Table 5.
Results (in F1 score) of teeth recognition after applying candidate optimization algorithm for tenfold cross validation.
Number of teeth in test dataset | ResNet-50 | ResNet-101 | |||||
---|---|---|---|---|---|---|---|
Original |
ωc = 0.8 ωp = 0.2 |
ωc = 0.5 ωp = 0.5 |
Original |
ωc = 0.8 ωp = 0.2 |
ωc = 0.5 ωp = 0.5 |
||
K1 | 2947 | 0.957 | 0.969 | 0.971 | 0.975 | 0.976 | 0.977 |
K2 | 2890 | 0.962 | 0.967 | 0.967 | 0.967 | 0.969 | 0.970 |
K3 | 2904 | 0.961 | 0.969 | 0.969 | 0.970 | 0.973 | 0.974 |
K4 | 2909 | 0.962 | 0.969 | 0.969 | 0.967 | 0.972 | 0.972 |
K5 | 2958 | 0.974 | 0.980 | 0.979 | 0.982 | 0.984 | 0.984 |
K6 | 2847 | 0.958 | 0.969 | 0.969 | 0.971 | 0.975 | 0.974 |
K7 | 2862 | 0.974 | 0.983 | 0.984 | 0.984 | 0.987 | 0.987 |
K8 | 2796 | 0.956 | 0.961 | 0.963 | 0.964 | 0.967 | 0.967 |
K9 | 2846 | 0.951 | 0.962 | 0.964 | 0.962 | 0.968 | 0.970 |
K10 | 2969 | 0.965 | 0.976 | 0.975 | 0.978 | 0.983 | 0.983 |
Average | 2893 | 0.962 | 0.971 | 0.971 | 0.972 | 0.975 | 0.976 |
Bold values indicate the best results in that particular row (particular section).