbsA) is significantly higher in the covR-covS knockout strain than in
CNCTC10/84 (Fig. 2). Also, the covR-covS knockout strain had significantly higher
hemolytic activity than CNCTC10/84 (Fig. 1 and 3). These results suggest that the
derepression of CovR-suppressed genes is incomplete in CNCTC10/84, presumably due
to the residual expression of covR and covS (Fig. 2A). Finally, our results show that there
are slight differences in the covR- and covS-regulated genes between A909 and isogenic
mutant CNCTC10/84-9T (Fig. 2A and C). We speculate that the moderate difference in
gene expression profiles is due to the distinct genetic backgrounds of A909 and
CNCTC10/84.

In this study, we demonstrate that the single-nucleotide insertion in the covR
promoter is beneficial for CNCTC10/84 survival in human whole blood (Fig. 3). Chang-
ing this promoter to the wild-type allele significantly impaired GBS growth in whole
blood (Fig. 3). We speculate that CNCTC10/84 is more resistant to the neutrophils
present in the whole blood due to the overproduction of the cytotoxic �-hemolysin. In
support of this hypothesis, Liu et al. showed that �-hemolysin is essential for GBS
survival in human whole blood and for resisting neutrophil killing by promoting cell
death (34). We also showed that CNCTC10/84 overexpresses the virulence genes bibA
and fbsA (Fig. 2), which encode surface-located adhesins known to protect GBS from
opsonophagocytosis and which are required for GBS survival in human whole blood
(51, 52). Therefore, the genetic bases underlying enhanced survival of CNCTC10/84 in
whole blood could be multifactorial.

Although the insertion in the covRS promoter is beneficial for CNCTC10/84 growth
in whole blood ex vivo (Fig. 3), we found that the mutation is rare among clinical
isolates causing invasive infections. The large majority of the clinical isolates have the
wild-type covR promoter. This indicates that proper expression of covR and covS is
critical for GBS fitness and pathogenesis during human infections. That is, decreased
expression or complete loss of CovR and CovS function may result in a fitness loss
under certain intrahost conditions. Prior studies demonstrate that deletion of covR and
covS in GBS can result in increased or decreased pathogenesis depending on the
infection models used. For example, Lembo et al., showed that infection with CovR-
deficient GBS strains resulted in increased sepsis in mice when injected intravenously
(48). Also, CovR-deficient GBS strains were more proficient in induction of permeability
and proinflammatory signaling pathways in brain endothelium and penetration of the
blood-brain barrier (48). Conversely, there is compelling evidence showing that CovRS-
deficient GBS strains are less fit in other infection models. For instance, a covR-covS
knockout mutant was significantly impaired for persistence in human serum (47). Also,
loss of CovS/CovR abrogates intracellular survival of a type III GBS in macrophages (62).
Moreover, CovR-deficient GBS strains exhibit a decreased ability to invade brain micro-
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vascular endothelial cells and lung epithelial cells (48). Furthermore, a CovR-deficient
serotype III GBS strain was significantly attenuated for colonization in mice and
adhesion to uroepithelial cells (63). Lastly, CovR and CovS mutant strains were signif-
icantly attenuated for causing sepsis in mice when injected intraperitoneally (49). It is
noteworthy that for intraperitoneal injection, GBS cells must invade the epithelium
to gain access into the bloodstream and cause sepsis, and CovRS-deficient GBS strains
have a defect in crossing epithelial barriers. Collectively, these results suggest that
the CovRS two-component system is critical for colonization and epithelial cell invasion.
Although CovRS-deficient strains (decreased covR-covS expression, or loss of CovRS
function) may have advantages in the bloodstream due to the enhanced production of
cytotoxin, these strains may have defects in transmission, colonization, and crossing
epithelial barriers. Nevertheless, it is interesting that the GBS covR promoter has a
homopolymeric tract that regulates covR-covS expression. The presence of this ho-
mopolymeric tract may favor GBS transition from a commensal to an invasive bacterial
pathogen. Further investigations are needed to test this hypothesis.

MATERIALS AND METHODS
Construction of isogenic mutant strains. All of the mutant strains used in this study were

constructed using allelic exchange as described previously (64). Isogenic mutant strain CNCTC10/
84-9T was derived from CNCTC10/84 by deleting one T in the homopolymeric tract in the covR
promoter region. CNCTC10/84-ΔcovRS was constructed by deleting the covR and covS genes of
CNCTC10/84. Isogenic mutant strain A909-10T was derived from A909 by inserting a T into the
homopolymeric tract of the covR promoter. Primers used for mutant construction are listed in Table
S1 in the supplemental material. All isogenic mutant strains were whole-genome sequenced as the
final confirmation of the allelic replacement and to rule out the introduction of unwanted spurious
mutations influencing covR-covS expression and GBS hemolytic activity. Briefly, the genomes of GBS
strains were sequenced using an Illumina NextSeq 550 instrument. Sequence reads were quality
filtered, adapter and artifact trimmed, and base call error corrected using Trimmomatic and Musket
(65) and then mapped to the genome of CNCTC10/84 or A909 using SMALT (https://www.sanger
.ac.uk/tool/smalt-0/). Single-nucleotide polymorphisms (SNPs) and insertions and deletions (indels) were
identified using FreeBayes and Pilon (66).

Quantification of hemolytic activities of GBS strains. A hemolytic activity assay was performed as
described previously (16), with minor modifications. Briefly, GBS cells (108 CFU) were inoculated into
10 ml of sheep red blood cells (1%) suspended in phosphate-buffered saline (PBS) supplemented with
0.2% glucose and then incubated at 37°C. After an indicated period of incubation, the tubes were
centrifuged to pellet intact red blood cells and GBS cells. An aliquot of 100 �l of the supernatant was
transferred to a 96-well plate. Hemolysis was assessed by measuring hemoglobin released into the
supernatant by absorbance at 420 nm.

Quantitative reverse transcription-PCR analysis of gene expression in GBS strains. GBS strains
were grown in THY broth (Todd-Hewitt broth supplemented with yeast extract) to an optical density (OD)
at 600 nm of 0.5. RNA from GBS cultures was extracted with an RNeasy minikit (Qiagen) and converted
into cDNA using a high-capacity cDNA reverse transcription kit (Applied Biosystems). Quantitative PCR
was performed with the TaqMan Fast Universal PCR master mix (Applied Biosystems) and an ABI 7500
Fast System (Life Technologies) instrument. The sequences of the TaqMan primers and probes for the
assayed genes are listed in Table S2 in the supplemental material. Each experiment was performed in
quadruplicate (four biological replicates). A no-template control (NTC) was included to rule out false-
positive signals generated by contamination or primer dimer formation. The statistical significance of
relative expression differences between strains was evaluated using one-way analysis of variance with
Dunnett’s multiple-comparison test.

GBS survival in human whole blood. Heparinized human blood was collected from healthy
volunteers under a Houston Methodist Research Institute Institutional Review Board human subject
protocol (protocol number Pro00004933) and processed as described previously (67). To compare
the ability of GBS strains to grow in human whole blood, GBS strains were grown to the mid-
exponential phase in THY broth (OD of 0.5). GBS cells were washed three times with 10 ml of PBS
and suspended with an equivalent volume of PBS. An aliquot of 20 �l of the GBS cell suspension
(approximately 2 � 106 CFU) was inoculated into 2 ml of human whole blood and incubated at 37°C
in 2-ml tubes rotated horizontally side over side. Aliquots (100 �l) of the seeded blood samples were
recovered at 0, 3, and 6 h postinoculation, and GBS CFU were enumerated by serial dilution and
growth on blood agar plates.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.04 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.03 MB.
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