Skip to main content
. 2020 Nov 6;10:19261. doi: 10.1038/s41598-020-75887-9

Table 5.

Results (in F1 score) of teeth recognition after applying candidate optimization algorithm for tenfold cross validation.

Number of teeth in test dataset ResNet-50 ResNet-101
Original ωc = 0.8
ωp = 0.2
ωc = 0.5
ωp = 0.5
Original ωc = 0.8
ωp = 0.2
ωc = 0.5
ωp = 0.5
K1 2947 0.957 0.969 0.971 0.975 0.976 0.977
K2 2890 0.962 0.967 0.967 0.967 0.969 0.970
K3 2904 0.961 0.969 0.969 0.970 0.973 0.974
K4 2909 0.962 0.969 0.969 0.967 0.972 0.972
K5 2958 0.974 0.980 0.979 0.982 0.984 0.984
K6 2847 0.958 0.969 0.969 0.971 0.975 0.974
K7 2862 0.974 0.983 0.984 0.984 0.987 0.987
K8 2796 0.956 0.961 0.963 0.964 0.967 0.967
K9 2846 0.951 0.962 0.964 0.962 0.968 0.970
K10 2969 0.965 0.976 0.975 0.978 0.983 0.983
Average 2893 0.962 0.971 0.971 0.972 0.975 0.976

Bold values indicate the best results in that particular row (particular section).