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Abstract

Glaucoma, is a neurodegenerative disorder that leads to the slow degeneration of retinal ganglion 

cells, and results in damage to the optic nerve and concomitant vision loss. As in other disorders 

affecting the viability of central nervous system neurons, neurons affected by glaucoma do not 

have the ability to studies indicate regenerate after injury. Recent a critical role for optic nerve 

head astrocytes (ONHAs) in this process of retinal ganglion cell degeneration. Cleavage of tau, a 

microtubule stabilizing protein and constituent of neurofibrillary tangles (NFT), plays a major part 

in the mechanisms that lead to toxicity in CNS neurons and astrocytes. Here, we tested the 

hypothesis that estrogen, a pleiotropic neuro- and cytoprotectant with high efficacy in the CNS, 

prevents tau cleavage, and hence, protects ONHAs against cell damage caused by oxidative stress. 

Our results indicate that estrogen prevents caspase-3 mediated tau cleavage, and thereby decreases 

the levels of the resulting form of proteolytically cleaved tau protein, which leads to a decrease in 
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NFT formation, which requires proteolytically cleaved tau protein. Overall, our data propose that 

by stopping the reduction of estrogen levels involved with aging the sensitivity of the optic nerve 

to glaucomatous damage might be reduced. Furthermore, our data suggests that therapeutic use of 

estrogen may be beneficial in slowing or preventing the onset or severity of neurodegenerative 

diseases such as glaucoma and potentially also other degenerative diseases of the CNS through 

direct control of posttranslational modifications of tau protein.

INTRODUCTION

Progressive neurodegenerative disorders, such as Alzheimer’s disease (AD) often show 

significant sex differences with the incidence rate of AD in women being 2–3 times higher 

(Pike 2017). In addition, the likelihood of developing dementia over the long term rises with 

premature menopause (Ryan et al. 2014). A connection between the decline of estrogen 

during post-menopause and developing AD has been hypothesized (Geerlings et al. 2001). 

In addition, cognitive impairment in females seems to be higher when compared to males at 

the same stage of the disease, which also has been attributed to decreased levels of estrogen 

found in women who are postmenopausal (Laws et al. 2016).

When adequately utilizing therapeutic windows for estrogen replacement therapy, estrogen 

reduces the likelihood that healthy women will develop AD and improves cognitive function 

in women who have AD (Tang et al. 1996; Pike et al. 2009; Engler-Chiurazzi et al. 2015, 

2016).

Glaucoma, a neurodegenerative disease of the CNS that damages the optic nerve by inducing 

cell death in retinal ganglion cells, results in the irreversible loss of vision (Munemasa and 

Kitaoka 2013). Similar to AD, decreased estrogen levels raise the risk for developing 

glaucoma while adequate estrogen replacement therapy appears to reduce women’s risk for 

glaucoma (Dewundara et al. 2016; Newman-Casey et al. 2014), which is supported by 

strong preclinical evidence (Prokai-Tatrai et al. 2013; Kaja et al. 2003). An early decline in 

endogenous estrogen levels has been suggested to result in a higher susceptibility of the 

optic nerve to glaucoma-mediated damage (Vajaranant and Pasquale 2012).

Both AD and glaucoma appear to be linked and potentially share underlying 

neurodegenerative mechanisms. For example, AD patients are three times more likely to 

develop glaucoma when compared to the general population (Bayer et al. 2002). In addition, 

aggregated and mis-sorted tau accumulated in retinal neurons of a rat model for glaucoma, 

while knocking down tau protein levels protected neurons and axons from degeneration 

(Chiasseu et al. 2016).

Microglia and astrocytes are involved in mediating several mechanisms of protection against 

neurotoxicity (Ries and Sastre 2016). In addition, estrogen receptors are expressed on glia 

cells and are a target for estrogen’s protective properties in a variety of pathologies (Barreto 

2016; Arevalo et al. 2010; Dhandapani and Brann 2007). Reduced inflammation and 

oxidative stress were measured when glial cells were dosed with estrogen prior to exposure 

to neurotoxic signals (Villa et al. 2016; Acaz-Fonseca et al. 2014). Astrocytes are needed for 

estrogen to exert its neuroprotective properties on primary neurons after induction of Aβ-
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mediated neurotoxicity (Sortino et al. 2004). Similarly, glial fibrillary acidic protein (GFAP) 

expression, a protein critical for the health and proper function of glia cells is regulated by 

estrogen in neuron-glia co-cultures and in ovariectomized mice that had been dosed with 

estrogen (Rozovsky et al. 2002). Conversely, increased reactive gliosis is observed when 

there is a reduction in estrogen levels in female mice independent of age (Struble et al. 

2007).

Here, we hypothesized that estrogen acts as a protective agent for optic nerve head 

astrocytes exposed to chemically induced oxidative stress. Specifically, we determined if 

estrogen exerts its glioprotective effects by stopping the cleavage of tau. The results indicate 

that estrogen prevents caspase-3 activation and the subsequent production of the truncated 

tau form generated by caspase-3, and ultimately the formation of neurofibrillary tangles 

(NFT). We further determined that estrogen exerts its protective effects by preventing the 

dephosphorylation of tau at Ser422, thereby reducing access of active caspase-3 to the 

caspase-3 cleavage site Asp421 in ONHAs. At the same time, treatment with estrogen also 

decreased apoptosis in ONHAs undergoing oxidative stress. Together, these results provide 

evidence for a novel mechanism of action underlying the clinical rationale that preventing 

the age-related decline in estrogen decreases the susceptibility of the optic nerve to oxidative 

stress, a component of glaucoma pathogenesis.

MATERIALS AND METHODS

Cell culture

Rat optic nerve head astrocytes (ONHAs) were isolated (Brown Norway; age 3 months; 

male) as primary cells and cultured as described previously (Kaja et al. 2015). ONHAs were 

grown in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 20% Fetal Bovine 

Serum (FBS) and 100 U/mL penicillin and 100 mg/mL streptomycin and passaged every 3–

4 days. The identity and purity of ONHA cultures was validated with immunocytochemistry 

measuring immunoreactivity of the astrocyte marker GFAP.

Estrogen and tBHP treatment

Cells were treated with media containing 50–100 μM tert-butyl hydroperoxide (tBHP) 

overnight as described previously to induce oxidative stress (Means et al. 2017). For 

protection assays, cells were pretreated with 25 μM estrogen (17α-estradiol; Steraloids, Inc, 

Newport, RI; E0950–000; or methanol as a control (vehicle)) for 2 h or 18 h prior to tBHP 

addition with mock defined as receiving vehicle only.

Cell Viability—Trypan blue was used to determine cell viability as described previously 

(Means et al. 2017; Matsukawa et al. 2009). The number of viable cells were determined by 

counting 4 fields of view and setting the untreated as 100%. Viability was determined 

twenty-four hours after tBHP was added.

Measurement of caspase activity

To measure caspase activity, the fluorogenic Ac-DEVD-AFC (Ac-Asp-Glu-Val-Asp-7-

Amino-4-trifluoromethylcoumarin, Santa Cruz Biotechnology, Dallas, TX, USA; product 
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number, sc-311274) caspase-3 substrate was used as previously described (Means et al. 

2017). Eighteen hours after treatment cells were collected and centrifuged at 2000 × g. The 

cell pellets were re-suspended in buffer (20 mM HEPES, pH 7.5, 50 mM KCl, 1.5 mM 

MgCl2, 1 mM EDTA, 1mM EGTA, 1 mM DTT with protease inhibitor cocktail (Complete 

ULTRA Tablets, Roche Diagnostics, Indianapolis, IN, USA) and lysed by three freeze/thaw 

cycles. The lysate was incubated for 1 h at 37°C with caspase-3 fluorogenic substrate (0.5 

μM). Caspase activity was based on the fluorescent products generated by caspase-3 activity 

and determined fluorometrically (excitation 405 nm, emission 535 nm) and plotted as 

relative arbitrary fluorescence units.

Antibodies

To detect caspase cleaved tau a mouse Asp monoclonal anti-tau (caspase cleaved at 421) 

antibody (MilliporeSigma, Billerica, MA; product number, MAB5430; 1:500) was used. An 

anti-tau phospho-Ser422 (GenScript, Piscataway, NJ; product number, A00900; 1:1000) 

rabbit antiserum was used to detect phosphorylated tau at Ser422. A mouse anti-tau 

monoclonal antibody (Developmental Studies Hybridoma Bank, Iowa City, IA, USA; 

product number/clone, 5A6; 1:500) was used to detect full-length tau. A mouse anti-GFAP 

monoclonal antibody (abcam, Eugene, OR; product number ab4648; clone2A5; 1:1000) was 

used to detect GFAP. For a loading control a mouse anti-Actin monoclonal antibody 

(MilliporeSigma; product number, MAB1501R; 1:1000) was used to detect actin.

Thioflavin S Staining

Thioflavin S staining was used to detect neurofibrillary tangles in ONHAs. Cells were rinsed 

with distilled water followed by a 5 min fixation at room temperature using 3% PFA 

treatment. The cells were washed 3 × 5 min with Phosphate Buffered Saline (PBS) and 

permeabilized (3 min) at room temperature using 0.2% Triton-X-100 in PBS. Cells were 

washed with PBS (3 × 5 min) and incubated with 0.05% Thioflavin S (Sigma-Aldrich, St. 

Louis, MO, USA; product number, T1892) in distilled water for 5 minutes. Cells were 

washed for 5 min in 70% ethanol. Next, several washes with distilled water (10 × 5 min, 1 × 

overnight) were performed.

Microscopy—Representative images were obtained using a laser-scanning confocal 

microscope (Leica TCS SP5). A 63×/1.4 - oil submersion objective was used. An argon ion 

laser (excitation 488 nm, barrier 500–555 nm) was used to visualize Thioflavin-S positive 

cells. Hoechst 33258 (120 ng/μL; Enzo Life Sciences Inc., Farmingdale, NY) was used to 

label cell nuclei. Cells were mounted using AquaPolymount (Polysciences Inc., Washington, 

PA).

Statistical analysis

Prism5 software (GraphPad Inc., La Jolla, CA, USA) was used for statistical analysis. For 

densitometric analysis of immunoblots to quantify individual bands ImageJ software 

(Version 1.50i, Developer: Wayne Rasband, National Institutes of Health, Bethesda, MA, 

USA) was utilized. Student’s t-test for comparisons between two groups or by one-way 

analysis of variance (ANOVA) was used to statistically compare means. In addition, the 

Bonferroni post-hoc test was used for various comparisons with treatment conditions (mock, 
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or estrogen) and insults (tBHP) as variables was used. Statistical significance was set at p ≤ 

0.05. All experiments were performed in triplicate (n=3).

RESULTS

Estrogen protects ONHAs from oxidative stress

ONHAs exposed to oxidative stress induced by tBHP showed a decrease in cell viability that 

was significant (Fig. 1). To determine whether estrogen could act as a neuroprotective agent 

we pretreated cells with estrogen for either 2 h or 18 h prior to inducing oxidative stress. 

When compared to vehicle controls, estrogen pretreatment attenuated the reduction in cell 

viability with the longer pretreatment (18 h) being significantly more protective (Fig. 1). 

There was no significant difference for the 18h estrogen pretreatment when compared to the 

mock treatment, indicating full protection from the oxidative stress insult (Fig. 1).

Caspase activation and tau cleavage are induced by oxidative stress in ONHAs and 
pretreatment with estrogen inhibits these markers of neurodegeneration

To determine whether oxidative stress leads to caspase activation in ONHAs we treated cells 

with tBHP and measured caspase activity. Cells undergoing oxidative stress have high levels 

of active caspase 3 (Fig. 2). Active caspases during oxidative stress can target tau for 

proteolytic cleavage, and we detected cleaved tau in ONHAs undergoing oxidative stress 

(Fig. 3). Next, we wanted to determine whether estrogen is able to attenuate this 

neurodegenerative process and could act as a neuroprotective agent during oxidative stress. 

ONHAs were pretreated with estrogen for either 2 h or 18 h followed by tBHP addition. 

Estrogen pretreatment significantly inhibited caspase activation at either of the two 

pretreatment times, but the longer pretreatment (18 h) fully inhibited caspase activation 

when compared to the mock treatment (Fig. 2). Consequently, the reduced caspase activity 

that resulted from the estrogen treatment also led to a significant reduction in cleaved tau 

(cTau) for both, the 2h and the 18h pretreatment times (Fig. 3) with the longer pretreatment 

(18h) reducing cTau production to mock treatment levels (Fig. 3B).

Tau dephosphorylation at Ser422 is prevented by estrogen

Under normal physiological conditions, tau is phosphorylated at Ser422. This residue is 

important for tau proteolysis and located immediately adjacent to the caspase cleavage site, 

Asp421 (Fig. 4). During oxidative stress, Ser422 is dephosphorylated in ONHAs (Fig. 4A). 

Pretreatment of these cells with estrogen prevents this dephosphorylation at Ser422 with the 

18h pretreatment maintaining tau phosphorylation at mock treatment levels (Fig. 4A–B).

Estrogen reverses oxidative stress induced NFT formation in ONHAs

Oxidative stress in ONHAs induced by tBHP treatment leads to a significant amount of 

Thioflavin-S positive cells, a histochemical marker that labels NFTs (Fig. 5). When ONHAs 

are pretreated with estrogen the number of Thioflavin-S positive cells was significantly 

reduced (Fig. 5A–B) with the extent of the reduction dependent on the length of the 

pretreatment with the longer duration (18h) being significantly more effective than the 

shorter period (2h). The longer pretreatment with estrogen led to a reduction in NFTs that 

showed no statistical difference to mock treatment (Fig. 5B). Interestingly, Thioflavin-S 

Means et al. Page 5

Cell Mol Neurobiol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



staining in the 2h estrogen pretreatment condition, while significantly more intense than in 

the 18h estrogen pretreatment condition is more diffuse potentially indicating not only a 

reduction in the total amount of proteolytically cleaved cTau contributing to NFT formation, 

but also a concomitant change in tangle formation itself (Fig. 5A).

Estrogen attenuates increased GFAP expression, a marker of astroglial activation, in 
ONHAs exposed to oxidative stress

ONHAs undergoing oxidative stress display a significant increase in GFAP levels (Fig. 6). 

When ONHAs are pretreated with estrogen prior to tBHP treatment the levels of GFAP 

remain unchanged using the mock treatment for comparison (Fig. 6). While this prevention 

of astrocyte activation by pre-incubation with estrogen was highly significant, there was no 

significant difference with respect to the two estrogen pretreatment times tested (Fig. 6B).

DISCUSSION

The development of neurodegenerative disorders like glaucoma and AD, has been linked to 

decreasing levels of estrogen during aging (Dewundara et al. 2016; Newman-Casey et al. 

2014; Moffat et al. 2004; Rosario et al. 2004). In addition, it has been suggested that 

hormone replacement therapy in women who are postmenopausal can reduce the risk of AD 

and glaucoma, delay the start of disease, and make cognitive or visual function better, 

respectively (Newman-Casey et al. 2014; Brinton 2001; Polo-Kantola and Erkkola 2001; 

Balderechi et al. 1998; Kawas et al. 1997; Paganini-Hill and Henderson 1996).

Mechanisms underlying estrogen’s function as a neuroprotective agent have not been fully 

elucidated. The results show that estrogen blocks caspase-3 activation (Fig. 2) and regulates 

the phosphorylation state of tau at Ser422 (Fig. 4), thereby preventing tau cleavage (Fig. 3) 

and the generation of toxic tau fragments and NFTs (Figs. 3, 5, 6).

Previous work has shown that estrogen has protective effects against various noxious 

stimuli. For instance, estrogen can protect against apoptosis induced by staurosporine and 

hydrogen peroxide (Honda et al. 2001; Sur et al. 2003). Potential anti-apoptotic mechanisms 

of action include: Estrogen increases the anti-apoptotic protein Bcl-xL levels (Pike 1999). 

Estrogen attenuates caspase-3 activation, thereby preventing apoptosis (Celsi et al. 2004; 

Jover et al. 2002). However, neuroprotective properties of estrogen have been associated 

with a range of signaling pathways and networks including the attenuation of 

neuroinflammation and oxidative stress, affecting both Aβ and tau protein (Merlo et al. 

2017).

Given that tau, a microtubule stabilizing protein, is regulated by phosphorylation at multiple 

sites that control its function and turnover depending on phosphorylation status, 

neuroprotective mechanisms involving estrogen signaling mediated effects targeting tau and 

specifically tau phosphorylation are potentially of high clinical relevance (Arendt et al. 

2016; Johnson 2006). Under disease conditions, tau phosphorylation can become 

dysregulated leading to the build-up of hyperphosphorylated tau, which can aggregate into 

neurofibrillary tangles. This then can activate multiple signaling cascades that eventually 

lead to cell death contributing to the pathogenesis of neurodegenerative disorders, such as 
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AD (Arendt et al. 2016; Morris et al. 2011). Estrogen promotes the dephosphorylation of tau 

in SH-SY5Y neuronal cells and primary rat cortical neurons, where cortical neurons from 

females are more sensitive to estrogen when compared to the males (Zhang and Simpkins 

2010; Alvarez-de-la-Rosa et al. 2005). In the present study, tau phosphorylation at Ser422 is 

necessary to prevent the proteolytic cleavage of tau. Dephosphorylation of this site allows 

caspases access to tau leading to the generation of tau fragments that more readily aggregate.

Caspase-3 tau cleavage was deemed an early event that occurs before tau 

hyperphosphorylation was being detected (Gamblin et al. 2003). In addition, caspase-3 

cleaved tau has been detected prior to the onset of apoptosis and NFT formation (Rissman et 

al. 2004; Ugolini et al. 1997). Tau proteolysis is also mediated by calpain and can be 

detected before tau hyperphosphorylation occurs (Park and Ferreira 2005).

Estrogen and testosterone can both function individually as neuroprotective signaling 

molecules through the differential regulation of proteases targeting tau: While testosterone 

inhibits the activation of calpain, which generates a 17kDa tau fragment, it does not affect 

caspase-3 activity resulting in tau truncation at Asp421, the protease signaling pathway 

attenuated by estrogen (Park et al. 2007). Our results indicate that neuroprotective properties 

of estrogen can also be found in glia, specifically astrocytes: Estrogen protects ONHAs from 

oxidative stress as measured by attenuation of GFAP levels as a surrogate marker of 

astroglial acivation and inhibits caspase-3 activation resulting in reduced tau cleavage by 

caspase-3, thereby preventing NFT formation. This is in line with previous work indicating 

estrogen-mediated control of GFAP expression as a protective mechanism (Rozovsky et al. 

2002). While both 2-hour and 18-hour preincubation with estrogen effectively reduced 

caspase-3 activation and tau proteolytic cleavage, the longer preincubation time showed 

greater effects. This parallels findings in hippocampal neurons where estrogen-mediated 

protection from Aβ-induced neurotoxicity was effective not only after 24 h, but also after 2 h 

preincubation with estrogen prior to insult (Park et al. 2007).

Oxidative stress leads to the buildup of free radicals, which has been connected with 

numerous neurodegenerative diseases, including AD and glaucoma (Munemasa and Kitaoka 

2013; Behl et al. 1995). Antioxidants can be used to safeguard cells against oxidative stress-

induced cell damage and death by inhibiting oxidation and thereby preventing free radical 

formation (Niki and Nakano 1990). Here, we induced oxidative stress using tBHP, thereby 

modeling the cellular environment encountered during neurodegeneration. Estrogen acting 

directly as an antioxidant has been shown to protect mouse hippocampal HT22 cells and 

embryonic rat hippocampal cells from free radical damage and subsequent apoptosis (Behl 

et al. 1995; Behl 1997; Mooradian 1993), providing an alternate, potentially parallel 

pathway for the protection of ONHAs identified here.

Conclusions

Our data support the notion that proteolytic cleavage of tau contributes to the degeneration 

of the neural retina, specifically in ONHAs, during oxidative stress. In addition, we show 

that this degenerative signaling pathway can be attenuated by estrogen indicating that 

estrogen-mediated pharmacological control of neurodegeneration in the retina and optic 
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nerve is feasible. At the same time, specific components of these signaling pathways such as 

caspase-3 and specific tau phosphorylation and cleavage sites represent additional potential 

therapeutic targets.
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Aβ amyloid β–peptide

AD Alzheimer’s disease

ANOVA analysis of variance

CNS central nervous system

GFAP glial fibrillary acidic protein

NFT neurofibrillary tangle

ONH optic nerve head

ONHA optic nerve head astrocyte

PBS phosphate buffered saline

PFA paraformaldehyde

tBHP tert-butyl hydroperoxide
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Figure 1. Estrogen prevents tBHP induced cell death in optic nerve head astrocytes (ONHAs).
ONHAs were pretreated with 25 μM estrogen for 2 h or 18 h followed by treatment with 

tBHP. Twenty-four hours later viability was determined using Trypan Blue. In tBHP treated 

compared to cells there was a significant reduction in cell viability cells that were mock 

treated (***, p=0.0002). ONHAs pretreated with estrogen for 2 h (*, p=0.0236) or 18 h (**, 

p=0.0053) prior to tBHP treatment had a significant increase in viable cells compared to 

tBHP treated cells. When compared to mock treated ONHAs, pretreatment with estrogen for 

2 h still showed significantly reduced cell viability (**, p=0.0052), while pretreatment with 

estrogen for 18 h had no significant difference in viable cells compared to mock treated (ns, 

p=0.0982). Estrogen pretreatment for 18 h was significantly more protective than 

pretreatment for 2 h (*, p=0.0221). Experiments were performed in triplicate (n=3) and 

values were depicted as mean +/− SEM and analyzed using ANOVA (p=0.0002). For 

statistical comparison, the Bonferroni post-hoc test and Student t-test were used. Statistical 

significance was set at p ≤ 0.05.
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Figure 2. Estrogen inhibits oxidative stress induced caspase activation in ONHAs.
Oxidative stress in ONHAs were induced using tBHP and caspase activity was measured 

using Ac-DEVD-AFC. Caspase activity in ONHAs that were treated with tBHP was 

significantly higher compared to mock treated (**, p=0.0058). ONHAs pretreated with 25 

μM estrogen for 2 h (*, p=0.0208) or 18 h (**, p=0.0077) before tBHP addition had a 

significant decrease in caspase activity compared to tBHP treated cells. Estrogen 

pretreatment for 18 h was significantly more effective at inhibiting caspase activity 

compared to a 2 h pretreatment (*, p=0.0144). ONHAs pretreated for 2 h with estrogen had a 

significant level of active caspases versus mock treated (**, p=0.0035) while pretreatment 

with estrogen for 18 h showed no significant difference in caspase activity versus mock 

treated (ns, p=0.1974). Experiments were done in triplicate (n=3) and values were depicted 

as mean +/− SEM and analyzed using ANOVA (p=0.0003). For statistical comparison, the 

Bonferroni post-hoc test and Student t-test were used. Statistical significance was set at p ≤ 

0.05.
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Figure 3. Estrogen inhibits oxidative stress induced tau cleavage in ONHAs.
ONHAs were pretreated with 25 μM estrogen followed by induction of oxidative stress with 

tBHP. (A) tBHP treated ONHAs were used in immunoblotting assays to measure cleaved tau 

(cTau) levels. For a loading control actin was used. (B) tBHP treated ONHAs had a 

significant amount of cTau compared to mock treated (**, p=0.0025). Estrogen pretreatment 

for 2 h led to a significant decrease in detectable cTau (**, p=0.0083). Estrogen pretreatment 

for 18 h further decreased cTau levels significantly (**, p=0.0078). Pretreatment with 

estrogen for 18 h was more effective than a 2 h pretreatment in attenuating cTau levels (*, 

p=0.0486). ONHAs pretreated with estrogen for 2 h still showed a significant amount of 

cTau compared to mock (**, p=0.0055). Pretreatment of ONHAs for 18 h had no significant 

difference from mock (ns, p=0.4565). Experiments were done in triplicate (n-=3) and values 

were depicted as mean +/− SEM and analyzed using ANOVA (p=0.0003). For statistical 

comparison, the Bonferroni post-hoc test and Student t-test were used. Statistical 

significance was set at p ≤ 0.05.
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Figure 4. Dephosphorylation of tau at Ser422 is blocked by estrogen in ONHAs.
ONHAs pretreated with 25 μM estrogen were exposed to tBHP to induce oxidative stress. 

(A) Phosphorylation of Tau at Ser422 was examined by immunoblotting. ONHAs showed 

Ser422 tau phosphorylation under control conditions (see mock). (B) tBHP treated ONHAs 

had a significant reduction in tau phosphorylation versus mock (**, p=0.0027). ONHAs 

pretreated with estrogen for 2 h followed by tBHP treatment had a significant increase in 

phosphorylated tau versus ONHAs treated with tBHP alone (*, p=0.0482). When estrogen 

pretreatment was increased to 18 h tau phosphorylation was increased significantly when 

compared to tBHP treatment (**, p=0.0037). Estrogen pretreatment for 18 h was more 

effective than a 2 h pretreatment (**, p=0.0085) in restoring phosphorylation of tau at 

Ser422. ONHAs pretreated with estrogen for 18 h (ns, p=0.5598) followed by tBHP 

treatment showed no significant difference from mock treated ONHAs, while the 2h 

pretreatment still showed a significant difference compared to mock treated (**, p=0.0070). 

Experiments were done in triplicate (n=3) and values were depicted as mean +/− SEM and 

analyzed using ANOVA (p=0.0002). For statistical comparison, the Bonferroni post-hoc test 

and Student t-test were used. Statistical significance was set at p ≤ 0.05.
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Figure 5. Estrogen prevents NFT formation induced by tBHP treatment in optic nerve head 
astrocytes (ONHAs).
(A) ONHAs were pretreated with 25 μM estrogen followed by induction of oxidative stress 

using tBHP. Production of NFTs was determined by staining with Thioflavin S (green). (B) 

tBHP treated cells showed significant Thioflavin S staining, indicative of NFT formation, 

compared to mock (*, p=0.0129). Cells pretreated with estrogen for 2 h showed a significant 

reduction of Thioflavin S staining compared to cells treated with tBHP treated (*, 

p=0.0171). In addition, NFTs appeared hallo like and more diffuse for the 2h pretreatment. 

Increasing pretreatment time to 18 h with estrogen reduced NFT formation significantly (*, 

p=0.0134) compared to tBHP treated cells. Pretreatment with estrogen for 18 h was 
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significantly more effective than the 2 h pretreatment (**, p=0.0024). ONHAs pretreated 

with estrogen for 2 h still had significant NFT formation compared to mock treated (**, 

p=0.0024). Estrogen pretreatment for 18 h was the most effective showing no significant 

difference in the level of NFT formation compared with mock treated ONHAs (ns, 

p=0.1326). Experiments were done in triplicate (n=3) and values were depicted as mean +/− 

SEM and analyzed using ANOVA (p=0.0007). For statistical comparison, the Bonferroni 

post-hoc test and Student t-test were used. Statistical significance was set at p ≤ 0.05.
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Figure 6. During oxidative stress induced by tBHP estrogen stabilizes GFAP levels in optic nerve 
head astrocytes (ONHAs).
(A) GFAP levels are elevated during oxidative stress as determined by immunoblot assay (B) 

During oxidative stress GFAP levels are significantly upregulated versus mock (**, 

p=0.0020). 25 μM estrogen pretreatment for 18 h (**, p=0.0022) or 2 h (**, p= 0.0074) 

significantly reduced GFAP levels compared to tBHP treated ONHAs. When compared to 

mock treated ONHAs both 2 h (ns, p=0.3054) and 18 h (ns, p=0.0954) estrogen pretreatment 

had no significant changes to the levels of GFAP. GFAP levels showed no significant 

difference when comparing estrogen pretreatment for 2 h or 18 h (ns, p=0.4926). 

Experiments were done in triplicate (n=3) and values were depicted as mean +/− SEM and 

analyzed using ANOVA (p=0.0002). For statistical comparison, the Bonferroni post-hoc test 

and Student t-test were used. Statistical significance was set at p ≤ 0.05.
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