Table 1.
Sensitivity | Specificity | Accuracy | PPV | NPV | Kappa | Concordance | |
---|---|---|---|---|---|---|---|
ENET-MIN all codesa | |||||||
Derivation cohort | 0.94 | 0.99 | 0.98 | 0.84 | 0.99 | 0.88 | 0.99 |
Validation cohort | 0.69 | 0.99 | 0.96 | 0.93 | 0.96 | 0.77 | 0.93 |
ENET-MIN selected codesa | |||||||
Derivation cohort | 0.82 | 0.97 | 0.96 | 0.69 | 0.99 | 0.73 | 0.93 |
Validation cohort | 0.76 | 0.98 | 0.96 | 0.85 | 0.97 | 0.78 | 0.91 |
Single code | |||||||
Derivation cohort | 0.90 | 0.96 | 0.95 | 0.82 | 0.98 | 0.83 | 0.93 |
Validation cohort | 0.81 | 0.98 | 0.96 | 0.83 | 0.97 | 0.80 | 0.89 |
PPV positive predictive value, NPV negative predictive value, ENET-MIN Elastic Net model with tuning parameters minimizing cross-validation mean misclassification error
aprior probability for models set at 0.25