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Abstract

While recent advances in deep learning have significantly advanced the state of the art for vessel 

detection in color fundus (CF) images, the success for detecting vessels in fluorescein angiography 

(FA) has been stymied due to the lack of labeled ground truth datasets. We propose a novel 

pipeline to detect retinal vessels in FA images using deep neural networks (DNNs) that reduces the 

effort required for generating labeled ground truth data by combining two key components: cross-

modality transfer and human-in-the-loop learning. The cross-modality transfer exploits 

concurrently captured CF and fundus FA images. Binary vessels maps are first detected from CF 

images with a pre-trained neural network and then are geometrically registered with and 

transferred to FA images via robust parametric chamfer alignment to a preliminary FA vessel 

detection obtained with an unsupervised technique. Using the transferred vessels as initial ground 

truth labels for deep learning, the human-in-the-loop approach progressively improves the quality 

of the ground truth labeling by iterating between deep-learning and labeling. The approach 

significantly reduces manual labeling effort while increasing engagement. We highlight several 

important considerations for the proposed methodology and validate the performance on three 

datasets. Experimental results demonstrate that the proposed pipeline significantly reduces the 

annotation effort and the resulting deep learning methods outperform prior existing FA vessel 
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detection methods by a significant margin. A new public dataset, RECOVERY-FA19, is introduced 

that includes high-resolution ultra-widefield images and accurately labeled ground truth binary 

vessel maps.
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Fluorescein angiography; generative adversarial networks; vessel detection; retinal image analysis; 
deep learning

I. INTRODUCTION

RECENTLY deep learning based image processing algorithms have shown compelling 

improvement in the analysis of color fundus (CF) images [4], [5]. The CF images are color 

images of the retina captured under white light illumination using a fundus camera that 

consists of a specialized microscope equipped with a camera. The images mimic what 

physicians see with ophthalmoscopy and are the predominant form of retinal images [6]. A 

DNN can detect retinal vessels in CF imagery with high accuracy and robustness [7], [8] and 

achieve performance close to human experts [9]. Manually labeled ground truth datasets are 

a key ingredient in the success of these techniques. Three commonly used datasets that 

provide CF images and corresponding manually labeled pixel-wise binary vessel maps 

include DRIVE [10] (forty 584 × 565 pixel images), STARE [11] (twenty 605 × 700 pixel 

images), and the high resolution HRF [12] (forty-five 3504 × 2336 images) datasets. The 

datasets provide a modest number of images and are used for training in combination with 

data augmentation techniques [13].

The detection of retinal vessels is also of interest for alternative imaging modalities that are 

of independent diagnostic utility in the clinic. For instance, fluorescein angiography (FA) 

and optical coherence tomography angiography (OCT-A) are used for assessing retinal non-

perfusion. FA provides a larger field of imaging beyond the macula, while commercially 

available OCT-A provides more detailed imaging of the macular micro-vasculature. FA 

images are captured after intravenous injection of sodium fluorescein dye. Blue illumination, 

over the wavelength range from 465 to 490 nm, causes the dye to fluoresce and emit photons 

in the 520–530 nm green-yellow wavelength band. The spatial pattern of fluorescence 

intensity is captured as an FA image, in which, the vessels with blood flowing through them 

appear brighter because of the fluorescent dye in the blood [14]. Although, conceptually, one 

could redeploy the DNN architectures that are successful in CF imagery to these alternative 

modalities, the fundamental differences between the modalities require fresh training and the 

lack of ground truth labeled data becomes a key obstacle to such reuse. Specifically, for FA 

images, only one dataset is available: VAMPIRE [15] which provides eight ultra-widefield 

FA (UWFFA) images (3072 × 3900 pixels, each) along with limited accuracy ground truth 

binary vessel maps. Manually annotating vessel maps for training a DNN is not a trivial task. 

Specifically, UWFFA images have high resolution and exhibit variations in contrast between 

the background and the vasculature, which pose a significant challenge for manual 

annotation. Fig. 1 shows sample FA images and highlights the particular challenge of 

contrast variations. The patch labeled in cyan in the middle UWFFA image is shown in an 
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enlarged view on the right, as captured and with contrast enhanced. From the contrast 

enhanced view, one can appreciate that the region corresponding to the patch contains a 

large number of fine vessels that are rather difficult to see without contrast enhancement. In 

particular, ophthalmologists normally have difficulty in identifying fine vessels in the 

peripheral region without image enhancement because of the low contrast and brightness. 

High-quality annotation requires carefully adjusting image contrast for the entire FA image 

and labeling both major and minor vessels, making it a tedious, time-consuming, and labor-

intensive process.

In this paper, we propose a novel pipeline that enables accurate vessel detection in FA 

images using DNNs by significantly reducing manual annotation effort. The proposed 

pipeline integrates the following novel elements:

• an unsupervised method for preliminary retinal vessel detection that is based on 

multiple scales and orientations morphological analysis,

• a cross-modality approach that transfers vessel maps from CF to FA images 

using robust chamfer alignment [16] in an Expectation-Maximization (EM) 

framework, and

• an efficient and effective human-in-the-loop iterative deep learning process for 

detection of retinal vessels in FA imagery that significantly reduces the tedium of 

generating labeled data.

We demonstrate the utility of the proposed pipeline by developing the first set of DNNs for 

detection of retinal vessels in FA images and evaluating the performance on alternative 

network architectures. The best performing method provides remarkably accurate results 

(maximum Dice coefficient of 0.854) and offers very significant improvements over the 

prior methods. Results demonstrate that the approach adapts particularly well to the contrast 

variations that are typical in FA imagery. To facilitate further development of vessel 

detection in FA images, we also release a new dataset of UWFFA images from the 

RECOVERY trial [17] along with ground truth labeled vessels from our pipeline. In addition 

to the innovative pipeline for the generation of training data, demonstration of the first deep 

learning approaches, evaluation of alternative architectures, and the new ground truth labeled 

datasets are also contributions of the present work.

The proposed pipeline is also significant from a clinical perspective. FA is a well-established 

method that provides a useful imaging modality for visualizing, assessing and understanding 

the impact of diseases on the vascular system. Retinal vasculature changes assessed via FA 

imagery play a key role in the clinical assessment of vasculature changes caused by multiple 

common diseases, including diabetes, hypertension, and atherosclerosis, and also for eye-

specific diseases, such as retinal venous occlusive diseases and retinal vasculitis. In current 

clinical practice, ophthalmologists manually review FA images to access disease conditions 

in retinal vasculature. These examinations are typically qualitative and subjective due to the 

limited time available during the clinical visits. Quantitative analysis of FA images, although 

highly desirable, requires inordinate time and patience to be performed manually and thus is 

not feasible in clinical settings. The proposed pipeline for detecting vessels in FA images 

offers an automated approach to examine retinal vasculature, which is a key component of 
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computer-assisted retinal image analysis and diagnosis systems. Details of fine vessels are of 

particular diagnostic significance as changes are often first observed in the fine vessels [18]–

[20]; a key strength of the method developed is the ability to reliably detect fine vessels, 

which are often not seen with non-FA modalities and, even for the FA modality, require 

significant iterative contrast manipulations for visual detection. Using the proposed pipeline, 

the results of retinal vessel detection achieve a level of accuracy that enables reliable 

computation of “digital biomarkers” from FA imagery that unlock the potential for 

improving clinical care, speeding up clinical trials, defining new endpoints of clinical 

relevance, and characterizing inter-individual variations. Preliminary work demonstrating 

how the analysis presented here can relate to clinical attributes of interest is being 

concurrently submitted in a companion paper [21].

The rest of this paper is organized as follows. Section II summarizes the existing works on 

retinal vessel detection. Section III provides an overview of the proposed pipeline. In 

Section IV, we describe the cross-modality transfer for generating ground truth data. In 

Section V, we introduce the human-in-the-loop learning approach for both vessel detection 

and manual annotation. We present the experimental results in Section VI and summarize 

concluding remarks in Section VII.

II. RELATED WORK

Prior work on detection of vessels in FA imagery is rather limited and due the paucity of 

ground truth labeled data has been primarily focused on unsupervised techniques. These 

methods, which are generally rule-based, include hand-crafted matched-filtering [15], active 

contour models [22], and morphological analysis [1], [23]. The unsupervised methods, 

however, offer limited accuracy (Dice coefficient of 0.634 compared to 0.854 for the best 

performing method bench-marked here).

Detection of retinal vessels in CF imagery has been extensively studied. For broad context, 

we refer the readers to a survey [24] and a recent paper [25] that categorize and compare the 

existing methods. For our discussion, we focus on supervised methods based on deep 

learning which have significantly advanced the current state of the art for vessel detection in 

CF images. Various network architectures have been exploited, including per-pixel 

classifiers [7], [26], fully convolutional networks [9], [27], [28], generative adversarial 

networks [29], and graphical convolutional network [30]. In addition to the network 

architectures, several works focus on new loss terms that are particularly attuned to vessel 

detection [31]–[33]. The basic idea is to incorporate prior knowledge of the topology of 

vasculature into loss functions.

Recent work in [34] proposes a self-supervised domain adaption work to generate FA 

images from CF images using a CNN. While this method aims to alleviate the tedium of 

creating labeled data by utilizing both CF and FA images, the generated pseudo-FA images 

do not represent actual FA images and normally contain artifacts. In contrast, the proposed 

pipeline uses a cross-modality approach that directly transfers the vessel map from CF 

images to FA via robust chamfer registration in an EM framework, and thus is more robust 

and reliable than the synthesis-based approach.
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III. OVERVIEW OF THE PROPOSED METHOD

The proposed pipeline, illustrated in Fig. 2, has two key components: (1) cross-modality 

transfer for generating an initial training dataset for FA images from CF images, and (2) a 

human-in-the-loop learning approach that iteratively refines DNNs and expedites the manual 

annotation process.

The cross-modality transfer exploits the availability of near concurrently captured CF and 

FA images in combination with existing deep learning methods for detection of vessels in 

CF imagery, for which, multiple ground truth annotated datasets are available. Specifically, 

we use the publicly available DRIsfahanCFnFA (Diabetic Retinopathy Isfahan Color Fundus 

and Fluorescein Angiography) dataset [35] (“Unlabeled Joint Dataset” in Fig. 2) that 

contains pairs of CF and FA images captured at the same clinical visit but with varying 

capture viewpoints. A DNN (green in Fig. 2) is trained on existing labeled CF images to 

extract vessel maps from unlabeled CF images. The detected vessel maps are geometrically 

aligned with and transferred to FA images via robust chamfer alignment [16] to a 

preliminary FA vessel map obtained with morphological analysis [1]. The co-aligned pairs 

of FA and transformed vessel map (“FA Training Data” in Fig. 2) are used as initial labeled 

data to train a DNN for vessel detection in FA images.

The human-in-the-loop learning approach is motivated by the synergistic relationship 

between deep learning and labeling. A well-trained DNN model can accurately detect vessel 

maps from FA images. Manually refinement of the predicted vessel map is much less time-

consuming than labeling the entire image from scratch. The model performance improves 

with an enlarged training dataset. Thus, the training and the labeling make each other more 

effective. We initialize the approach with a DNN trained on the (approximate ground truth) 

labeled data generated from the cross-modality transfer. A human annotator then manually 

refines one or more of the predicted vessel maps to generate improved vessel map labels, 

which, in the next iteration, are incorporated in the training data to improve the DNN 

performance. We repeat this human-in-the-loop iterative process till the network 

performance improves significantly and the manual labeling introduces few changes. The 

end result is a trained DNN (shown in blue in Fig. 2) and a set of accurately labeled vessel 

maps.

Both the cross-modality transfer and the iterative learning approach reduce the burden of 

manual labeling significantly and engage the annotators more effectively. Instead of 

requiring a large number of images to be annotated before improvements are realized, in the 

proposed iterative approach, the annotator sees improvements in the DNN performance from 

iteration to iteration as an immediate reward them for their effort. A by product of this 

engagement and reduction of tedium is that the images are labeled much more accurately 

than other studies that annotated the images from scratch (see Section VI-D).

IV. CROSS-MODALITY GROUND TRUTH TRANSFER

The cross-modality ground truth transfer, illustrated in Fig. 3, generates a training dataset for 

FA vessel detection from CF images. This approach consists of three steps: (1) vessel 
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detection in CF images using a DNN, (2) preliminary vessel detection in FA for anchoring, 

and (3) vessel registration by parametric chamfer alignment.

A. Vessel Detection in CF Images

To detect vessels in CF images, we adopt an existing DNN proposed in [29] that exploits 

adversarial learning. The model is trained on DRIVE dataset [10] which scores an Area 

Under the Receiver Operating Characteristic Curve (AUC ROC) of 0.9803, an Area Under 

the Precision-Recall curve (AUC PR) of 0.915, and a Dice coefficient of 0.829. The pre-

trained network is applied to overlapping patches of CF images in the DRIsfahanCFnFA 

dataset. The final CF binary vessel map is obtained by thresholding the probability map 

obtained from the generator using Otsu thresholding [36].

B. Preliminary Vessel Detection In FA Images For Anchoring

A preliminary detection of vessels in FA imagery is obtained using an unsupervised method 

based on multiple scales and orientations morphological analysis that is attuned to the 

variations in directions and widths of retinal vessel structure [1]. The preliminary detection 

need not be particularly precise; as noted in the next section, a low false positive rate is 

preferable even at the cost of a higher rate of missed detections. An overview of the 

approach is included here and additional detail, including specific parameter settings used, 

are provided in Section S.IV of the Supplementary Material.

The input FA image is decomposed into multiple resolutions represented by an image 

pyramid [37]. Images at each scale are processed independently and the resulting vessel 

maps at different scales are then combined together to generate a binary vessel map. A 

Gaussian pyramid expansion is used to resize vessel maps from each scale to the size of 

input FA image. Pixels where vessels are detected at any scale collectively comprise the 

estimated vessel map.

The key component in the preliminary vessel detection are morphological operators that 

extract locally linear patterns in terms of which the curvilinear network of interconnected 

vessels can be approximated. To detect vessel pixels at each scale, we choose a set of linear 

structuring elements Sα with the same length but oriented along different angles α, ranging 

from 0° to 180°. We apply the top-hat operator to the FA images using the structuring 

elements Sα. The conventional top-hat operator [38, pp. 557], which is defined as the 

difference between original and the corresponding morphological opening image, is 

sensitive to noise. Therefore, we adopt a modified top-hat filtering [39] to improve the 

robustness of vessel detection. The modified top-hat operator ⊙ is defined as

X ⊙ Sα = X − min((X • Sα) ◦ Sα, X), (1)

where X is the input image, and • and ◦ indicate the morphological operators of image 

closing and opening, respectively.

Each top hat filtering operation yields a response image in which pixel locations for vessels 

with a matching orientation are invariably high and those for other locations are usually low. 

The results of the top-hat filters across different orientations are combined by taking the 
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maximum, resulting in an overall map where high and low values are likely for vessel and 

background pixels, respectively. This soft vessel segmentation is converted into a binary 

vasculature map by locally adaptive thresholding [40]. Typically, binary vessel maps 

obtained by this process have a few disconnected components. As a post-processing step, we 

therefore perform an area opening operation to remove all small segments from the vessel 

map.

C. Vessel Registration By Chamfer Alignment

To precisely transfer the vessel maps in CF images to the corresponding FA images, we use 

parametric chamfer alignment in an EM framework [2]. Let P = {pi}i = 1
Ni  and Q = {qj}j = 1

Nj

be two sets of reference and targets points corresponding to the coordinates of the vessel 

pixels in FA and CF images, respectively, where pi = (xi, yi)⊤ and qj = (uj, vj)⊤. Because the 

geometry of the image capture and of the retinal surface are unavailable, an elastic 

registration transform is more appropriate than a non-elastic one. An empirical evaluation of 

alternative geometric transformations (see Section S.III of the Supplementary Material and 

also [41]) indicated that a second-order polynomial transformation offers significant 

improvements over alternative non-elastic transforms and that higher order transforms offer 

little additional improvement. Therefore, we adopt a second-order polynomial 

transformation to align the two sets of coordinate vectors for points corresponding to 

detected vessels. Specifically, the coordinate vector qj for the jth point is mapped to the 

coordinate vector

Tβ(qj) =
β1
β7

+
β2 β3
β8 β9

uj
vj

+
β4 β5 β6
β10 β11 β12

uj2

ujvj

vj2
, (2)

where β = {βi}i = 1
12  are the transformation parameters and Tβ denotes the geometric 

transformation. The alignment error dj (β) for the jth point under the geometric 

transformation Tβ, is quantified as the minimum squared Euclidean distance between the 

transformed location Tβ(qj) and the nearest point from P, viz.,

dj(β) = min
i

pi − Tβ(qj) 2
(3)

In the absence of outliers, the parameters β can be estimated by minimizing the average of 

the errors in (3), which corresponds to conventional chamfer minimization [16]. The method 

is, however, sensitive to outliers, that are inevitable in the detection process due to stochastic 

variations and noise in the imaging processes and due to differences in the FOV between the 

modalities. Particularly, vessel pixels in Q that do not have corresponding points in P
inevitably cause the chamfer minimization to converge to a poor local minima, resulting in 

poor registration. To tackle this issue, we adopt a probabilistic formulation of chamfer 

alignment in an EM framework. Specifically, we introduce latent binary variables Wj ∈ {0, 

1} to assess putative correspondence between vessel pixel qj in CF images and vessel pixels 

Ding et al. Page 7

IEEE Trans Image Process. Author manuscript; available in PMC 2021 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



P in FA, where Wj = 1 indicates that qj has corresponding points in P and thus is not an 

outlier point, and Wj = 0 otherwise. The prior probability of latent variable Wj follows a 

Bernoulli distribution with parameter π = p(Wj = 1). Under the assumption that the points 

correspond, the transformed inlier vessel pixels in CF image should be located in close 

proximity to the vessel pixels in FA. Therefore, the alignment error is modeled is modeled as 

an exponential distribution with parameter λ. For outlier points, we model the alignment 

error as an uniform distribution over the interval [0, Dmax], where Dmax is a free parameter. 

Specifically, conditioned on the latent variable and the parameters θ = {π, λ, β}, the 

distribution of the random variable Dj corresponding to the squared distance in (3) is 

modeled as

pDj ∣ W j, θ(dj ∣ wj, θ) =
λe−λdj, if wj = 1

1
Dmax

, if wj = 0
(4)

The EM algorithm seeks to obtain a maximum likelihood estimate of the parameters θ via an 

iterative procedure comprising two steps: an expectation (E) step and a maximization (M) 

step. At the (l + 1)th iteration, the E-step computes the expectation Q(θ, θ(l)) of the complete-

data log-likelihood

Lc(θ) = ∑
j = 1

Nj
logp(dj, wj ∣ θ), (5)

given the current estimate θ(l)
 of the parameters. In the M-step, the updated parameters 

θ(l + 1)
 are determined by maximizing Q(θ, θ(l)). For our specific setting, the E-step reduces 

to a computation of the posterior probabilities pj
(l) = p(W j = 1 ∣ dj, θ(l)), which are obtained 

as

pj
(l) = π(l)λ(l)e−λ(l)dj

π(l)λ(l)e−λ(l)dj + (1 − π(l)) 1
Dmax

, (6)

The updates in the M-step become

π(l + 1) =
∑j = 1

Nj pj
(l)

Nj
, λ(l + 1) =

∑j = 1
Nj pj

(l)

∑j = 1
Nj pj

(l)dj
, (7)

with the updated transformation parameter β(l+1) given by

β (l + 1) = argmin
β

1
Nj

∑
j = 1

Nj
pj

(l)dj(β) . (8)
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By examining (8), we see that the optimal parameters are obtained by minimizing the 

weighted average chamfer distance where the weighting for each datapoint equals the 

posterior probability that it is not an outlier. This makes intuitive sense, with the EM 

framework, the weighting concentrates on non-outliers and discounts the impact of outliers, 

making the parameter estimates much more robust than direct (non-probabilistic) chamfer 

minimization.

The optimization problem in (8) can be solved using the iterative Levenberg-Marquardt 

(LM) non-linear least squares algorithm [42] in combination with the distance transform 

methodology [43] that significantly simplifies the computation of the objective function and 

required gradients with respect to the parameters β. Detailed derivations of the parameter 

update equations listed above are provided in Section S.II in the Supplementary Material.

The LM algorithm based transformation parameter updates in (8) can get trapped in poor 

local minima. This is because the LM algorithm strongly depends on the initial parameter 

β(0) . Thus, a good initialization is important to obtain a good solution. Instead of estimating 

all 12 parameters from scratch, the optimization in (8) is further performed in progressive 

steps that use Euclidean, similarity, affine, projective (homography), and second-order 

polynomial transformations, in sequence. The EM iterations are terminated when the 

changes in the updates become smaller than a tolerance threshold and the final estimates β
for the transformation parameters are set to the values from the last iteration.

The binary vessel maps in CF images are registered to the corresponding FA images by 

applying the transformation Tβ . To select common region where retina surface is captured 

in both CF and FA images, we first generate a binary mask for original CF, which is then 

transformed using the same transformation used for the binary vessel map. The mask for the 

overlapping area can be readily obtained as the intersection of the transformed mask and the 

original one. Only pixels remaining in the common area are selected as the inferred training 

data for initiating the next stage of the pipeline.

Parametric chamfer alignment is an ideal tool for registering images from different 

modalities. First, given the asymmetry of the chamfer distance, the preliminary vessel 

detector can be chosen to have a high specificity but a relatively low sensitivity. This means 

that the results of preliminary vessel detection have a low false positive rate, even though the 

corresponding true positive rate is low as well. In addition, the formulation uses a global 

matching of the detected vessels rather than relying on a set of key points with feature 

descriptors, which is beneficial for the polynomial parametric mapping. Finally, the 

incorporation of EM framework for parameter estimation significantly enhances the 

robustness of the registration by mitigating the effects of outlier vessel points.

As a method for generating training data for FA vessel detection, the proposed cross-

modality transfer has the benefit of contrast invariance because the inferred vessels are 

transformed from those detected in CF images. Figures 4(a) and 4(b) show two FA images in 

DRIsfahanCFnFA dataset with significant variation in contrast. The corresponding vessel 

maps, which are shown in Figs. 4(b) and 4(d), respectively, provide consistent detection, 

regardless of image contrast, and capture both major and minor vessels.
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V. HUMAN-IN-THE-LOOP ITERATIVE LEARNING/LABELING

Although the cross-modality transfer allows generation of a reasonable labeled dataset for 

training DNNs for detecting vessels in FA images, the accuracy of the labeling is limited by 

the differences between the modalities and the performance limitations of the CF vessel 

detection. The network performance can be significantly improved by providing additional 

better labeled ground truth data.

As indicated in Section I, manually annotating a high-resolution UWFFA image is 

particularly tedious and time-consuming. In this section, we present the human-in-the-loop 

learning approach that aims to further refine the DNN by incorporating more training data 

and to facilitate and expedite the manual annotation process. Figure 5 contrasts the 

conventional approach to annotation of training data against the proposed human-in-the-loop 

approach. For conventional approach, the annotation and the training are carried out in 

separate sequential phases, meaning that all images in the dataset are first annotated and then 

used for the training stage. The human-in-the-loop approach, however, is an iterative process 

that exploits the synergistic relationship between deep learning and labeling. The process is 

initialized with a trained DNN trained to detect vessels in FA images using the training data 

obtained by the cross-modality transfer approach of Section IV. Estimated binary vessel 

maps that indicate the pixels corresponding to vessels are obtained for a small subset of 

images from an unlabeled (FA-only) dataset and used as the as the starting point for manual 

annotation. Specifically, the human annotator corrects the estimated binary vessel map by 

removing false positive detections and adding in false negative detections. The new labeled 

images are incorporated into the training dataset to refine the DNN in the next iteration. This 

process is repeated until all images are labeled.

The proposed human-in-the-loop approach radically reduces the effort required for 

annotating images (see the discussion in Section VI-B where the experiments are described). 

In addition to reducing the time and tedium for annotation, the approach also benefits from a 

psychological advantage that it provides. The annotators see the improvements in the trained 

network from iteration to iteration and feel immediately rewarded for their effort instead of 

having to label many images before seeing any machine generated annotations. This engages 

annotators much better than de novo labeling approaches, analogous to how gamification of 

learning and education generates better engagement [44], [45]. Our results indicate that the 

approach generates significantly better labeled data than the traditional de novo labeling 

approach.

A. Network Architecture

We trained and evaluated a number of alternative DNN architectures for vessel detection in 

FA images. In this section, we describe the best performing approach that exploits the recent 

concept of generative adversarial network (GAN) [46], which was also the architecture used 

for the human-in-the loop labeling iterations. Detailed architectures for other neural 

networks are provided in Section S.IV in the Supplementary Material. To apply GAN to 

vessel detection, we formulate the problem as an image-to-image translation [47]. In this 

context, the network consists of a generator G, which is trained to learn a mapping from the 

FA image X to the vessel map V and a discriminator D, which aims to distinguish between 
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real pairs (X, V ) and generated pairs (X, G(X)) of FA images and vessel maps, where G(X)
is the vessel probability map estimated from the generator and V is the binary ground truth 

vessel map. The idea is to jointly train G and D to achieve the min max operating point 

where the vessel maps generated by G minimize the maximum error for the discriminator D
in distinguishing between real and generated pairs.

The network architecture is visualized in Fig. 6. For the generator, we adopt the UNet [48] 

architecture, which comprises a downsampling path and an upsampling path. The key 

component in the UNet is the skip-connection that concatenates each upsampled feature map 

with the corresponding one in the downsampling path that has the same spatial resolution. 

The skip-connection is designed for detecting fine vessel structures. The discriminator 

receives either an image pair (X, V) (the blue and green bars) or (X, G(X)) (the blue and 

yellow bars).

B. Training

The objective function for the GAN is defined as

ℒGAN = EX, V [logD(X, V )] + EX[log(1 − D(X, G(X)))], (9)

where minimization of the first and the second terms encourage correct classification by the 

discriminator D of real pairs (X, V) sampled from training set and the pairs (X, G(X))
generated by G, respectively.

Inspired by the idea proposed in [47] that integrates a data loss (ℓ1 loss) into the objective 

function, we combine the objective function in (9) with the binary-cross entropy loss 

commonly used for segmentation. Specifically, we use the segmentation loss

ℒs = − EX, V [V logG(X) + (1 − V )log(1 − G(X))], (10)

which penalizes the disagreement between the estimated vessel probability map G(X) and 

the binary ground truth vessel map V.

The training procedure is then a min-max game [46] between the generator and the 

discriminator

min
G

max
D

ℒGAN(G, D) + λℒs(G), (11)

where λ is the free parameter to control the relation between GAN loss and segmentation 

loss. The trained deep network G obtained from this procedure is used to detect vessels in 

FA images.

VI. EXPERIMENTS

We begin by summarizing the implementation parameters, listing alternative vessel detection 

methods that we use as baselines for comparison, and defining the evaluation metrics that we 

use. We then structure our presentation of the results as follows. First, we highlight the 
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operation and benefit of the proposed pipeline, illustrating how the cross-modality transfer 

and the human-in-the-loop approach reduce the burden of annotation and yield our 

accurately labeled RECOVERY-FA19 dataset. Next, we evaluate the performance of 

alternative network architectures on the UWFFA RECOVERY-FA19 dataset. Additionally, 

we demonstrate the broader utility of the trained networks for vessel detection in FA images, 

by quantifying the performance on the VAMPIRE [15] dataset and the DRIsfahanCFnFA 

[35] dataset, the first of which consists of UWFFA images from a source that is entirely 

independent of the RECOVERY-FA19 dataset and the second of fundus FA images.

A. Implementation, Baselines, and Evaluation Metrics

The preliminary vessel detection and chamfer registration discussed in Section IV are 

implemented in MATLAB™. Using the training data generated with the proposed pipeline, 

we assess the performance of several alternative DNN architectures for FA vessel detection. 

Specifically, we use the UNet [48], NestUNet [49], and GAN [46] architectures, where, as 

described in Section V the GAN uses UNet [48] as the generator. The DNNs are 

implemented using PyTorch [50] (Version 0.4.1). Detailed parameter settings and training 

protocol are provided in Section S.IV of the Supplementary Material. As baselines for 

performance comparisons, we use the following existing methods for vessel detection in FA 

images: SFAT [15], MSMA [1], and VDGAN [3].

For quantitative comparison, we use the Receiver Operating Characteristic (ROC) curve, the 

Precision-Recall (PR) curve, and the CAL metric [51] and its individual C, A, and L 
components. The ROC curve is plotted as the true positive rate (TPR, or recall) against the 

false positive rate (FPR) as the estimated vessel probability map from the DNN is binarized 

using a threshold τ ranging from 0 and 1, and the PR curve is similarly a plot of the 

precision versus the recall obtained by varying the threshold τ. We also report the area under 

curve (AUC) and the maximum Dice coefficient (DC, or F1 score) as summary measures. 

These metrics can be computed from the numbers of true positive (TP), false positive (FP), 

true negative (TN), and false negative (FN) pixels as

Recall = TP
TP + FN FPR = FP

FP + TN
Precision = TP

TP + FP DC = 2TP
2TP + FP + FN .

The CAL metric [51] is sensitive to anatomical features of retinal vasculature and provides 

better agreement with human visual judgments. CAL consists of three individual factors, C, 

A, and L, that quantify the consistency between the binary ground truth and the binary 

predicted vessel maps with regard to connectivity, overlapping area, and the corresponding 

skeletons (lengths), respectively. The overall CAL metric is defined as the product of C, A, 

and L factors, each of which ranges between 0 and 1, with 1 indicating complete 

consistency. The computation of the A and L factors makes use of morphological filtering 

operations that provide robustness against, respectively, (a) variations in the labeling of 

“peripheral” pixels that may be inherently uncertain because these pixels span both vessel 

and background regions and (b) minor perturbations in the skeletons that human observers 

would discount but direct pixelwise comparisons would not. The C factor equals one minus 
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the difference between the number of connected components in the two vessel maps divided 

by the number of ground truth vessel pixels, truncated to zero in the unlikely scenario where 

the computation yields a negative value. The CAL metric computation is summarized in 

Section S.VIII of the Supplementary Material. The computation of the CAL metric requires 

a binary vessel map, which is obtained for the proposed methods by thresholding the 

estimated vessel probability map from the DNN with a threshold τ. We present as “CAL 

curves” plots of the CAL metric as a function of the threshold τ and also report the CAL 

value for the nominal vessel estimates obtained with a fixed threshold of τ = 0.5. The 

computation of the C, A, and L values, and the overall CAL metric was performed using the 

code provided at [52].

B. Annotation of the RECOVERY-FA19 Dataset

Images for the RECOVERY-FA19 dataset were selected from those gathered for the 

Intravitreal Aflibercept for Retinal Non-Perfusion in Proliferative Diabetic Retinopathy trial 

(RECOVERY, ClinicalTrials.gov Identified: NCT02863354) [17]. The dataset comprises 

eight high resolution (3900 × 3072 pixels) UWFFA images in 8-bit TIFF format acquired 

using Optos California and 200Tx cameras with a 200° FOV of the retina [53]. Ground truth 

binary vessel map annotations were obtained for the images using the proposed pipeline 

described in Sections III–V. In each human-in-the loop iteration, the network-predicted 

vessel map was refined by an annotator. The refinement annotations were performed using 

the Fiji distribution of ImageJ [54] with the segmentation editor plugin, which allows the 

(current estimate of the) vessel map to be overlaid on the UWFFA image to facilitate 

annotation. The brush tool, polygon selection, and freehand selection tools available in Fiji 

were used to add and remove pixels in the vessel map. The annotator adjusted the brightness 

and contrast of the UWFFA images to accurately identify the vessels. The annotations were 

validated by consultation with two ophthalmologists who routinely use UWFFA images for 

diagnosis in their clinical practice and research.

To validate that the proposed pipeline can reduce the burden of annotation, at each iteration, 

we calculate the number of pixels changed from the network-predicted vessel map in the 

human-annotation process. Table I lists the number of pixels added and removed during the 

iterative annotation process for seven iterations. The traditional de novo labeling approach 

on average requires annotation of an estimated 1.1M pixels in each image. Using the 

proposed pipeline, in the first iteration, 36.6%(292.4K) pixels were added and 0.87%(6.9K) 

pixels were removed from the initial vessel map generated from the training data obtained 

using the cross-modality transfer approach of Section IV, which is very significantly reduced 
compared with labeling from scratch. This highlights the benefit of the cross-modality 

transfer approach, while also illustrating the need for improvement beyond what is achieved 

with that approach. Specifically, the FOV for the CF modality is smaller than for UWFFA 

and therefore the training dataset generated with the cross-modality transfer approach lacks 

fine vessel structure seen in the peripheral regions for UWFFA. As a result, in the first 

iteration the annotator added a significant number of pixels. As the human-in-the-loop 

iterations proceed, and newly labeled images are incorporated into the training dataset, the 

performance of DNN progressively improves requiring fewer and fewer annotation changes. 

In the last (7th) iteration, only 2%(19.3K) pixels are added and only 1.4%(14.1K) pixels are 
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removed. In addition to the number of changed pixels, we also estimated the time needed for 

annotation. Previous work [55] stated that approximately 18 hours are required to label one 

UWF fundus photograph, which is lower resolution and has a narrower field of view than the 

UWWFA images that are our primary focus. Our empirical estimation based on de novo 

annotation of two square 512 × 512 patches indicates that approximately 150 hours would 

be needed to annotate an entire UWFFA image from scratch. Using the proposed human-in-

the-loop approach, the required time is decreased, very significantly, to about 25 hours per 

image, where most of the time is spent in validating the labeling. As noted in Section V, the 

progressive improvements in the network performance also have a positive psychological 

impact as the annotator realizes that the tedium of labeling is progressively decreasing.

The annotated vessel maps obtained by the human-in-the-loop iterations along with the 

corresponding eight UWFFA images constitute a new labeled dataset for vessel detection in 

FA images, which we refer to as the RECOVERY-FA19 dataset [56]. The RECOVERY-

FA19 dataset contains fine vessel branches, leakage, neo-vasculation, and retinal non-

perfusion, which make the vessel detection more challenging. These attributes are of 

particular diagnostic significance [57] but are barely seen in the prior VAMPIRE dataset 

[15]. Figure 7 shows an example of labeled ground truth vessel map for the UWFFA image 

in Fig. 1. The ground truth annotations for RECOVERY-FA19 are also significantly better 

than for VAMPIRE, which we attribute primarily to the pipeline proposed in this paper, 

which significantly reduces the tedium of labeling and improves annotator engagement 

considerably.

C. Evaluations on the RECOVERY-FA19 Dataset

In the course of the human-in-the-loop iterations, labeled ground truth data is combined with 

prior iteration training data to generate training data for the next iteration. A limitation of 

this setting is that only the added ground truth data at each iteration is the “test” data 

independent of the training data. Therefore, we evaluate the performance of alternative 

network architectures on the RECOVERY-FA19 dataset by two alternative approaches. First, 

we use leave-one-out cross validation [58], where the model is trained on seven of the eight 

UWFFA images and the corresponding ground truth vessel map labels and tested on the 

remaining image. The performance of the model is then reported in terms of statistics of the 

eight evaluation metrics1. Second, we also evaluate the approach using image patches that 

are labeled de novo and therefore completely independent of the training process.

For the leave-one-out cross validation, Fig. 8 shows the ROC, the PR, and the CAL curves 

for different methods and Table II summarizes the AUC for the ROC and the PR curves, the 

maximum DC, and the CAL. The best performing network (Prop. + GAN) achieves an AUC 

ROC of 0.987, an AUC PR of 0.930, the maximum DC of 0.854, and a CAL of 0.760. Using 

the proposed pipeline, all DNNs show significant improvement over traditional methods 

SFAT [15] and MSMA [1]. The performance is also significantly better than that obtained 

with the precursor to the present work [3], where only the cross-modality transfer was used. 

This highlights the benefit of the human-in-the loop iterations in the proposed pipeline. In 

1The estimated vessel maps and code for computing the reported statistics is provided as a Code Ocean capsule [59].
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Figure 9, we show qualitative results of different methods. Notice that the proposed pipeline 

is robust to contrast variations. Fine vessels are detected in the periphery that has extremely 

low contrast and brightness. Although these details in vasculature can be seen manually by 

repeatedly adjusting contrast and viewing different regions, the burden and the time 

requirement for doing this are prohibitive in typical clinical settings. The proposed pipeline 

also handles capillary leakage, neo-vasculation, and retinal non-perfusion, as shown in the 

enlarged views in Fig. 9.

The classification into vessel and background categories is inherently uncertain for the edge 

pixels that span both vessel and background regions. For such pixels, the human-in-the-loop 

labeling process is potentially subject to confirmation bias, wherein labels for these pixels 

are simply validated by the human observer instead of being critically re-evaluated. The 

CAL metrics are designed to be robust against such uncertainty. Therefore, the 

improvements in the CAL metrics for the proposed methods over prior alternatives shown in 

Fig. 8 and Table II represent actual improvements that are not impacted by the potential 

confirmation bias. On the other hand, the pixel-wise metrics (TPR (Recall)/FPR/Precision/

Dice coefficient) may be impacted by the afore-mentioned confirmation bias. To address this 

potential concern, we also performed a second evaluation using a de novo labeled dataset. 

Because the time requirements for labeling entire images from scratch are prohibitive, the 

evaluation on de novo labeled data relied only on two square image patches of 512 × 512 

pixels. Each patch required about 10 hours for the de novo labeling, which translates to 

approximately 150 hours for labeling a full high resolution UWFFA image. The selected 

patches cover both central and peripheral retina and represent both major and minor vessel 

branches. Table III reports quantitative results for the evaluation performed using the de 
novo labeled data. The results, while slightly worse than those reported for the cross-

validation based evaluation, reinforce the overall findings: the proposed approaches 

outperform the alternatives by relatively large margins. Importantly, the C, A, and L factors 

of the CAL metrics, that are designed to be robust against alternative classifications of the 

uncertain pixels, are comparable for the de novo and the cross-validation evaluations. As 

additional validation, we also assessed the consistency between the labelings for the same 

image patches obtained de novo and using the human-in-the-loop approach. The results, 

presented in Section S.V of the Supplementary Material, illustrate that the level of 

consistency is comparable to that obtained between different human annotators.

D. Evaluations on the VAMPIRE and DRIsfahanCFnFA Datasets

The FA imaging modality shares common physical characteristics across alternative imaging 

options and therefore the proposed methodology is useful for both UWFFA and funuds FA 

images. To demonstrate the broader utility of the networks (only) trained on RECOVERY-

FA19 dataset, we test the vessel detection performance on two additional datasets: 

VAMPIRE [15] and DRIsfahanCFnFA [35] datasets.

The VAMPIRE dataset [15] provides eight high resolution (3900 × 3072 pixels) UWFFA 

images acquired using the OPTOS P200C camera [53] with a 200° FOV of the retina. There 

are two sequences of images in the VAMPIRE dataset representing a healthy retina (GER) 

and a retina with age-related macular degeneration (AMD). For each image, a binary vessel 
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map that is manually annotated by ophthalmologists is provided as ground truth. We 

detected vessels in the UWFFA images from the VAMPIRE dataset using the best 

performing (Prop+GAN) network that was trained on the RECOVERY-FA19 dataset.

Our results reveal an issue with the VAMPIRE dataset: we notice that the vessel branches 

are not fully-labeled, especially in peripheral regions where the images have extremely low 

contrast. As mentioned in Section I, contrast and exposure normally pose a big challenge for 

manual annotation. To demonstrate the issue, we visually examine the result for the image 

“AMD2” in the VAMPIRE dataset, as shown in Fig. 10. Using the labeled vessel map 

provided with the VAMPIRE dataset as “ground truth”, we visualize true positive (black), 

false positive (red), false negative (blue), and true negative (white), as shown in the middle 

image in the first row of Fig. 10. After closely examining the vessel detection results, we 

observe that most “false positive” detections are indeed true vessels but are not annotated in 

the original labeling. For example, the second and the third rows of Fig. 10 show six 

rectangular regions where the true vessel branches are missed. This illustrates that 

quantitative comparisons using the original labeling for the VAMPIRE dataset are not 

reliable. To remedy the situation, we selected two images, “AMD2” and “GER4”, from the 

dataset and obtained (refined) ground truth vessel map annotations for these using the 

human-in-the-loop approach. The fourth row of Fig. 10 shows the same enlarged views as 

earlier, evaluated on the ground truth images. Compared with the evaluation using the 

original labeling (the third row of Fig. 10), the evaluation using the ground truth data 

indicates that the detected vessel map has much less false positives. On average, 73% of the 

original false positive detections becomes true positive if they are evaluated using the ground 

truth.

In Section S.VI of the Supplementary Material, we: (a) report complete quantitative 

evaluations performed with the original labeling and contrast these against evaluations over 

the two images with refined ground truth, and (b) present evaluations of the alternative 

methods over “trusted regions” where the VAMPIRE annotations were accurate, excluding 

“non-trusted” regions where our refined ground truth clearly identified vessels that were not 

labeled (correctly). Just like the experiment with the de novo labeling in Section VI-C, the 

latter evaluations address the issue of potential confirmation bias for edge pixels in the 

human-in-the-loop labeling process. The DRIsfahanCFnFA dataset [35] contains 59 pairs of 

near concurrently captured CF and FA images. All images have the same resolution of 576 × 

720 pixels. The ground truth binary vessel maps are obtained using the proposed pipeline 

described in Sections III–V. We report the quantitative results in Table IV. The best 

performing method achieves an AUC ROC of 0.974, an AUC PR 0.887, the maximum DC 

of 0.808, and a CAL of 0.783, outperforming other baseline methods. Visual results of 

detected vessel maps and the ROC and the PR curves are shown in Section S.VII of the 

Supplementary Material.

VII. CONCLUSION

We proposed a novel deep learning pipeline for detecting retinal vessels in FA images. Using 

a cross-modality approach and a human-in-the-loop approach, our pipeline significantly 

reduces the effort required for generating labeled ground truth images. Experimental 
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validations on three datasets, including a new RECOVERY-FA19 UWFFA dataset, 

demonstrate that the proposed pipeline significantly outperforms existing methods. To 

facilitate further development and evaluation of retinal vessel detection in FA images, we 

make publicly available the RECOVERY-FA19 dataset [56] and a Code Ocean capsule [59] 

for replicating the results in Table II.

The proposed pipeline provided a particularly useful methodology for generating labeled 

ground truth data. While our focus here was on labeling vessels in FA retinal images, the key 

underlying ideas could be applied in other situations. The registration approach that we 

describe in Section IV can also be used to facilitate identification and comparison of 

longitudinal vessel changes, preliminary results on which have been reported in [2]. The idea 

of cross-modality (label) transfer by registering observations of the same object captured 

with different modalities is potentially useful in speeding up other ground truth labeling 

tasks. Used in combination with the human-in-the-loop approach, such methods can 

significantly reduce tedium and improving engagement, and improve availability of datasets 

with accurately labeled ground truth, which is currently a key bottleneck in deploying deep 

learning solutions for a number of problems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Sample fluorescein angiography (FA) images. left: fundus FA. Middle: ultra-widefield FA. 

Right: enlarged view of the cyan rectangle (top and bottom: the original and the contrast-

enhanced views, respectively). For a larger version of this figure see Fig. 1H in the 

Supplementary Material.
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Fig. 2: 
Overview of the proposed pipeline for vessel detection in FA images. CFI: color fundus 

images; FFA: fundus fluorescein angiography. The cross-modality transfer (left block) 

generates the FA training data by aligning vessel maps from CF images with the preliminary 

vessel maps in FA images. The human-in-the-loop approach (right block) refines the neural 

network and significantly reduces manual annotation effort.
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Fig. 3: 
Overview of cross-modality ground truth transfer. The bottom-left shows the vessel 

detection in unlabeled CF image with neural networks pre-trained on existing CFI dataset. 

The upper-left shows the preliminary vessel detection in FA obtained with unsupervised 

morphological analysis. The detected vessels from CF image are transformed to FA via 

parametric chamfer alignment with vessel maps detected from FA. The overlapping area 

between CFI and FFA is also estimated. The green block shows the generated training data 

that includes FA and co-aligned vessel maps that remains in the overlapping area.
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Fig. 4: 
Sample results of generated training data for FA imagery in DRIsfahanCFnFA dataset. (a) 

and (c) show two FA images, and (b) and (d) are the corresponding vessel maps. Notice that 

the generated vessel maps are robust under different contrast conditions.For a larger version 

of this figure see Fig. 4H in the Supplementary Material.
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Fig. 5: 
Annotation and training pipelines. Top: conventional approach starts with manual annotation 

that generates ground truth for all images and then trains neural network with the ground 

truth data. Bottom: the proposed human-in-the-loop approach iterates between training 

neural network and manually correcting annotations generated for a batch of images using a 

trained network from the previous iteration.
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Fig. 6: 
Network architecture for the GAN network used with the proposed pipeline. The rectangular 

blocks are feature maps where heights indicate spatial dimensions. The last two blocks in the 

discriminator show the outputs from fully connected layers. The numbers below the 

rectangular block show the number of feature channels (or number of hidden units for fully 

connected layers).
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Fig. 7: 
Example of labeled ground truth vessel map from the RECOVERY-FA19 dataset. Enlarged 

views of cyan rectangles are shown on the right (top: original view; middle: contrast-

enhanced view; bottom: labeled ground truth). The corresponding UWFFA image is shown 

in Fig. 1.
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Fig. 8: 
(a) ROC, (b) PR, and (c) CAL curves for different methods on the RECOVERY-FA19 

dataset. The gray curves in (b) represent the isolines of Dice coefficients. The small circular 

dots on the curves in (a) and (b) identify the corresponding values of the threshold τ.
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Fig. 9: 
Qualitative comparison of results obtained with different algorithms for images from the 

RECOVERY-FA19 dataset. For each full image, two contrast-enhanced enlarged views of 

the selected regions (shown by cyan rectangles) are also included.
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Fig. 10: 
Sample results of vessel detection on the VAMPIRE dataset [15]. The first row, from left to 

right: UWFFA, vessel map evaluated on the original VAMPIRE ground truth, and the vessel 

map evaluated on the refined ground truth. Black, red, and blue indicates true positive, false 

positive, and false negative, respectively. The second to the fourth rows show the enlarged 

views of six rectangular regions marked on the wide-filed FA images and corresponding 

results, respectively. The “false positive” detections in the third row are actually true vessels 

that are not labeled in the VAMPIRE dataset. In the last row, we show the images after 

contrast enhancement for a better visualization.
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TABLE I:

Number of pixels changed in each iteration in the proposed human-in-the-loop process.

Iteration # images # pixels added # pixel removed

0* - 1.1M (100%) 0.0

1 1 292.4K (36.6 %) 6.9K (0.87 %)

2 2 79.1K (13.0 %) 13.0K (0.99 %)

3 1 42.1K (3.8 %) 7.8K (0.7 %)

4 1 32.7K (2.9%) 14.1K (1.3%)

5 1 21.4K (1.7%) 9.1K (0.7%)

6 1 20.4K (1.5%) 26.2K (1.9%)

7 1 19.3K (2.0%) 14.1K (1.4%)

*
The row labeled iteration 0 lists the estimated number of pixels that would need to be added to a vessel map, starting from scratch.
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TABLE II:

Quantitative results obtained from different methods on the RECOVERY-FA19 dataset. The best result is 

shown in bold. The individual C, A, and L values are listed parenthetically.

Methods AUC ROC AUC PR Max DC CAL (C, A, L)

SFAT [15] - - 0.606 0.335 (0.999, 0.606, 0.550)

MSMA [1] - - 0.634 0.362 (0.999, 0.622, 0.579)

VDGAN [3] 0.981 0.883 0.800 0.687 (0.995, 0.844, 0.817)

Prop. + UNet 0.987 0.923 0.842 0.753 (0.996, 0.887, 0.853)

Prop. + NestUNet 0.955 0.900 0.817 0.698 (0.995, 0.858, 0.816)

Prop. + GAN 0.987 0.930 0.854 0.760 (0.999, 0.889, 0.856)
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TABLE III:

Quantitative results obtained from the different methods on the de novo labeled dataset. The best result is 

shown in bold. The individual C, A, and L values are listed parenthetically.

Methods AUC ROC AUC PR Max DC CAL (C, A, L)

SFAT [15] - - 0.559 0.328 (0.999, 0.664, 0.495)

MSMA [1] - - 0.644 0.409 (0.999, 0.713, 0.574)

VDGAN [3] 0.954 0.849 0.747 0.710 (0.981, 0.871, 0.832)

Prop. + UNet 0.958 0.852 0.756 0.726 (0.986, 0.881, 0.836)

Prop. + NestUNet 0.955 0.855 0.761 0.687 (0.983, 0.846, 0.825)

Prop. + GAN 0.951 0.861 0.768 0.732 (0.995, 0.879, 0.837)
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TABLE IV:

Quantitative results obtained from different methods on the DRIsfahanCFnFA dataset. The best result is shown 

in bold. The individual C, A, and L values are listed parenthetically.

Methods AUC ROC AUC PR Max DC Max CAL (C, A, L)

SFAT [15] - - 0.607 0.432 (0.991, 0.655, 0.656)

MSMA [1] - - 0.691 0.504 (0.999, 0.720, 0.688)

VDGAN [3] 0.965 0.851 0.776 0.728 (0.996, 0.868, 0.840)

Prop. + UNet 0.972 0.883 0.802 0.743 (0.997, 0.878, 0.847)

Prop. + NestUNet 0.972 0.882 0.804 0.761 (0.997, 0.889, 0.858)

Prop. + GAN 0.974 0.887 0.808 0.783 (0.997, 0.899, 0.872)
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