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ABSTRACT The biological basis of exercise behavior is increasingly relevant for maintaining healthy lifestyles. Various quantitative
genetic studies and selection experiments have conclusively demonstrated substantial heritability for exercise behavior in both humans
and laboratory rodents. In the “High Runner” selection experiment, four replicate lines ofMus domesticus were bred for high voluntary
wheel running (HR), along with four nonselected control (C) lines. After 61 generations, the genomes of 79 mice (9–10 from each line)
were fully sequenced and single nucleotide polymorphisms (SNPs) were identified. We used nested ANOVA with MIVQUE estimation
and other approaches to compare allele frequencies between the HR and C lines for both SNPs and haplotypes. Approximately
61 genomic regions, across all somatic chromosomes, showed evidence of differentiation; 12 of these regions were differentiated
by all methods of analysis. Gene function was inferred largely using Panther gene ontology terms and KO phenotypes associated with
genes of interest. Some of the differentiated genes are known to be associated with behavior/motivational systems and/or athletic
ability, including Sorl1, Dach1, and Cdh10. Sorl1 is a sorting protein associated with cholinergic neuron morphology, vascular wound
healing, and metabolism. Dach1 is associated with limb bud development and neural differentiation. Cdh10 is a calcium ion binding
protein associated with phrenic neurons. Overall, these results indicate that selective breeding for high voluntary exercise has resulted
in changes in allele frequencies for multiple genes associated with both motivation and ability for endurance exercise, providing
candidate genes that may explain phenotypic changes observed in previous studies.
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MOSTtraits of interest inbiologyarecomplex,modulated
by numerous genetic and environmental factors, and

comprised of multiple lower-level (subordinate) traits that
often influence higher-level traits in nonintuitive ways
(Garland et al. 2016; Sella and Barton 2019). Examples of
complex traits include human height, which is influenced

by .9500 quantitative trait loci (QTL) (Wood et al. 2014),
as well as one’s susceptibility to various psychological dis-
eases (Horwitz et al. 2019).

One complex trait of great interest to medicine is exercise
behavior. Exercise has been linked to numerous health ben-
efits, including muscle and bone strength, weight control,
reducedcardiacdisease, and improvedmentalhealth (Manley
1996; Lightfoot et al. 2018). Nonetheless, the majority of
Americans are not getting sufficient exercise and this prob-
lem is common worldwide (Guthold et al. 2018). Not only
does insufficient exercise contribute to such health issues as
obesity and diabetes (Booth et al. 2002; Cornier et al. 2008;
Myers et al. 2017), but it also increases healthcare costs in the
United States, e.g., by .US $100 billion annually between
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the years of 2006 and 2011 (Carlson et al. 2015). Conversely,
higher levels of physical activity promote physical fitness and
cardiovascular health, while lowering risk for depression,
anxiety-related disorders, obesity, type 2 diabetes, and mor-
tality (Blair and Morris 2009; Matta Mello Portugal et al.
2013; Mok et al. 2019).

The health benefits of exercise occur by various mecha-
nisms (Neufer et al. 2015), as do the adverse effects of a lack
of exercise (Booth et al. 2012). Acute exercise can have ben-
eficial effects on immune function (Sellami et al. 2018) and
cognition (Park and Etnier 2019). Chronic exercise training
can cause changes in muscle fiber type composition that ben-
efit regulation of energy metabolism and other metabolic
pathways (Fan et al. 2013). Furthermore, exercise has been
linked to lower blood pressure by reducing systemic vascular
resistance (Cornelissen and Fagard 2005). Reduced blood
pressure, in turn, reduces risk of cardiac disease (Benjamin
et al. 2019). The release of endorphins and vascular endo-
thelial growth factors have shown promise as explanations
for the growth of new neurons in the brain, which may be the
cause of reduces symptoms of neurological diseases such as
depression (Ernst et al. 2006).

Identifying genetic determinants of exercise behavior
couldpotentially lead todrug targets thatwouldhelppromote
motivation for exercise and/or benefits derived from exercise.
Additionally, by identifying genetic causes of motivation
for exercise we may also gain insight regarding higher-level
structures or pathways that control this motivation. A variety
of humanstudies havebeen conducted todetermine thegenes
or chromosomal regions thatmodulate various components of
exercise behavior, including both motivation and/or capabil-
ity to exercise (Lightfoot et al. 2018). Many of these studies
use observational methods to compare humans who engage
in either frequent and/or strenuous exercise with those who
are less active (Kostrzewa and Kas 2014; Lin et al. 2017).
Historically, themost common approach tomeasuring human
exercise levels was by use of questionnaires, which can be of
dubious reliability, but an increasing number of studies use
accelerometers (Prince et al. 2008; Dyrstad et al. 2014).
Detecting QTL in these studies is generally done with
genome-wide association studies (GWAS), which rely on
phenotypic and genetic data from many individuals within
a population and can identify particularly strong correlations
between the phenotype and key genetic markers and loci.

Various QTL identified in humans are associated with
motivation, e.g., dopaminergic regulation. Dopamine is a
well-established modulator of exercise motivation or reward
(Garland et al. 2011b). Various genes associated with the
dopamine pathway are associated with exercise behavior in
humans (Simonen et al. 2003; Loos et al. 2005; DeMoor et al.
2009). The large body of evidence that dopamine signaling is
a major component of exercise motivation dwarfs other mo-
tivational systems that have been associated with exercise,
including serotonin and endocannabinoids (Dietrich 2004;
Cordeiro et al. 2017), though serotonin has been implicated
in GWAS of hyperactivity disorders (Aebi et al. 2016).

Other human studies have detected QTL associated with
physical traits related to exercise abilities, including maximal
oxygen consumption (VO2max) (Williams et al. 2017), bone
density (Herbert et al. 2019), and more (Lin et al. 2017). The
list of possible biological traits affiliated with exercise and
their associated QTL is extensive (Sarzynski et al. 2016;
Lightfoot et al. 2018).

Observational studies of human exercise behavior are
limited by measurement error and environmental cofactors
that cannot always be accounted for in statistical models
(Garland et al. 2011b; Lightfoot et al. 2018). One alternative
is to use animal models derived from selective breeding ex-
periments (Garland and Rose 2009). Selective breeding will
alter the proportions of alleles that affect a trait of interest,
thus allowing for easier detection of such alleles (Britton and
Koch 2001; Konczal et al. 2016). Finding the genetic factors
that underlie a complex trait is also facilitated by reducing
environmental variation (“noise”), as is possible with labora-
tory colonies of rodents (Parker and Palmer 2011).

To elucidate the biological basis of voluntary aerobic ex-
ercise behavior, a selection experiment was begun in 1993 us-
ing a base population of outbredHsd:ICRmice. Four replicate
lines have been bred for high voluntary wheel-running be-
havior and another four bred without regard to their wheel
running as controls for founder effects and random genetic
drift (Swallow et al. 1998). Since the beginning of this exper-
iment, over 150 papers have been published that document a
variety of phenotypic differences between the High Runner
(HR) and Control (C) lines. These previous studies establish
morphological and physiological differences in bone, kidney,
heart, skeletal muscle, brain, and other organs and systems
(Rhodes et al. 2005; Swallow et al. 2005; Kolb et al. 2013b;
Wallace and Garland 2016), and, more generally, reaffirm
the diversity of the systems involved in voluntary exercise
behavior (Garland et al. 2011b; Lightfoot et al. 2018). The
previous studies also give potential directions for informed
analyses of the genome. For example, we would expect di-
vergence in allele frequencies related to the reward system in
the brain and to muscle function. The HR selection experi-
ment is the world’s “largest” involving a behavioral trait in
rodents in terms of the number of lines and generations.
Therefore, addressing the genomic differences between the
HR and C mice is expected to provide novel insights into the
underpinnings of exercise behavior.

Previously, Xu and Garland (2017) used a mixed model
(nested ANOVA) with minimum variance quadratic unbiased
estimation (MIVQUE) to analyze medium-density single nu-
cleotide polymorphism (SNP) data for the HR and control
lines sampled from generation 61 (Xu and Garland 2017).
This statistical method proved more powerful than the com-
monly used regularized F test and Generalized Linear Mixed
Model (GLMM) methods when incorporating permutation-
based multiple testing correction. The data used included 7–
10 females from each of eight lines (four HR and four C).
Genotypes were determined with the MegaMUGA SNP-chip
(Morgan and Welsh 2015). After removing markers with
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missing data, 25,318 markers were analyzed with the mixed
models, finding 152markers to be significantly differentiated
between the HR and C linetypes (i.e., test group). Although
Xu and Garland (2017) demonstrated numerous SNP loci
with evidence of differentiation between the HR and control
lines, biological interpretations were not presented. Addi-
tionally, as demonstrated by the whole-genome sequence
(WGS) data addressed in this paper, various differentiated
loci were not detected in the previous SNP-chip analysis.

Here, we apply the mixed model with MIVQUE estimation
method toWGSdata obtained from the same individuals as in
Xu and Garland (2017). We analyze both SNP and haplotype
data to take full advantage of the information provided by
each data type (Shim et al. 2009; Taliun et al. 2016). We also
use simulations to explore some of the statistical properties of
the MIVQUE estimation method for this application, and we
implement procedures aimed at improving model fit and po-
tentially statistical power. We identify numerous SNP and
haplotype loci as potential candidates for functionally rele-
vant genetic differentiation between the HR and C lines.
Many of these can be tied to specific lower-level traits that
should influence exercise behavior, through use of gene on-
tology terms and KO phenotype analyses of nearby genes.

Using information on known morphological and physio-
logical differences between theHR and control lines, wewere
able toperformbothbroadanddirected strategies todetecting
significantly differentiated loci. We show that the method of
Xu and Garland (2017) can be improved by allowing for
different among- and within-line variance structures. We
identified several potentially differentiated genes associated
with bone, heart, and brain morphology. We also identified a
few candidates with potential large-scale influences on the
HR mice, including Sorl1, Dach1, and Cdh10.

Materials and Methods

HR mouse model

As described previously (Swallow et al. 1998; Careau et al.
2013), 112 males and 112 females of the outbred Hsd:ICR
strain were purchased from Harlan Sprague Dawley in 1993.
These mice were randomly bred in our laboratory for two
generations. Then 10 males and 10 females were then ran-
domly chosen as founders for each of eight closed lines (gen-
eration 0). Four of these lines were randomly picked to be HR
lines, in which mice would be selected for breeding based on
voluntary wheel running. The remaining four lines were used
as C lines, without any selection. At �6–8 weeks of age, all
mice were given access to wheels for 6 days. The amount of
running (total revolutions) on days 5 and 6 was used as the
selection criterion. For the nonselected C lines, one male and
one female from each of 10 families were chosen as breeders
to propagate the line. For the HR lines, the highest-running
male and female fromwithin each of 10 families were chosen
as breeders (within-family selection). Sib-mating was disal-
lowed in all lines (Swallow et al. 1998).

Whole-genome sequencing

DNA was collected from 80 mice (10 from each line), from
generation 61, via phenol-chloroform extraction and se-
quenced on an Illumina HiSeq 2500 1T platform. Libraries
were constructed using Nextera kit and reads were trimmed
and aligned to the GRCm38/mm10 mouse genome assembly
as described in Didion et al. (2016). This generated an aver-
age read depth of 12X per mouse. SNPs were filtered based
on genotype quality (“GQ”).5, read depth.3,MAF,0.0126
for all samples, and Mapping Quality (“MQ”) .30. Of the
80 mice, 1 was excluded due to likely contamination as in
Xu and Garland (2017), leaving 79 for the following analy-
ses. SNPs not found to be present in at least 2 of the 80 mice
were also removed from analysis. Although Xu and Garland
(2017) had identified these as females, they were in fact all
males with exception of one female from line 5.

Heterozygosity calculations

Individual mouse heterozygosity (multi-locus heterozygosity)
was calculated by dividing the number of heterozygous loci for
each mouse by the total number of segregating loci across all
80 mice (n = 5,932,124). Heterozygosity per line is the aver-
age of the heterozygosity of all sequencedmicewithin that line.

SNP analysis

Individual SNPs were initially analyzed using a mixed model
approach with the Minimum Variance Quadratic Unbiased
Estimation of variance (MIVQUE) method of estimating var-
iance parameters as described in Xu and Garland (2017).
However, rather than removing loci or mice (which had been
necessary in the Xu and Garland paper, resulting in 7–10mice
per line analyzed) with missing data, code was modified to
remove only the missing values themselves. The MIVQUE
analysis provides a P-value for each locus for rejecting the
null hypothesis of no differentiation between the HR and C
lines. Xu and Garland had performed the analysis using two
different encoding schemes to represent genotypes as 0, 0.5
and 1 vs. as twin vectors of 0–0, 0–1 and 1–1. We have since
determined that the twin vectors encoding was preferable,
and we report only those results (File S7).

Multi-model analysis of SNP data from WGSs

The analyses performed in Xu and Garland (2017) used a
single statistical model in R for all loci (our comparable
SAS model being “Simple” in Table 1). This model did not
allow for several possibilities that might be expected a priori
and that were in fact observed, such as differing variances
among the five replicate HR and C lines (designated “SepVar-
Lines” in Table 1), as is the case for wheel-running behavior
(Garland et al. 2011a). Beyond this, the amount of variation
among individual mice within the replicate lines might differ
for the HR and C lines (“Full”model). Interpretation of these
different models is presented in the Discussion. In total, we
applied four alternate models to the data for each locus, and
followed a model selection procedure for the one with the
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lowest the Aikake Information Criterion (AIC), corrected for
small sample sizes (AICc), and retained the P-value for its
linetype effect (differentiation between the HR and C lines).
All Multi-Model analyses were performed in SAS using
PROCEDURE MIXED with the mivque0 method (File S10).
We elected to prioritize SAS over R for its performance gains
over large number of loci. For a direct comparison, we reana-
lyzed theMegaMUGAdata in Xu andGarland (2017) themulti-
model method (Supplemental Material, Figures S1 and S2).

Loci that contained no within-line variance (i.e., each line
was fixed for one allele or the other) could not be analyzed
with the foregoing procedures. We analyzed these loci by
counting the net number of alternatively fixed lines among
the HR and C linetypes. Those loci with greater difference
in allele frequency between the HR and C linetypes are
regarded as being more “significant.”

Multiple testing correction

Permutations for MegaMUGA data: This approach is based
on the permutation method used by Xu and Garland (2017),
but modified to account for the multiple models. All permu-
tations were performed using SAS PROCMIXED as described
above in the section on multi-model approach. The mouse
IDs, line, and linetype were randomly permuted as a block to
break their original associations with the allelic data but not
with each other. The permuted data for each locus were then
analyzed with each of the four models listed in Table 1 (i.e.,
for the MegaMUGA SNP data, 4 3 25,332 analyses were
performed). For each of the four models, the AICc was
recorded, and the corresponding F-statistics were retained.
From these 25,332 loci (for the MegaMUGA data), the
F-statistic corresponding to the model with the lowest AICc

Table 1 Summary of covariance models

Model df.
Covariance
parameters Description

HR and C
different
among-
line

variance

HR and C
different
within-
line

variance

HR and C
same

among-
line

variance

HR and C
same
within-
line

variance SAS Code

Full 6 4 Random effects for replicate
line within selection
treatment (linetype) and
for mouse within line and
linetype, allowing for
separate variance
estimates for both lines
within linetype and
mouse within line and
linetype

x x proc mixed data = locus
method = mivque0;

class pop sub mouse;
model COL1 = pop/
solution;

random sub(pop) /group
= pop;

random mouse(sub pop)
/group = pop;

SepVarLines 6 3 Random effects for replicate
line within selection
treatment (linetype) and
for mouse within line and
linetype, allowing for
separate variance
estimates for line within
linetype

x x proc mixed data = locus
method = mivque0;

class pop sub mouse;
model COL1 = pop/
solution;

random sub(pop) /group
= pop;

random mouse(sub
pop);

SepVarInd 6 3 Random effects for replicate
line within selection
treatment (linetype) and
for mouse within line and
linetype, allowing for
separate variance
estimates for mouse
within line and linetype

x x proc mixed data = locus
method = mivque0;

class pop sub mouse;
model COL1 = pop/
solution;

random sub(pop);
random mouse(sub pop)
/group = pop;

Simple 6 2 Random effects for replicate
line within selection
treatment (linetype) and
for mouse within line and
linetype (as used by Xu
and Garland (2017))

x x proc mixed data = locus
method = mivque0;

class pop sub mouse;
model COL1 = pop/
solution;

random sub(pop);
random mouse(sub
pop);

Multiple models used to analyze the allelic SNP data (two values per mouse) for whole-genome sequences from 79 mice. For each model, we used SAS Procedure Mixed with
MIVQUE estimation (Xu and Garland 2017) to obtain the test statistic (F), significance level (P), and AICc (df. method was containment). For some loci, the within-line variance
was zero for all eight lines. In those cases, we used direct enumeration to calculate a significance level, i.e., the probability of observing the pattern vs. the 23 possible
combinations. See text for further details.
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was saved. The foregoing process was repeated 5000 times,
the resulting F-statistics were sorted from largest to smallest,
and the 250th largest F-statistic was used to establish the
critical value for the 5% FWER.

Permutations for haplotype data: Permutations done for
haplotypes were performed separately for 2-allele haplotype
blocks and 3-allele blocks, using 1000 permutations to keep
computational times manageable. As in the unpermuted hap-
lotype analyses, blocks with three alleles (n = 5869) were
analyzed with two dummy variables, each individual dummy
variable was tested using the multi-model method, and the
two P-values generated were combined using Fisher’s
method (Fisher 1925). However, some permutations of the
3-allele blocks produced erroneous low P-values (apparently
due to numerical issues), which, if included in subsequent
calculations would have caused an artifactual reduction of
the critical value needed to obtain the true 5% FWER. The
permutations of the 2-allele blocks (n = 11,032) did not
produce any artifactually low P-values. Given the problems
with the 3-allele haplotype permutations, we elected to apply
the MeguMUGA permutation threshold (P , 0.00526) to
the haplotype blocks because of their similar sample size
(MegaMUGA = 25,332; Haplotypes = 16,901) and the fact
that they should be highly correlated.

Local maxima selection for WGS data: In the original paper,
which analyzed 25,332 SNPs from a commercial chip, a
permutation procedure was used to control the family-wise
Type I error rate (FWER) at 5% (Xu and Garland 2017).
Those procedures were not computationally practical for
the 5,932,124 SNPs from the WGSs, nor are linked SNPs
within a haplotype block truly independent from each other.
Accordingly, significant loci were chosen via a combination
of2logP cutoff and local maximum (LM) determination, the
latter acting as a filter to focus on actual selected loci over
their hitchhikers. Similar methods have been previously
described (Nicod et al. 2016). Briefly, suggestive loci
with 2logP .3.0 were clustered with a maximum gap of
1 Mbp. For each such cluster, the global peak, and a set of
local maxima were determined for every 500 kbp spanned
by the cluster. The set of local maxima were chosen as peaks
separated by dips in the signal below themedian2logP in the
cluster. These LM SNPs were annotated using R libraries
GenomicFeatures and VariantAnnotation, with the mm10
knownGene.sqlite database provided by the Genome
Browser team at the University of California, Santa Cruz.

Haplotype determination

From the WGSs, haplotypes were determined using JMP
11 and JMP Scripting Language (SAS Institute Inc., Cary,
NC). To construct haplotypes, we first defined the genomic
block segments as consecutive 20 kbp windows that did not
transition between homozygous and heterozygous states. For
each block region, we performed a hierarchical clustering
analysis using SNP genotype data (of homozygous regions

only) as input. Preliminary haplotype analysis showed that
the HR population at generation 61 rarely had more than
three alleles in a given haplotype. Therefore, the analysis
was restricted to a maximum of three clusters (haplotype
alleles) per block (File S5).

Haplotype analysis

As for the SNP data, haplotype data were analyzed using the
multi-model method described above. Haplotype blocks with
only two alleles (n = 11,032) were analyzed the same way
as for the SNP data (File S10). Blocks with three alleles
(n = 5869) were analyzed with two dummy variables, with
the base allele chosen as themost common one, and then two
dummy variables coding for presence of the other two alleles.
Each individual dummy variable was tested using the multi-
model method. The two P-values generated from the two
dummy variables were combined using Fisher’s method
(Fisher 1925). Different models potentially were used for
each dummy variable based on AICc, allowing for up to
two models to contribute to the final P-value of a locus (File
S6).

SNPs fixed in one treatment but polymorphic in
the other

As noted previously with the SNP chip data (Xu and Garland
2017), we observed no loci that were fixed for one allele in all
four HR lines while being fixed for the alternate allele in all
four C lines (see Results). We did, however, observe loci fixed
for a given allele in all four HR lines, which is symptomatic of
a complete selective sweep (caused by directional selection)
as described by Burke (2012), while remaining polymorphic
in all four C lines. All loci that were fixed in the HR mice and
simultaneously polymorphic in all C lines (FixedHR/PolyC)
were extracted from the multi-model results and grouped
such that those fixed loci that were within 100,000 bp of
other fixed loci would be part of the same group. This process
was then repeated for loci fixed in the Control lines but poly-
morphic in all HR lines (FixedC/PolyHR).

General ontology analysis

Transcribed regions (N = 56, as indicated in Table 2) found
to contain LM based on the WGS analyses were analyzed
using The Gene Ontology (GO) resource. GO analyses were
performed based on biological process, molecular function,
and cellular component. Ontologies reported as significant at
raw P , 0.05 for any of these three categories are reported
here. Analysis of these genes was also performed using the
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID). The results of these analyses did not vary
greatly from the GO results.

Targeted ontology analysis

Previous papers show that the HR lines of mice have diverged
from the C lines for many different phenotypes (reviews in
Rhodes et al. 2005; Garland et al. 2011b; Wallace and
Garland 2016). Many of these phenotypes can be tied to
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specific neurobiological or physiological functions. In such
cases, a logical approach is to analyze separately some can-
didate genes known to be affiliated with relevant functions
and find differentiated SNPs for those genes. We used this
approach for several ontologies. Specifically, lists of genes
affiliated with dopamine, serotonin, brain, bone, cardiac
muscle, and skeletal muscle were extracted from the Mouse
Genome Informatics website. SNPs found within these genes
were separated from the full WGS data and the most differ-
entiated among these were recorded.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. Any additional intermediary or results file
are available upon request. Supplementalfiles are available at
FigShare. File S1 contains supplemental figures and brief
descriptions of all other supplemental files and tables. File
S2 contains allelic SNP data. File S3 containsmouse datawith
line and lintype. File S4 contains all results for analyses of
individual SNPs. File S5 contains all haplotype data. Files S6
contains all results for analyses of haplotype data. File S7
contains justification for use of allelic coding of alleles. File S8
includes simulations of Type I error rates for Mixed Model
analyses using MIVQUE variance estimation. File S9 expands
on the discussion of genes in consistent regions (see Results).
File S10 includes all R and SAS code used for the SNP and
haplotype analyses. File S11 includes a comprehensive list of
genes containing SNPs and rankings by P-value. Table S1
includes local maxima associated genes. Table S2 contains
groups of loci fixed in all lines of one lintype but polymorphic
in all lines of the other. Table S3 includes heterozygosity for
each individual mouse. Table S4 includes top 10 genes for
each of the targeted ontologies analyses. Table S5 includes
allele frequency by line of each loci identified as a local max-
imum. Table S6 includes genomic regions identified as
suggestive (P , 0.001) by the SNP analyses. Supplemental
material available at figshare: https://doi.org/10.25386/
genetics.12436649.

Results

Variation in genetic diversity

After 61 generations of the HR mouse selection experiment,
and based on a sample of 79mice, we found SNPs segregating
at 5,932,124 loci (�2.2 SNPs per kbp or 0.22%) across the
entire set of lines (i.e., at least two mice containing an alter-
nate allele were found across the 79 mice sequenced) with at
least 1.5% minor allele frequency. Individual lines contained
2.04–2.82M SNPs (34%–48% of the total diversity) (Table
3), with no appreciable loss in diversity for the HR lines com-
pared to the C replicates (Mann–Whitney U test, W = 6;
P-value = 0.6857). SNP heterozygosity ranged from 10.3%
to 20.6% among individual mice (Table S3) and averaged
12.7%–18.1% per line (Table 3).

Initial haplotype analysis demonstrated that there were
rarely more than three alleles for any given haplotype block
(region with little to no discernable recombination events
within the 79 mice analyzed). Therefore, for the final haplo-
type analysis, hierarchical clustering was performed with a
limit of three clusters. Of these blocks, 16,901 remained
variable across the eight lines in generation 61. As would
be expected, the number of haplotypes that have not gone to
fixation in each line appears to be proportional to the number
of SNPs that have not gone to fixation (Table 3). Heterozy-
gosity for the haplotypes ranged from 12.2% to 25.5% for
individual mice (Table S3), and 14.7%–19.6% when aver-
aged per line (Table 3). Heterozygosity for the haplotype
data were not significantly different between HR and C lines
(Mann–Whitney U test, W = 8; P-value = 1.0 and W = 6;
P-value = 0.6857, respectively).

Multi-model vs. single-model comparisons

As expected, we found that many, indeed most, loci were
better fit bymodels other than the “Simple”model used by Xu
and Garland (2017). Generally, the “Full” model was the
most preferred, followed by the “Simple” model (Table 4).
In general, differences between the P-values determined by
the single and multi-model methods were negligible (Figure
S2).

When analyzing data generated under the null hypothesis,
themixedmodelswithMIVQUEestimation forboth singleand
multi-model produced a deflated Type I error rate for a

= 0.05 (File S8). The multi-model approach helped to cor-
rect this, but the Type I error rate did not improve greatly
with the multi-model approach alone. We attempted to uti-
lize the Kenward Rogers method of determining degrees of
freedom to correct this low Type I error rate, but this did not
bring Type I error rate to 0.05 and effectively dropped the
nested line effect for many loci. We did not want to drop the
nested line effect because this ignores the fundamental ex-
perimental design of the selection experiment. However, the
permutation and local maxima methods of determining loci
of interest are robust to this deflated Type I error rate (File
S8), so we proceeded with our analyses using conservative
results produced by the MIVQUE variance estimation
method.

Three major analyses

Whole-genome haplotype: No haplotypes were identified as
being fixed in all HR lines for one allele and fixed in all C lines
for the opposite allele. The multi-model haplotype analysis
produced 102 blocks of significant differentiation at the
P , 0.005 (permutations) level. Significant blocks could be
found on 13 chromosomes (Figure 1). We consider haplotype
blocks within 1,000,000 bp of each other to be linked and
therefore part of the same haplotype group: 28 such groups
were determined (Table 5). These groups include a total of
154 transcribed sequences recognized by the Panther database
for gene ontology. The largest of these groups was found on
chromosome 14:52,100,155–54,334,868 bp (Table 5).
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Whole-genome SNP: Similarly to haplotypes, no individual
SNPs were identified as being fixed in alternative alleles across
all HRonone hand and all C lines on the other. At the P , 8.4E-
09 critical level (Bonferroni-corrected), only two SNPs in chro-
mosome 5 were identified to be significantly differentiated
across the entire genome (Figure 2), both in an intron of an
uncharacterized gene (GM34319). The syntenic/orthologous re-
gion of both the human and cat genomes correspond to a coding
region (exon 3) of the MYL5 gene (Myosin light chain 5). Due
to the small number of significant SNPs under Bonferroni and
the computational difficulties of using permutations with the
multi-model method, we focus on local maxima SNPs.

In the local maxima (LM) analyses, the suggestive cutoff
(2logP . 3.0) produced 38,065 SNPs for analysis. A total of
44 clusters were found, ranging in size from 1 SNP to
3787 SNPs (Chr9: 41,303,824–42,478,817 bp). The largest
single group in terms of genome spanned is on chr17:
17,846,983–23,586,163 bp (Table 6). From these groups,
a total of 84 LM were determined; 31 of these SNPs were
associated with 27 unique transcribed regions. Of the
27 genes, 26 could be utilized for GO analysis. Although
chromosome 3 had no LM fall into specific genes (despite
clear significance based on the Manhattan plot), the cluster
on chr3 (chr3:51,190,735–52,498,029 bp) includes�10 val-
idated coding genes and various predicted genes, but none of
the LMs fall in these. However, all three LMs in this group are
upstream of Setd7, a methyltransferase.

Themost significant SNPs with no within-line variance fell
into three regions. One of these regions is on chromosome 5
[105–109 million base pair (mbp)], which is close to the LM
identified in this chromosome. Another is on chromosome
16 (44 mbp), �2.5 mbp from the LM on chromosome
16 containing Lsamp, a gene which codes for a neuron-asso-
ciated membrane protein. However, the last region falls in
chromosome 7 (115 mbp), a chromosome which contained
no LM. This location is downstream of Sox6, a developmental
regulator broadly associated with muscle fiber type compo-
sition (van Rooij et al. 2009), hematopoiesis, bone growth,
and heart function (Smits et al. 2001).

SNPs fixed in one treatment and polymorphic in the other:
SNPs that were fixed in all HR lines and polymorphic in all C
lines (FixedHR/PolyC) were grouped into 95 regions, based
on their being separated by at least 100 kbp (Table S2). Here,
we were more strict on the definition of a group than for the

haplotype groups (1 mbp) to limit the potential for single
SNPs to greatly expand the size of a group by their spacing,
whereas haplotypes, being made up of several SNPs, are nat-
urally resilient to such inflation. Some of these regions are
probably not independently segregating (e.g., chr17:
17,895,909–22,546,405 bp), and might therefore be
combined further. Regions varied in size from 1 to
1,626,783 bp. These regions include or are proximal to (in
the case of 1 bp regions) 135 transcribed regions, including
genes, miRNA, and predicted genes. SNPs that were fixed in
all C lines and polymorphic in all HR lines (FixedC/PolyHR)
were combined into 64 regions. The size of each region varies
from 1 to 753,066 bp. We expect the 1 bp loci may be spu-
rious but chose to include them in results for completeness,
especially given that the mini-muscle locus involves only a
single base pair (Kelly et al. 2013). These regions include or
are proximal to 63 transcribed regions, again including
genes, miRNA, and predicted genes. FixedHR/PolyC regions
were also identified in haplotypes. These haplotype blocks
overlapped with the SNP regions identified by FixedHR/
PolyC; however, some of the single unlinked loci that met
these criteria were not identified using haplotypes.

Ontology analyses

General ontology: GO analysis of biological process for the
haplotype data reveal “sensory perception of chemical stim-
ulus” to be a major term of interest (Table 7). This appears to
be caused by various clusters of olfactory and vomeronasal
genes. Many of the most prominent terms appear to be cor-
related to these olfactory and vomeronasal gene clusters.
Although a single, large group of closely linked olfactory
genes may over-represent olfactory’s role in selection, we
were able to identify two distinct genomic regions of vomer-
onasal genes and three such regions of olfactory genes.

The biological process GO terms for LM include many
results that are consistentwithourpreviousfindings involving
the HR mice, including cardiac- and myoblast-related terms
(Table 8). Regulation of locomotion is among the most sta-
tistically significant GO terms.

The FixedHR/PolyC GO analyses indicate terms: comple-
ment-receptor-mediated signaling pathway and response to
pheromone. These terms were significant with a false discov-
ery rate (FDR) correction (FDR, 0.05), P = 7.11E-04 and
P = 2.40E-07, respectively) (Table 9). For FixedC/PolyHR,
no GO termswere significantly enrichedwith FDR correction,

Table 2 Basic descriptive statistics for the primary analyses

Dataset Total loci Significant loci Critical threshold Significant GENES

MegaMUGA 25,332 162a P , 0.00526 (5% FWER) 174b

Whole-Genome SNPs 5,932,124 84 P , 0.001 (Local Maximum) 27
Haplotypes 16,901 102c (28 regions) P , 0.00526 (See text) 154b

All HR Fixed, All C Polymorphic 5,932,124 2562 (46 regions) See text 135b

a In Xu and Garland (2017), 152 SNPs were identified as statistically significant with a single model and the MIVQUE procedure. after use of a permutation procedure to
control the family-wise Type I error rate (FWER) at 5% (P , 0.00343).

b These are not genes that SNPs fell into. These are genes close to significant SNPs or haplotypes.
c From 28 closely linked groups.
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some novel GO terms were deemed most significant. In-
cluded in these results is also CDP-choline pathway, which
had also been implicated in the haplotype data. The full list of
regions for both FixedHR/PolyC and FixedC/PolyHR can be
found in (Table S2).

Targeted ontology: The gene search for specific ontologies
produced 45–820 genes and 7315–143,507 SNPs associated
with each search (Table 10). The top 10 genes were chosen
based on the most significant SNP within the gene (Table
S4). The most significantly differentiated SNPs were gener-
ally found in genes associated with the brain, followed by
bone and muscle related genes. Surprisingly, the reward-re-
lated ontologies (dopamine and serotonin) did not contain as
strong evidence for differentiation as the others.

Consistent regions identified across multiple analyses

The major analyses (LM, haplotype, and FixedHR/PolyC) in-
dividually implicate �80, 24, and 46 differentiated genomic
regions, respectively. Combined, 61 unique regions across the
genome are indicated, including at least one region on every
chromosome. Of these 61 regions, 12 are found in all three
analyses (Table 11). These 12 consistent regions span just over
27.4 mbp and include 300 validated and predicted genes. Of
the 300 genes, 77 are either olfactory or vomeronasal genes,
which are predominantly located in two large regions on chro-
mosomes 14 and 17. Surprisingly,many of these regions donot
contain many of the most differentiated SNPs according to the
multi-model MIVQUE analyses, but do have at least one SNP
with P # 0.001 by the LM criteria.

Discussion

Variation in genetic diversity

For the present sample of 79 mice from generation 61, based
on the polymorphic SNPs within each line (Table 2), each of

the lines continues to retain�34%–48% of the total diversity
across all three lines. Such a drop in genetic diversity would
be expected after 61 generation with �10 breeding pairs per
generation per each line. We found no evidence that HR and
C lines had differing levels of genetic diversity, averaged
across the whole genome.

Consistent regions from multiple analyses

Many of the identified regions span too many genes to allow
ready identification of a candidate. However, a few of the
regions contain a limited number of genes for which the
reported functions make sense in the context of directional
selection for high voluntary wheel-running behavior (from
first principles of physiology and neurobiology) and/or given
previously identified differences between the HR and C lines
(see Introduction). Given the rich phenotyping literature on
the HR mouse selection experiment (.150 publications), we
discuss a relatively large number of genes. Additional regions
are covered in Supplemental Material (File S9).

The region identified on chromosome 5 includes 16 genes
(excluding predicted and noncoding), three of which were
previously identified as differentially expressed in the stria-
tum of the HR and C mice (Saul et al. 2017). These genes
include Tmed5, Gak, and Mfsd7a. Tmed5 is a trafficking pro-
tein associated with cell proliferation andWNT7B expression
in HeLa cells (Yang et al. 2019). Mice knockouts in Gak are
generally lethal to adult and developing mice causing various
abnormal symptoms, including altered brain development
(Lee et al. 2008). Mfsd7a (aka Slc49a3) has been associated
with ovarian cancer, but much remains unknown about this
gene (Khan and Quigley 2013).

The region on chromosome 6 includes Trpv5 and Kel, both
of which are associated with KO phenotypes that may be tied
to known differences between the HR and C lines. Trpv5 KO
is associated with phenotypes related to structural changes in

Table 4 Model preference by data set, test, and allele counts

Model MegaMUGAa WGSa Hap 2-alleleb Hap 3-alleleb

Full 9875 (39.0%) 2,441,601 (41.2%) 4512 (40.9%) 5510 (46.9%)
SepVarLine 3105 (12.3%) 504,946 (8.5%) 1052 (9.5%) 1583 (13.5%)
SepVarInd 2983 (11.8%) 716,265 (12.1%) 726 (6.6%) 748 (6.4%)
Simple 8654 (34.2%) 2,186,803 (36.9%) 4594 (41.6%) 3615 (30.8%)
# with no within-line variance 715 (2.8%) 82,533 (1.4%) 148 (1.3%) 282 (2.4%)
a Number of SNPs whose lowest AICc match the indicated model.
b Number of haplotype blocks whose lowest AICc match the indicated model (one for each dummy variable for 3-allele blocks).

Table 3 Summary of polymorphism and heterozygosity by line

Line Polymorphic SNP loci SNP % Polymorphic haplotypes Haplotype % SNP Het Haplotype Het

C1 2,333,951 39.3% 7773 46.0% 14.7% 17.8%
C2 2,436,225 41.1% 7652 45.3% 13.7% 16.6%
C3 2,602,007 43.9% 7841 46.4% 15.8% 17.8%
C5 2,102,405 35.4% 7160 42.4% 12.7% 16.5%
HR3 2,819,828 47.5% 8717 51.6% 18.1% 19.6%
HR6 2,220,487 37.4% 7060 41.8% 13.5% 16.2%
HR7 2,042,309 34.4% 6304 37.3% 13.0% 14.7%
HR8 2,226,282 37.5% 7315 43.3% 14.4% 16.6%

788 D. A. Hillis et al.



the femur and kidney physiology (Hoenderop et al. 2003; Loh
et al. 2013), both of which differ between HR and C lines
(Swallow et al. 2005; Castro and Garland 2018). Trpv5 is
also associated with calcium homeostasis (Hoenderop et al.
2003; Loh et al. 2013). Kel is a blood group antigen with KO
phenotypes affiliated with weakness, gait, and motor coordi-
nation, neurological development, and heart function (Zhu
et al. 2009, 2014). Previous experiments have shown the HR
and Cmice to have differences in heart physiology (Kolb et al.
2013a), gait and motor coordination (Claghorn et al. 2017),
and brain development (Kolb et al. 2013b).

The region on chromosome 9 contains various predicted
genes and miRNA, but also one large gene of interest, Sorl1
(aka SorlA). This gene is also implicated in our targeted
search for genes related to the brain (Table 10). Sorl1 codes
for a sorting receptor that has been associated with various
neural and metabolic diseases (Schmidt et al. 2017). Al-
though some of the associated phenotypes, such as obesity,
may have some correlation to phenotypic differences be-
tween HR and C mice, such as difference in body fat
(Swallow et al. 2001; Vaanholt et al. 2008; Hiramatsu and
Garland 2018), this does not directly answer the question of
how Sorl1 influences running behavior. Mouse knockouts in
this gene have not shown changes in running gait (Rohe
2008), whereas differences in gait do exist between HR and
C mice (Claghorn et al. 2017). However, these treadmill tests
do not address exercise motivation, which might be influ-
enced by such a neurobiologically relevant gene. Addition-
ally, a more significantly differentiated haplotype can be
found over 150,000 bp downstream of Sorl1, containing var-
ious predicted genes and miRNA. Therefore, further studies
will be required to determine precisely the elements of this
region that modulate wheel running. Although Tbcel is near
this consistent region rather than included in it, it is the most
differentiated gene in the genome (based on median P-value
of included SNPs, P = 4.01E-07). This gene is known to
regulate tubulin activity in sperm and the nervous system
(Nuwal et al. 2012; Frédéric et al. 2013).

One regionon chromosome11contains numerousgenes of
potential interest. One LM within this region is proximal to a
handful of genes that may be influencing the HR phenotype,
including: Tefm, Adap2, Crlf3, and Suz12. These genes are
associated with KO phenotypes including enlarged heart and
decreased body weight (Jiang et al. 2019), blood cell concen-
tration (White et al. 2013), and brain morphology (Miro et al.
2009). All of these phenotypes have been found to differ be-
tween HR and C mice (Kolb et al. 2013b; Thompson 2017;
Singleton and Garland 2019).

Table 5 Significant haplotype groups

Group Chr Start (bp) End (bp) Size (bp) P-value

1 2 43,100,041 43,214,647 114,606 4.42E-03
2 3 51,580,020 51,659,891 79,871 2.25E-06
3 4 89,300,145 89,357,884 57,739 4.92E-03
4 4 155,480,343 155,654,426 174,083 3.94E-04
5 5 108,000,623 108,679,807 679,184 4.85E-04
6 5 118,824,587 119,299,787 475,200 2.15E-03
7 5 132,540,807 133,720,551 1,179,744 1.12E-03
8 6 37,440,411 37,659,588 219,177 3.47E-03
9 6 41,584,862 43,431,434 1,846,572 1.47E-05
10 7 29,640,243 29,697,093 56,850 5.67E-04
11 9 41,240,184 42,275,833 1,035,649 4.90E-07
12 10 75,061,742 75,456,261 394,519 3.99E-03
13 10 103,363,232 104,139,953 776,721 3.94E-03
14 10 105,220,041 105,699,704 479,663 3.72E-03
15 11 79,724,263 81,409,849 1,685,586 1.89E-04
16 11 114,466,946 114,489,018 22,072 2.69E-03
17 14 52,100,155 54,334,868 2,234,713 5.62E-04
18 14 98,380,090 98,679,965 299,875 2.22E-03
19 15 18,960,135 19,759,996 799,861 1.09E-03
20 15 69,120,025 70,219,737 1,099,712 4.53E-03
21 15 71,480,090 71,559,595 79,505 9.91E-04
22 15 86,541,805 86,599,823 58,018 3.55E-03
23 16 31,540,757 33,178,952 1,638,195 2.79E-04
24 16 40,742,298 41,357,426 615,128 1.01E-03
25 17 18,020,933 18,039,390 18,457 3.54E-04
26 17 20,700,046 20,939,819 239,773 3.54E-04
27 17 23,000,233 23,599,776 599,543 3.54E-04
28 17 65,458,617 65,738,255 279,638 1.46E-03

Figure 1 Manhattan plot for haplotype data. Dashed horizontal line indicates P-value,0.005 (seeMaterials and Methods), which yielded 28 haplotype
groups (see Table 5).
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One region on chromosome 14 includes almost exclusively
Dach1, which is an important regulator for various early de-
velopmental genes. Dach1 is a regulator of muscle satellite
cell proliferation and differentiation (Pallafacchina et al.
2010). Although knockouts of Dach1 in mice do not appear
to disrupt limb development (Davis et al. 2001), Dach1 mu-
tants sometimes have stunted leg development in Drosophila
(Mardon et al. 1994). Furthermore,Dach1 has been shown to
localize around limb budding regions and interact with
known limb patterning genes in both mice and poultry
(Horner et al. 2002; Kida 2004; Salsi et al. 2008). Studies
of skeletal muscle (Garland et al. 2002; Bilodeau et al. 2009)
and of the peripheral skeleton show several differences be-
tween HR and C lines of mice (Garland and Freeman 2005;
Kelly et al. 2006; Castro and Garland 2018; Schwartz et al.
2018). This gene has also been implicated in the develop-
ment and function of the kidneys (Köttgen et al. 2010), which
have been shown to be larger in the HR lines than C lines in
some studies (Swallow et al. 2005).

A region on chromosome 15 includes Cdh10 among a few
predicted genes. GO links Cdh10 to both “calcium ion bind-
ing” and “glutamatergic synapse,” terms that occasionally
produced suggestive P-values for enrichment searches in
our differentiation analyses (Table 7 and Table 9). These
terms could have various implications for the HR mice.
Cdh10 specifically is a cadherin with extensive expression
in the brain (Liu et al. 2006; Matsunaga et al. 2015). This
gene has been shown to have increased expression in phrenic
neurons (Machado et al. 2014), potentially modulating di-
aphragm movement, and increased functionality of the di-
aphragm could partly underlie the elevated maximal rate of
oxygen consumption during exercise (VO2max) observed in
HR lines (Kolb et al. 2010; Hiramatsu et al. 2017; Singleton
and Garland 2019). Cdh10 has also been shown to have in-
creased expression in regions associated with olfactory sys-
tem development (Akins et al. 2007) which could be
corroborated by the other two consistent regions associated
with olfactory and vomeronasal (see Results, General ontol-
ogy). The other region detected on chromosome 15 currently
only contains Fam135b among its annotations. Few studies

have been conducted involving the function of Fam135b, but
evidence indicates it has an important role in spinal motor
neurons based on a.10,000-fold decrease in expression in spi-
nal and bulbar muscular atrophy models (Sheila et al. 2019).

The region we identified on chromosome 16 contains
various genes that may influence wheel running behavior.
One example is Fbxo45, which has demonstrated itself essen-
tial for neuronal development (Saiga et al. 2009) and synap-
tic transmission (Tada et al. 2010). One gene that particularly
caught our attention was Pcyt1a, which is an important mod-
ulator of the CDP-choline pathway, catalyzing the formation
of CDP-choline (Andrejeva et al. 2020), also known as citico-
line. Citicoline has been researched extensively for its clinical
applications and has demonstrated capacity to stimulate do-
pamine synthesis in nigrostriatal areas (Drago et al. 1989,
cited in Secades and Lorenzo (2006)), which are important
for exercise and reward (Wise 2009). Additionally, CDP-cho-
line has shown evidence of modulating dopamine receptors
in the striatum (Giménez et al. 1991).

Ontology

General ontology: The GO analyses in this paper serve two
functions. The first includes determining pathways that have
been influenced by the selective breeding protocol. Addition-
ally, the vast publications and data on various morphological
and physiological differences between the HR and C lines
provide insight into differentiated biological processes.

The Haplotype and Fixed/Poly methods of identifying
differentiated genes had considerable overlap between genes
and regions identified, which seems to result in similar GO
terms for these analyses. The term “sensory perception of
chemical stimulus” is expected, given the large number

Figure 2 Manhattan plot for WGS SNP data. Large dots represent local maxima (N = 84).

Table 6 Top 5 largest suggestive regions

Chr Start (BP) End (BP) Size Lowest P

17 17,846,983 23,586,163 5,739,180 7.54E-05
10 103,429,623 105,529,701 2,100,078 3.73E-05
16 31,440,034 33,128,268 1,688,234 7.05E-06
15 18,958,730 20,635,226 1,676,496 8.49E-05
16 16,235,542 17,805,005 1,569,463 7.04E-04
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olfactory and vomeronasal genes present in some of these
regions. Selection for such genes is likely in response to
how the mice are tested for wheel running. For logistical
reasons, around two-thirds of the mice tested in a given gen-
eration were measured on wheels that had not been washed
since the previous mouse was on that same wheel, although
the attached cages were fresh (Dewan et al. 2019). The scent
of the previous mouse would potentially elicit different run-
ning behavior, dependent on these vomeronasal and olfac-
tory genes (e.g., see Drickamer and Evans 1996). We checked
the Allen Brain Atlas for some of these genes (particularly
those in the consistent region on chromosome 17) and found
that only a few of these olfactory and vomeronasal genes had
data. One of these includes Vmn2r107, with expression most
consistent around the olfactory bulb. However, Olfr1509 had
expression levels seemingly around the anterior cingulate
cortex, a region associated with cognitive control of motor
behavior (Holroyd et al. 2004). GO terms related to postsyn-
aptic neurotransmitters were largely indicated by three
genes. Cplx1 has been linked to severe ataxia and movement
limitations in knockout rats (Xu et al. 2020), Dlg1 (aka
SAP97) is a scaffolding protein that localizes glutamate re-
ceptors in postsynaptic membranes and has shown altered
expression in rats exposed to cocaine (Caffino et al. 2018),
and Shisa6 has been associated with the localization of AMPA
(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) re-
ceptors (Klaassen et al. 2016), which have shown reduced

expression after prolonged cocaine exposure (Cooper et al.
2017). Such terms are perhaps not surprising, given observa-
tions of the HRmice having largermidbrains and altered reward
mechanisms (Belke and Garland 2007; Mathes et al. 2010;
Garland et al. 2011b; Keeney et al. 2012; Kolb et al. 2013b;
Thompson et al. 2017).

The local maxima GO results are generally quite different
from the haplotype and Fixed/Poly analyses. This is partially
attributable to less overlapping of identified genomic regions.
Additionally, LM is useful for gene culling to reduce influence of
hitchhiking genes in the GO analyses. Many of the top terms for
LM genes are associated with heart development and function.
Heart ventriclemass is greater in theHRmice (Kolb et al.2013a;
Kelly et al. 2017; Kay et al. 2019) and correlateswith VO2max in
both HR and C mice (Rezende et al. 2006). The genes most
associated with cardiac development include Pkp2, Myh11,
and Tbx5 (also a forelimb regulator). Forelimb development
may be altered in theHRmice,while humerus sizes do not seem
to differ (Copes et al. 2018), differences have been found in
metatarsal and metacarpal lengths (Young et al. 2009).

Targeted ontology: As the target ontologies were chosen
based on structures and systems known to have been altered
by the selective breeding regimen, we would expect to find at
least one gene of each ontology that would contain a differ-
entiated SNP. Of these ontologies, “serotonin” and “dopa-
mine” are associated with some of our less impressive

Table 7 Top biological process terms from GO analysis for haplotype

GO term Total genes Input genes Expected
Fold

enrichment
Raw

P-value

Detection of chemical stimulus involved in sensory
perception of smell

3 1 0.02 47.88 2.74E-02

Sensory perception of smell 1128 27 7.85 3.44 2.46E-08
Sensory perception of chemical stimulus 1228 34 8.55 3.98 5.71E-12

Sensory perception 1641 36 11.42 3.15 7.12E-10
Detection of chemical stimulus involved in sensory

perception
59 7 0.41 17.04 3.65E-07

Detection of stimulus involved in sensory perception 136 8 0.95 8.45 7.40E-06
Detection of stimulus 236 9 1.64 5.48 5.40E-05

Detection of chemical stimulus 85 7 0.59 11.83 3.53E-06

G protein-coupled receptor signaling pathway 1853 37 12.9 2.87 4.86E-09

Regulation of systemic arterial blood pressure by aortic arch
baroreceptor feedback

1 1 0.01 .100 1.38E-02

System process 2594 42 18.06 2.33 2.12E-07
Multicellular organismal process 7307 74 50.87 1.45 1.43E-04

Nervous system process 2085 39 14.51 2.69 9.97E-09

Sensory perception of sour taste 5 1 0.03 28.73 4.08E-02
Sensory perception of taste 71 7 0.49 14.16 1.15E-06

Detection of chemical stimulus involved in sensory
perception of bitter taste

47 6 0.33 18.34 1.74E-06

Sensory perception of bitter taste 51 6 0.36 16.9 2.69E-06
Detection of chemical stimulus involved in sensory
perception of taste

51 6 0.36 16.9 2.69E-06

Within groups of GO terms, items are listed in order of increasing generality.
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P-values (Table 10), with many of the top dopamine-related
genes (Fpr1, Fpr2, Fpr3, and Fpr-rs4) being present poten-
tially because of linkage to highly differentiated vomeronasal
genes (Table 10). However, expression data from the Allen
Brain Atlas implicates the Fpr-rs3 gene as being highly
expressed in nucleus raphe obscurus. The nucleus raphe
structure is well established for modulating serotonin
(Walker and Tadi 2020) and the obscurus region itself has
been implicated in modulating respiratory neurons (Lalley
et al. 1997). As Fpr-rs3 is the most differentiated gene of
the FPR family (median P = 0.000393 over six SNPs), it

may be contributing to the selection signature of this genomic
region rather than simply hitchhiking. The most significantly
differentiated loci in a dopamine-related gene are in Gnb1,
part of the Gbg complex, which activates Girk2 in dopamine
neuron membranes (Wang et al. 2016). We are surprised not
to have found more impressive results for dopamine-related
genes, given clear differences in dopamine function between
the HR and C mice (Rhodes et al. 2001, 2005; Rhodes and
Garland 2003; Bronikowski et al. 2004; Mathes et al. 2010).
A possible explanation for this is that trans-regulating sites
for these genes have been more influenced by the HR

Table 8 Top biological process terms from GO analysis for LM

GO term Total genes Input genes Expected
Fold

enrichment
Raw

P-value

Locomotory exploration behavior 16 1 0.02 53.6 1.96E-02
Locomotory behavior 240 4 0.28 14.29 1.72E-04
Behavior 685 6 0.8 7.51 1.17E-04

Positive regulation by host of viral release from host cell 5 1 0.01 .100 6.97E-03
Positive regulation of viral release from host cell 15 1 0.02 57.17 1.85E-02
Regulation of viral release from host cell 31 1 0.04 27.66 3.66E-02

Regulation of locomotion 1040 7 1.21 5.77 1.47E-04

Negative regulation of cardiac muscle cell proliferation 17 2 0.02 .100 2.20E-04
Negative regulation of cell population proliferation 684 3 0.8 3.76 4.46E-02
Negative regulation of cardiac muscle tissue growth 29 2 0.03 59.14 5.94E-04

Regulation of cardiac muscle tissue growth 74 2 0.09 23.18 3.53E-03
Regulation of cardiac muscle tissue development 98 2 0.11 17.5 6.02E-03

Regulation of striated muscle tissue development 160 2 0.19 10.72 1.52E-02
Regulation of muscle tissue development 163 2 0.19 10.52 1.57E-02
Regulation of muscle organ development 164 2 0.19 10.46 1.59E-02

Regulation of heart growth 80 2 0.09 21.44 4.09E-03
Regulation of organ growth 114 2 0.13 15.04 8.02E-03

Negative regulation of cardiac muscle tissue development 40 2 0.05 42.88 1.09E-03
Negative regulation of striated muscle tissue development 64 2 0.07 26.8 2.67E-03
Negative regulation of muscle organ development 66 2 0.08 25.99 2.83E-03
Negative regulation of muscle tissue development 67 2 0.08 25.6 2.92E-03

Negative regulation of heart growth 29 2 0.03 59.14 5.94E-04
Bundle of His cell-Purkinje myocyte adhesion involved in

cell communication
6 1 0.01 .100 8.13E-03

Bundle of His cell to Purkinje myocyte communication 13 1 0.02 65.96 1.62E-02
Cell communication involved in cardiac conduction 32 1 0.04 26.8 3.78E-02
Multicellular organismal signaling 109 2 0.13 15.73 7.37E-03

Cardiac muscle cell-cardiac muscle cell adhesion 7 1 0.01 .100 9.28E-03
Cell-cell adhesion 389 3 0.45 6.61 1.04E-02
Cell adhesion 789 6 0.92 6.52 2.50E-04

Biological adhesion 799 6 0.93 6.44 2.68E-04

Negative regulation of cellular extravasation 8 1 0.01 .100 1.04E-02
Negative regulation of leukocyte migration 41 2 0.05 41.83 1.14E-03

Regulation of leukocyte migration 209 2 0.24 8.21 2.49E-02
Regulation of cell migration 912 5 1.06 4.7 3.71E-03

Regulation of cell motility 963 5 1.12 4.45 4.67E-03
Negative regulation of cell migration 276 4 0.32 12.43 2.91E-04

Negative regulation of cell motility 289 4 0.34 11.87 3.46E-04
Negative regulation of cellular component movement 323 4 0.38 10.62 5.24E-04

Definitive hemopoiesis 21 2 0.02 81.67 3.25E-04

Within groups of GO terms, items are listed in order of increasing generality.
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selection regime (Kelly et al. 2012; Nica and Dermitzakis
2013). Unfortunately, a limitation of the current study is it
lacks the necessary expression data to identify trans-regulat-
ing SNPs (Kelly et al. 2012, 2014).

The remaining ontologies (bone, cardiac, skeletal muscle,
and brain) all have at least one gene containing a SNP with
P , 0.0001 (Table 10). Some of these are included with our
LM genes, such as Myh11 (a myosin gene affiliated with the
“cardiac” tag) and Sorl1 (“Brain” tag). However, some of
these are not present among the LM list. Kel, described above
as influencing various phenotypes relevant for high running
behavior, may appear to be a confusing “miss” for the LM
detection process, with a P-value = 1.49E-05. However,
the region does have two local maxima, neither of which land
in genes, but one is �15,000 bp upstream of Kel. This might
be taken as evidence that the LM approach to determining
affected genes ought to be modified to better catch nearby
genes that could be affected.

The expression patterns of the top genes implicated by the
“brain” targeted ontology were determined using the Allen
Brain Atlas. The top four genes (Sorl1, Gak, Fbxo45, and
Tbx3) showed interesting consistency in their expression pat-
terns. Sorl1, Gak, and Fbxo45 all have increased expression
around the hippocampus, which has been associate with spa-
tial learning (Schiller et al. 2015) and may play a role in
addiction (Koob and Volkow 2010). Sorl1, Gak, and Tbx3
have higher expression in the retrospenial area, which has
also been suggested as a potential modulator of spatial

memory (Vann et al. 2009), potentially in coordination with
the hippocampus (Schiller et al. 2015). Gak and Tbx3 both
have notable expression levels in the retrohippocampal re-
gion, particularly the entorhinal cortex, which is thought to
modulate movement speed (Geisler et al. 2007; Kropff et al.
2015; Ye et al. 2018). Additionally, Gak, Fbxo45, and Tbx3
have high expression in olfactory regions.

Thehippocampus has been linked to the regulation of speed
during locomotor behavior in both mice and rats by theta
(Li et al. 2012; Fuhrmann et al. 2015; Sheremet et al. 2019),
gamma (Chen et al. 2011; Ahmed andMehta 2012), and delta
oscillations (Furtunato et al. 2020). Notably, the difference in
daily running distance between HR and control lines is attrib-
utable mainly to an increase in average (and maximum) run-
ning speed, rather than the duration of running, especially in
females (e.g., see Garland et al. 2011a; Claghorn et al. 2016,
2017; Copes et al. 2018; Hiramatsu and Garland 2018). An-
other consideration is the impact of physical activity on neuro-
genesis in the hippocampus (Rhodes et al. 2003b; Clark et al.
2010; Rendeiro and Rhodes 2018), which, perhaps, could cre-
ate a sort of feedback loop relating to running speed.

Comparison with previous studies

Exercise behavior and the genetic factors that affect it have
been the subject of various other GWAS and gene expression
studies in mice, as well as comparisons of inbred strains
(reviews in Kostrzewa and Kas 2014; Lightfoot et al. 2018).
In general, these previous studies do not show strong

Table 9 Top GO results for FixedHR/PolyC implicated genes

GO term Total genes Input genes Expected
Fold

enrichment
Raw

P-value

Response to pheromone 104 8 0.63 12.7 3.93E-07

Complement receptor mediated signaling pathway 13 4 0.08 50.82 2.81E-06

Phospholipase C-activating G protein-coupled receptor signaling pathway 91 5 0.55 9.07 2.89E-04

Exocytic insertion of neurotransmitter receptor to postsynaptic membrane 8 3 0.05 61.93 3.40E-05
Regulation of postsynaptic membrane neurotransmitter receptor levels 62 3 0.38 7.99 7.09E-03
Neurotransmitter receptor transport to postsynaptic membrane 20 3 0.12 24.77 3.46E-04

Neurotransmitter receptor transport to plasma membrane 21 3 0.13 23.59 3.93E-04
Vesicle-mediated transport to the plasma membrane 90 3 0.54 5.51 1.87E-02
Neurotransmitter receptor transport 40 3 0.24 12.39 2.21E-03

Establishment of protein localization to postsynaptic membrane 21 3 0.13 23.59 3.93E-04
Protein localization to postsynaptic membrane 44 3 0.27 11.26 2.85E-03

Protein localization to synapse 76 3 0.46 6.52 1.21E-02
Receptor localization to synapse 51 3 0.31 9.72 4.23E-03

Calcium ion import across plasma membrane 9 2 0.05 36.7 1.91E-03
Calcium ion import into cytosol 10 2 0.06 33.03 2.28E-03

Calcium ion transport into cytosol 69 3 0.42 7.18 9.40E-03
Positive regulation of cytosolic calcium ion concentration 292 7 1.77 3.96 2.26E-03

Regulation of cytosolic calcium ion concentration 340 8 2.06 3.89 1.25E-03
Cellular calcium ion homeostasis 446 10 2.7 3.7 4.48E-04

Calcium ion homeostasis 463 10 2.8 3.57 5.95E-04

Within groups of GO terms, items are listed in order of increasing generality.
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agreement with each other. The primary exception is that
several studies have implicated dopamine pathway
genes (Bronikowski et al. 2004; Lightfoot 2011; Dawes
et al. 2014; Roberts et al. 2017). This is of little surprise, as
dopamine has been long recognized as a primary neurotrans-
mitter involved with physical activity (Freed and Yamamoto
1985; Rhodes et al. 2005). As another example of consisten-
cies across previous studies, Dawes et al. (2014) found dif-
ferential gene expression in C57L/J (high running) and C3H/
HeJ (low running) inbred strains forMstn, a gene previously
implicated by Lightfoot et al. (2010) using 41 inbred strains
of mice to associate alleles with wheel running.Mstn is estab-
lished as a regulator of skeletal muscle proliferation (Grobet
et al. 1997; Amthor et al. 2007; Mosher et al. 2007). The
present study contributes several new regions that have not
been previously identified (see above). However, we can also
identify examples of overlapping results.

Wefirst compiled a list of genes fromour study that contain
at least one variable SNP (see Materials and Methods). For
each gene, all of the SNPs within the transcribed or promotor
region were accumulated and the lowest P-value and median
P-value (from File S4) were recorded. These are presented in
File S11. We then cross-reference these P-values (with em-
phasis on median P-value) against the regions and genes
identified by previous studies. This method is limited by not
addressing regulatory loci located outside the promotor and
transcribed region. For the previous studies, we focused on
regions, SNPs, and genes that were specifically associated
with running distance, rather than speed or duration of

running (if reported), as the HR mice were specifically bred
for running distance.

Shimomura et al. (2001) performed an F2 cross between
BALB/cJ and C57BL/6J and mapped daily running levels in
constant darkness. Although the primary purpose of their
study was to identify circadian QTL, two regions were asso-
ciated directly with wheel-running distance. One of these
regions is on chromosome 16 (97,608,543–97,608,688 bp,
mm10), not far from one of our local maxima (96,795,226 bp,
P = 4.97E-04).

A study involving a cross between high- and low-running
inbred strains located several markers on both chromosome
9 and chromosome 13 (Lightfoot et al. 2008). Although none
of these markers fall within our own significant region on
chromosome 9 (�41,000,000–42,000,000 bp), one of the
markers identified by Lightfoot et al. (2008) on chromo-
some 9 is only �500,000 bp from the gene Leo1. For our
sample of mice, only one SNP in this gene was polymorphic,
and it was in the noncoding region (File S11: P = 0.00186)

Lightfoot et al. (2010) used haplotype association map-
ping to identify 12 QTL associated with wheel running
among 41 inbred strains of mice. One of the regions they
identified on chromosome 5 (114,584,508–117,669,848
bp after conversion to mm10) is intriguingly close to one of
our own haplotype regions (118,824,587–119,299,787 bp,
Table 5). Additionally, we detected a local maximum on
chromosome 12 (88,919,735 bp, P = 7.54E-05) near
their identified haplotype (88,113,842–88,220,086 bp,
mm10). Lightfoot et al. (2010) also identified a region on

Table 10 Summary of ontology search

Search term Total genes Total SNPs Top genes Top P-value

Dopamin* 254 43,890 Gnb1, Fpra, Adora2a 1.33E-04
Serotonin 45 7,315 Htr7, Chrm2, Btbd9 9.33E-03
Osteo* 491 56,091 Noct, Nf1, Mmp14 3.76E-05
Cardiac 820 143,507 Myh11, Tbx5, Dlg1 7.25E-06
“Skeletal Muscle” 295 39,383 Kel, Foxp1, Nf1 5.23E-06
Brain 667 123,416 Sorl1, Gak, Fbxo45 1.92E-07

Genes are listed from most significant to least significant by SNP with lowest P-value.
a Includes: Fpr1, Fpr2, Fpr3, Fpr-rs4 (all closely linked).

Table 11 Genomic regions implicated by LM, haplotype, and FixedHR/PolyC analyses

Chr First bp Last bp Included genes

5 108,000,623 108,679,807 Tmed5, Ccdc18, Pigg, Mfsd7a, Gak, Tmem175, Slc26a1
6 41,584,862 41,918,440 Trpv5, Trpv6, Ephb6, Kel, Llcfc1, Olfr459
7 29,603,841 29,697,093 Catsperg2
9 41,240,184 42,275,833 Sorl1, Mir100hg, Mir100, Mir125b-1, Mirlet7a-2, Tbcela

11 79,724,263 80,090,780 Atad5, Suz12, Utp6, Crlf3
11 112,227,183 114,489,018 BC006965, Sox9
14 52,072,148 53,779,979 Olfrb, Travb

14 97,645,171 98,679,965 Dach1
15 18,960,135 20,609,074 Cdh10, Gm35496
15 71,023,429 71,559,595 Fam135b
16 31,540,757 33,178,952 Gm536, Rnf168, Ubxn7, Fbxo45, Tnk2, Tnk2os
17 17,895,909 22,396,753 Vmn2rb

a Tbcel is most differentiated gene in genome based on median P-value.
b Several genes in this gene family were represented in this region.
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chromosome 13 (95,477,271–95,863,515 bp, mm10), which
coincides with a few of our FixedHR/PolyC loci (95,595,237–
95,947,205 bp). Aside from these, the best example of
similarity with the present study is a gene on chromo-
some 8 (Galntl6) that was found as suggestive in the
current study (File S11, median P = 0.039, SNPs= 5925).
Lightfoot et al. (2010) also identified a region on chromo-
some 12, �0.5 mbp upstream of Nrxn3. Both our LM and
FixedHR/PolyC methods indicated this gene as a strong can-
didate, with a segment of intron 1 containing several low
P-values (median P = 2.04E-04, SNPs = 195), but it was
not listed as a consistent region because the haplotype results
did not produce a significant haplotype near Nrxn3. Nrxn3 is
a single-pass transmembrane protein found in presynaptic
terminals and functions as a cell adhesion molecule
(Stoltenberg et al. 2011; Kasem et al. 2018). Nrxn3 creates
particular interest in that it is associated with various ad-
dictive behaviors (Zheng et al. 2018), which is consistent
with evidence that the HR mice are to some extent
addicted to running (Rhodes et al. 2005; Kolb et al.
2013b). Previous work has associated Nrxn3 with addictive
behaviors involving nicotine (Wolock et al. 2013) and opi-
oids (Lachman et al. 2007), predominantly through associ-
ation and expression studies (Kasem et al. 2018). Exercise
addiction is not a new concept, but remains controversial
(Nogueira et al. 2018).

QTL mapping of the G4 intercross of C57BL/6J with one of
the four HR lines implicated a region on chromosome 7 (101–
130 mbp) that contains numerous olfactory/vomeronasal
genes (Kelly et al. 2010). We identified FixedHR/PolyC SNPs
within that region at 127,385,309–127,947,542 bp. We
also identified vomeronasal genes on chromosome 17.
(Kelly et al. (2010) reported other QTL associated with run-
ning on the first 2 days of wheel exposure, but this pheno-
type may reflect variation in neophobia more than exercise
motivation or ability.)

Saul et al. (2017) performed expression analysis using the
striatum of the HR and C lines from generation 66. The mice
were sampled after several hours of wheel deprivation, which
is believed to induce high expression of motivation-related
genes (Rhodes et al. 2003a). Some of their highlighted dif-
ferentially expressed genes include: Htr1b, Slc38a2, Tmed5,
5031434O11Rik, Gak, Mfsd7a, and Gpr3. Tmed5, Gak, and
Mfsd7a are all found within a highly differentiated region in
our SNP data (median P = 4.85E-04 for all three genes,
SNPs = 671, File S11). Although 5031434O11Rik and the

associated Setd7 are not found within our consistent regions
(due to no FixedHR/PolyC SNPs), they both contain many of
the most differentiated loci of individual SNP analyses (me-
dian P = 3.78E-05, SNPs = 4). Knockouts of Setd7 (aka
Set9) have been associated with altered lung development
and morphology (Elkouris et al. 2016). Lung differences in
the HR and C lines have not been greatly explored. Three
studies have reported no statistical difference in lung mass
(Meek et al. 2009; Kolb et al. 2010; Dlugosz et al. 2013), but
an unpublished study of males from generation 21 found
that HR lines tended to have higher pulmonary diffusion
capacity and capillary surface area determined via morphom-
etry (T. Garland, and S. F. Perry, personal communication),
and a study of females from generation 37 reported a trend
for HR mice to have higher dry lung mass (Meek et al. 2009;
Kelly et al. 2017). We are uncertain of what Setd7 may be
doing in the brain. However, the Allen Brain Atlas does in-
dicate increased expression levels of Setd7 in the sensory
regions of the midbrain, motor related regions of the me-
dulla, and the cerebellar cortex, which has been associated
with motor function and reward (Doya 2000). Further-
more, Setd7 has been shown to modulate pain and infla-
mmation following nerve injury, potentially enabling an
individual to proceed to exercise despite injury (Shen
et al. 2019).

Overall, studies attempting to identify the genetic under-
pinnings of exercise behavior in rodents have produced a wide
variety of results. We can offer several reasons for such incon-
sistencies. First, some of these studies address gene expression
(Bronikowski et al. 2003, 2004; Dawes et al. 2014; Saul et al.
2017) and eQTL (Kelly et al. 2012, 2014), which will com-
monly implicate different genetic factors for complex traits
than studies looking at genetic variants, likely as a result of
complex interactions between genetic variants and gene ex-
pression (Bouchard 2015; Parker et al. 2016). Second, some
studies compare inbred strains (Lightfoot et al. 2008, 2010;
Dawes et al. 2014) with very different genetic histories and
likely different biologically significant alleles available to them
than in the Hsd:ICR mice that formed the basis for the pre-
sent selection experiment. Furthermore, a trait as complex
as voluntary exercise (Lightfoot et al. 2018) would be
expected to have numerous underlying subordinate traits,
which, in turn, could have innumerable potential genetic
factors modulating them (Garland et al. 2016; Sella and
Barton 2019). Finally, in the current study, we sought to
detect specifically those factors that are shared across all
four HR lines, which likely does not reflect all of the exer-
cise-relevant loci that vary among the replicate HR lines.
However, those alleles implicated by all four HR lines argu-
ably provide the strongest evidence for biologically signifi-
cant regions in this selection experiment and also for the
Hsd:ICR base population.

Mini-muscle allele

The mini-muscle phenotype was discovered in the HR selec-
tion experiment and is associated with alterations in various

Table 12 Potential fixation profiles

Test Group 1 Test Group 2

Profile Rep 1 Rep 2 Rep 3 Rep 4 Rep 1 Rep 2 Rep 3 Rep 4

1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 1 1
3 Het Het Het Het 0 0 0 0
4 0 0 1 1 0 0 0 0
5 0 0 1 1 0 0 1 1
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organs, especially skeletal muscle, but also including heart,
kidney, and overall body mass of the mice (Swallow et al.
2005; Meek et al. 2009; Kolb et al. 2013a; Talmadge et al.
2014; Kay et al. 2019) as well as behaviors (Kelly et al. 2006;

Singleton and Garland 2019). This phenotype is caused by a
single recessive SNP mutation located in an Myh4 (myosin
heavy polypeptide 4) gene (Kelly et al. 2013). Mice express-
ing the mini-muscle phenotype have often been found to run
faster and sometimes for longer distances than other HR
mice (Kolb et al. 2013a). This polymorphism was lost, pre-
sumably via random genetic drift, from all lines except for
HR lines 3 (where it went to fixation) and line 6 (where it
remains polymorphic with the wildtype allele). Population-
genetic analyses indicate that the allele was under positive
selection in the HR lines (Garland et al. 2002). The current
WGS data show (generation 61) that the mutation is still
only present in lines 3 (fixed) and 6, with allele frequency of
0.65 in line 6. As the mini-muscle phenotype appears to
enable faster overall running on wheels at the cost of run-
ning duration, it has been regarded as an alternative “solu-
tion” to the selection criterion (Garland et al. 2011a), not
unlike the concept of “private” alleles (Martin et al. 1996).
Such a mutation is expected to change the genetic back-
ground of line 3 (and to a lesser extent, line 6) giving ratio-
nale to analyzing these lines separately for possible QTL, in
future studies.

Allele frequency implications

The general pattern of allele frequencies across the replicate
lines can be used to infer patterns of selection. Table 12
includes some of the potential profiles that could possibly
be observed and (for the most part) were observed in the
WGS data.

Profile 1: No observed genetic variation. For our 79mice, this
accounts for �99.8% of the genome (Table 2).

Profile 2: Fixation for alternate alleles in the two selection
treatments would imply opposing directional selection, as
might occur in experiments with replicate lines selected
for high vs. low values of a trait. The HR mouse selection
experiment includes high-selected and control treat-
ments, but not a low-selected treatment. Thus, fixation
for alternate alleles in the HR and C lines would not nec-
essarily be expected, and indeed was never observed for
either the WGS data or the MegaMUGA data reported
previously (Xu and Garland 2017). Importantly, even
data from selection experiments that include high- and
low-selected treatments are not showing much evidence
of fixation for alternate alleles (Burke et al. 2010; Lillie
et al. 2019).

Profile 3: Stabilizing selection or random drift for one group
anddirectional selection for theother.Thiswas the focusof the
scans for loci fixed in all lines of one linetype and polymorphic
in all lines of the other (Fixed/Poly) in our ownhaplotype and
WGS data and produced several prospective regions of in-
terest. The fixed allele can either be entirely the reference (0)
or alternative (1).

Figure 3 These are images of different variance structures depicted by actual
examples from the MegaMUGA data (Xu and Garland 2017). This includes
example data that were best fit by the “Full”model, marker = JAX00157775,
P = 0.1008 (A), “SepVarInd” model, marker = UNC25816949,
P = 0.006754 (B), “SepVarLines” model, marker = JAX00170011, P =
0.04885 (C), the “Simple” model, marker = UNC080521812, P = 0.2687
(D), or has no within line variance, thus not fitting any model, marker = back-
upJAX00272176 (E).
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Profile 4: Selection for test group 2 but evidence of drift for
group 1 (likely caused by little to no selection). Some of the
loci of the WGS SNP data meet this profile. For example,
Chromosome 11: 96,332,082 bp (P = 0.051).

Profile 5: Random genetic drift for both test groups. Such
loci will be among those analyzed, but this pattern of differ-
entiation is unlikely to result from the selective breeding
regimen.

In general, as with any population that is relatively well
adapted to the prevailing environmental conditions, breeding
colonies of laboratory house mice maintained under standard
vivarium housing conditions should experience continuing
stabilizing selection at many loci. Under standard housing
conditions, an allele with a strong positive influence on wheel
running, or activity in cages without wheels, might be disfa-
vored if it were negatively associated with such aspects of the
life history as litter size ormaternal care. In contrast, under the
conditionsof theHRmouse selectionexperiment, anallelewith
a strongpositive influenceonwheel runningmight beexpected
to go to fixation rapidly in all HR lines in a manner consistent
with a “complete sweep” (Burke 2012). Thus, to fix an allele,
directional selection in the HR lines must be strong enough
to overcome a presumed prevailing background of stabiliz-
ing selection and possibly negative selection. Regions that
are FixedHR/PolyC (profile 3) should, therefore, be indic-
ative of relatively strong directional selection in the HR
lines.

Alternatively, some loci may have come under stabilizing
selection in the HR lines, e.g., due to heterozygote advantage
or epistatic interactions with other loci, preventing them
from going to fixation. Hence, we also examined loci poly-
morphic in all HR lines but fixed in all C lines (FixedC/Pol-
yHR). The GO analyses of the included genes in these regions
were consistently less significant (raw P $ 0.0026 for all
implicated terms). However, such terms as “synapse assem-
bly” and those related to glycerolipids emerged may merit
further exploration.

Interpretation of the four models

The four models in the multi-model analysis were included to
allow for different variance structures within and between the
HR andC linetypes. Thewithin-line variance is the variability of
allele frequency among the �10 mice within each line. This
variance is zero when a line is fixed for one allele or another,
but maximized when five mice within each line are homozy-
gous for one allele while five mice are homozygous for the
other. The among-line variance indicates how different the
replicate lines within a linetype are from each other. This
variance component is minimized when all four lines within
a linetype are fixed for the same allele, but maximized when
two lines are fixed for one allele while two lines are fixed for
the other.

In principle, both the within-line and among-line variances
can differ between the two selection treatments (linetypes);
hence, the Full model includes separate estimates of both

within- and among-line variances. For wheel running in later
generations of the selection experiment, a full model has been
shown to fit well (Garland et al. 2011a). The SepVarInd model
includes only the within-line variance. The SepVarLine model
includes only the among-line variance. Lastly, the Simple
model does not include either of these two variances, and
corresponds to the single model used by Xu and Garland
(2017).

As expected, we found many loci that were better fit by
models other than the Simple model used by Xu and Garland
(2017) (Table 4). Figure 3 gives examples. In A, the Full
model is implemented because C lines exhibit very little
within- and among-line variance while HR lines exhibit both.
In B, the SepVarInd model is used because C lines have high
within-line variance (while HR lines are comparatively low),
but both have similar among-line variance. In C, SepVarLines
model is used because nearly all lines contain very little
within-line variance (6 are fixed for a single allele), but C
lines, being fixed for opposing alleles, creates different
among-line variance. D identifies a Simple model locus be-
cause these variances are roughly the same for the different
linetypes. E represents a locus with no within-line variance
and thus could not be analyzed with the mixed model
ANOVA like other loci. However, use of multiple models did
not increase the number of loci identified as statistically sig-
nificant based on repeat analyses of the MEGAMuga data
with both methods (Figure 1).

Summary, Limitations, and Future Directions

Exercise, or the lack of exercise, has far-reaching medical
and financial implications (Manley 1996; Booth et al. 2012;
Carlson et al. 2015). Numerous studies have provided
strong evidence for the existence of genetic underpinnings
of exercise behavior and physical activity (Kostrzewa and
Kas 2014; Lightfoot et al. 2018), including in the HRmouse
selection experiment (Bronikowski et al. 2003, 2004;
Careau et al. 2013; Saul et al. 2017; Xu and Garland
2017). Here, we used three different analytical methods
with WGS data to address the genetic basis of the threefold
increase in daily running distances observed in the four
replicate selectively bred HR lines of mice. These methods
include haplotype and SNP statistical analysis, as well as
nonstatistical analysis of fixation patterns in HR and C
lines.

The intersection ofmultiple analyses indicated 61 genomic
regions of differentiation, with 12 identified as of particular
interest. These regions include genes known to influence
systems that have already been demonstrated to differ be-
tween HR and C mice, such as response to conspecific odors,
brain development, body weight, and relative heart size.
However, they also contain genes whose role in voluntary
running behavior is as yet unclear.

This study does have the limitation of focusing on males,
whereas exercise behavoir and much of the physiology and
morphology related to exercise abilities differ between sexes

Genetics of Aerobic Voluntary Exercise 797



in both rodents and humans (Eikelboom and Mills 1988;
Thomas and Thomas 1988; Rowland 2016; Sheel 2016;
Rosenfeld 2017; Thompson et al. 2017). A natural next step
would then be to conduct similar analyses in females. This ap-
proach, however, can establish correlation but not causation.
Therefore, studies of wheel-running behavoir of mice with
knockouts or Cre modifications of genes in some of the
genomic regions identified here may help to establish or
dismiss causal relationships between the genes and pheno-
type. Furthermore, as the HR mouse experiment has complete
pedigree information for all mice and lines (Careau et al. 2013,
2015), it will also be possible to use this information to better
account for relatedness between mice in statistical analyses
and so provide more informed estimates of loci acted upon by
selection.

Importantly, none of the analytical approaches we used
address the possibility of “private alleles” (Martin et al. 1996)
in one or more of the HR lines that may influence exercise
behavior, thus representing “multiple solutions” to the selec-
tive breeding regime (Garland et al. 2011a), but this will be
an important possibility to consider in future studies. We
already know of one private allele of major effect (mini-mus-
cle) that has far-reaching effects on mouse muscle and organ
development (Swallow et al. 2005; McGillivray et al. 2009;
Kelly et al. 2013), as well as many other aspects of the phe-
notype, and has been favored by the selection protocol
(Garland et al. 2002). Determination of such alleles will be
an important area for future research.
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