Skip to main content
Natural Products and Bioprospecting logoLink to Natural Products and Bioprospecting
. 2020 Oct 14;10(6):377–410. doi: 10.1007/s13659-020-00269-7

Traditional Herbal Medicines Against CNS Disorders from Bangladesh

Md Josim Uddin 1,2, Christian Zidorn 1,
PMCID: PMC7648845  PMID: 33057963

Abstract

Abstract

The majority of the population in Bangladesh uses traditional plant-based medicines to manage various ailments, including central nervous system (CNS) disorders. This review presents ethnobotanical information and relevant scientific studies on plants used in traditional healthcare for the management of various CNS disorders in Bangladesh. The information on the medicinal plants of Bangladesh effective against CNS disorders published in scientific journals, books, and reports was compiled from different electronic databases using specific key words. The present article provides comprehensive information on a total of 224 medicinal plant species belonging to 81 families used for the treatment of CNS disorders by the various peoples of Bangladesh. In total, we reviewed more than 290 relevant papers. In this study, leaves were found as the most often used plant organ, followed by roots, fruits, whole plants, barks, seeds, stems, rhizomes, and flowers. The Fabaceae family contributes the highest number of used species, followed by Rubiaceae, Lamiaceae, Cucurbitaceae, Vitaceae, Euphorbiaceae, Malvaceae, and Zingiberaceae. The most frequently used species (in decreasing order) are Asparagus racemosus, Centella asiatica, Stephania japonica, Aegle marmelos, Coccinia grandis, Tabernaemontana divaricata, Bacopa monnieri, Abroma augusta, and Scoparia dulcis. This review may serve as a starting point for a rational search for neuroactive natural products against CNS disorders within the Flora of Bangladesh.

Graphic Abstract

graphic file with name 13659_2020_269_Figa_HTML.jpg

Keywords: CNS disorder, Medicinal plants, Traditional plants, Ethnopharmacology, Review

Introduction

The central nervous system (CNS), as an integral part of the nervous system, is associated with a number of important functions and mainly consists of the brain and the spinal cord. A CNS disorder refers to a disease that affects the structure or function of brain (encephalopathy) or spinal cord (myelopathy) causing neurological or psychiatric or neurodegenerative complications. Neuroprotection denotes strategies to defend the central nervous system (CNS) against a number of factors such as structural defects, infections, neuronal injury, autoimmune disorders, tumors, neurodegeneration, and others, which may lead to CNS disorders [1]. In recent years, these disorders are rising due to the increase of life expectancy, and thus place a tremendous burden on families and social economies. A new report from the World Health Organization (WHO) shows that neurological disorders affect up to one billion people worldwide, among them 6.8 million people die every year. In addition, the prevalence of CNS disorders is around two times higher in developing countries than in the developed world [2].

Herbal supplements have long played important roles to treat various neuronal and pathological disorders without or with limited side effects. During recent years, complementary and alternative medicine (CAM) has become more popular worldwide. Many plant species have emerged as herbal medicines, and their active components have been subjected to extensive scientific research around the world [35]. CAM or traditional medicines are considered safe and effective in sensitive and complicated diseases like CNS disorder, while having less side effects than synthetic compounds [6]. Newman and Cragg reported that more than two thirds of the active agents recently introduced into the market have some relationship to natural sources and only 30% of new chemical entities used as medicines are of purely synthetic origin [7]. The knowledge of ethnobotany therefore continues to provide a valuable starting point for many successful drug-screening projects [8].

Also in western societies, there has been an increasing interest in herbal medicines, which are often perceived as more ‘natural’ and ‘softer’ treatments compared to synthetic drugs [9]. Drug discovery based on traditional knowledge has been termed ‘reverse pharmacology’; in this approach, drug candidates are first identified based on large-scale usage in the population before initiating clinical trials. This approach can cut the time span, needed for drug discovery, from on average twelve years (classical approach) to five years or even less (reverse pharmacology); the latter has the additional advantage of far lower development costs [10].

Traditional knowledge of medicinal plants as a complementary and alternative therapy has additionally the great significance for conserving cultural traditions and identities. Moreover, community healthcare is fostered and interesting leads for future drug development projects can be found. From this perspective, ethnopharmacological data of medicinal plants on CNS disorders will ease the identification of important species utilized in traditional medicine. In this review, we summarize ethnopharmacological knowledge of all currently known popular CNS active herbal remedies in Bangladesh. Additionally, we provided more details on six selected species: Bacopa monnieri, Centella asiatica, Curcuma longa, Cyperus rotundus, Morinda citrifolia, and Withania somnifera (author citations for these and all other scientific species names mentioned in this text have been consistently omitted from the main body of the text, but are provided in Table 1). This review on species from Bangladesh is intended to stimulate the interest in a deeper evaluation of the mentioned species as potential sources for structurally and functionally novel CNS active drug leads or hits.

Table 1.

Plant species along with their experimental records used for care of CNS disorders in Bangladesh

Families Plant species Local name Life-form Used part Types of CNS disorder Experimental evidence on CNS disorder References
Acanthaceae Andrographis paniculata (Burm.f.) Wall. Kalomegh Herb Leaves Vertigo Increase cognitive functions [86, 87]
Justicia gendarussa Burm.f. Nilnishinda Undershrub Leaves Paralysis NRE [88]
Staurogyne argentea Wall. Ranga Jari (tribal) Herb Leaves Mental disorder NRE [89]
Acoraceae Acorus calamus L. Bach Herb Rhizome, leaves Paralysis, epilepsy, heat stroke (Kh) Increase cognitive function [9092]
Amaranthaceae Achyranthes aspera L. Apang Herb Whole plant Epilepsy, paralysis Attenuate epilepsy, Anticonvulsant [9396]
Aerva lanata (L.) Juss. Chaya Herb Whole plant Headache NRE [97]
Amaranthus viridis L. Notey shak Herb Leaves Epilepsy NRE [98]
Cyathula prostrata Blume Uphutlengra Forb/herb Leaves, root Epilepsy, headache (Ma) Antinociceptive [89, 99, 100]
Anacardiaceae Magnifera sylvatica Roxb. Jongli aam Tree Young shoot Headache NRE [101]
Semecarpus anacardium L.f. Bhela Tree Fruit Nervous debility Neuroprotective [102, 103]
Apiaceae Centella asiatica (L.) Urb. Thankuni Herb Leaves Memory loss, mental disorder, insanity Alzheimer's disease, Parkinson’s disease [14, 47, 89, 104106]
Foeniculum vulgare Mill Mouri Herb Fruit, seed Nervous debility, headache Enhances cognitive function and memory [107109]
Apocynaceae Alstonia scholaris (L.) R.Br. Satim Tree Bark Nervous debility (Or) anti-dopaminergic (schizophrenia) [88, 110, 111]
Calotropis gigantea (L.) W.T.Aiton Bara akand Shrub Shoot Paralysis (Or) Alzheimer's disease and Parkinson's disease [91, 111, 112]
Carissa carandas L. Karamcha Tree Fruit Insanity, headache Anticonvulsant [113115]
Hemidesmus indicus (L.) R.Br. Anantamul Shrub Leaves, root Mental disorder, nervous debility, heat stroke Anticholinesterase activity [113, 114, 116]
Marsdenia tenacissima Moon Chitti Herb Leaves Paralysis NRE [89]
Rauvolfia serpentina Benth. Sarpagandha Undershrub Leaves, root Epilepsy, insanity, vertigo, schizophrenia Acetylcholinesterase inhibition [13, 89, 117]
Tabernaemontana divaricata (L.) R.Br. Tagar Shrub Leaves, root, flower Paralysis, epilepsy Alzheimers’s disease [118122]

Thevetia peruviana

(Pers.) K.Schum.

Holde,

Korobi

Shrub Bark, seed Schizophrenia Anti-acetylcholinesterase [4, 123]
Araceae

Alocasia macrorrhizos (L.)

G.Don

Mankachu forb/herb Petiole Mental disorder NRE [124]
Colocasia esculenta (L.) Schott Mukhikachu Forb/herb Whole plant Nervous system disorder Nerve tonic [14, 125]
Pothos scandens L. Sunat Epiphyte Leaves Migraine, vertigo NRE [101]
Typhonium trilobatum (L.) Schott Ghetkaachu Herb Whole plant Nervous debility, mental disorder NRE [89, 126]
Xanthosoma violaceum Schott Shada kochu Forb/herb Tuber Alzheimer’s disease (Ga) Antinociceptive [127, 128]
Araliaceae Schefflera roxburghii Gamble Den anno Tree Leaves Insomnia NRE [129]
Trevesia palmata Vis. Argoza Shrub Leaves, fruit, root Paralysis NRE [129]
Arecaceae Areca catechu L. Shupari Palm Fruit Heat stroke (Sa) Alzheimer's disease, Antidepressant [130132]
Borassus flabellifer L. Tal Palm Fruit Epilepsy NRE [88]
Phoenix sylvestris (L.) Roxb. Khejur Palm Root, Fruit Nervous debility CNS depressant [14, 94, 133]
Asclepiadaceae Hoya parasitica Wall. Cherapata Epiphyte Leaves Paralysis NRE [101]
Asparagaceae Asparagus racemosus Willd. Sotamuli Undershrub Root Mental disorder (Be), nervous debility, memory loss, epilepsy Improves cognition, enhances memory, amnesia [14, 88, 91, 134, 135]
Dracaena spicata Roxb. Dracaena Shrub Leaves Paralysis NRE [114]
Asteraceae Cyanthillium patulum H.Rob. Kukurshunga Herb Leaves, root, flower Vertigo NRE [101, 136]
Eclipta prostrata L. Kesuti Herb Leaves, root Brain tonic, vertigo Nootropic and anxiolytic activity [101, 137]
Enhydra fluctuans Lour. Helencha Herb Whole plant Nervous system disorder CNS depressant [126, 138]
Synedrella nodiflora Gaertn. Relanodi Herb Leaves, stem Vertigo Antipsychotic properties [101, 139]
Athyriaceae Diplazium esculentum (Retz.) Sw Dhekishak Fern Leaves Headache, epilepsy, paralysis Cholinesterase and NADH oxidase inhibition [106, 118, 140]
Begoniaceae Begonia silhetensis (A.DC.) C.B.Clarke Goni kanti Herb Leaves Headache NRE [89]
Bignoniaceae Campsis radicans (L.) Seem Egro (Ma) Vine Leaves Headache (Ma) NRE [99]
Crescentia cujete L. Jummu makal Tree Bark, fruit Brain disorder (Mental disorder) CNS depressant [141, 142]
Oroxylum indicum (L.) Benth. Khona Tree Stem Mental disorder (Be) Parkinson’s disease, neurogenin 2 promoter activator [91, 143, 144]
Bixaceae Bixa orellana L. Latkan Tree Seed Epilepsy Reduce oxidative stress in brain [91, 145]
Boraginaceae Heliotropium indicum L. Hatishura Forb/herb Leaves Heat stroke, mental disorder NRE [113, 146]
Tournefortia roxburghii C.B.Clarke Shamshog Climber Leaves Mental disorder, paralysis NRE [89]
Brassicaceae Brassica napus L. Sarisha Herb seed Mental disorder (Be) NRE [91]
Burseraceae Canarium euphyllum Kurz Sheti dhup Tree Bark Headache, insomnia NRE [146]
Cactaceae Cereus grandiflorus (L.) Mill. Kuth-raaz Herb Whole plant Nervous system disorder NRE [147]
Opuntia dillenii Haw. Phanimansa Shrub Leaves Paralysis (Tr), insanity, headache Neurodegenerative disease [141, 148, 149]
Cannabaceae Cannabis sativa L. Bhang, Siddhi Herb Leaves Schizophrenia Neurodegenerative diseases, Alzheimer’s disease [4, 150, 151]
Trema orientalis (L.) Blume Jibon Tree Whole plant Nervous debility Anticholinesterase activity [108, 152]
Capparaceae Crateva religiosa G. Forst Barun Tree Bark, leaves Mental disorder (Be) Glutamatergic neurotransmission [91, 153]
Cleomaceae Cleome diffusa Roxb. Sultae Forb/herb Leaves NRE [141]
Combretaceae Terminalia arjuna (Roxb.) Wight & Arn. Arjun Tree Bark Nervous debility, paralysis Protects neurons from cerebral ischemia [88, 154]
Terminalia bellirica (Gaertn.) Roxb. Bahera Tree Fruit Paralysis, headache Tranquilizer [14, 114, 155]
Terminalia chebula Retz Haritaki Tree Fruit Brain disorder (mental disorder) Protects ischemic neuronal damage [88, 107, 156]
Commelinaceae Amischotolype mollissima Hassk. Molisima Herb Root Epilepsy NRE [101]
Compositae Ageratum conyzoides L. Dochunti Herb Whole plant Headache, Paralysis (Kh) Vertigo Antinociceptive [89, 99, 118, 157]
Blumea balsamifera DC. Kakronda Shrub Leaves Headache, insomnia Inhibition of NO (Alzheimer's disease) [158, 159]
Emilia sonchifolia DC. Sadimodi Herb Leaves Paralysis (Ch) Antinociceptive [160, 161]
Eupatorium ayapana Vent. Ayapan Herb Leaves Epilepsy Sedative, anxiolytic, and antidepressive [89, 162]
Gynura nepalensis DC. Dhup baisak (Ch) Herb Leaves Paralysis (Ch) NRE [160]
Convolvulacea Convolvulus pluricaulis Choisy Shonkapuspo Herb Leaves, flower Neurosis, epilepsy Neuroprotective [86, 163]
Ipomoea aquatica Forssk. Kalmi Shak Vine Whole plant Nervous system disorder, headache CNS depressant, memory and Alzheimer’s disease [126, 164166]
Ipomoea mauritiana Jack Bhui kumra Vine Leaves, root Headache, insomnia NRE [146]
Costaceae Cheilocostus speciosus C.D.Specht (Costus speciosus Sm.) Banduki Forb/herb Whole plant Mental disorder (Be), paralysis Neuroinflammatory diseases [89, 91, 167]
Crassulaceae Bryophyllum pinnatum Kurz Pathorkuchi Herb Leaves Epilepsy, headache (Ma), vertigo Neurosedative [99, 168]
Kalanchoe pinnata (Lam.) Pers. Patharkuchi Subshrub Leaves Epilepsy, headache CNS depressant [14, 141, 147, 169]
Kalanchoe spathulata DC. Himsagor Subshrub Leaves Headache NRE [141]
Cucurbitaceae Benincasa hispida (Thunb.) Cogn. Chalkumra Vine Seed, fruit Epilepsy, nervous system disorder Management of depressive illness [170]
Citrullus lanatus (Thunb.) Mansf. Tarmuj Climber Fruit, seed Brain tonic (Nervous debility) Neurodegenerative diseases [171, 172]
Coccinia grandis (L.) Voigt Telakucha Climber Leaves Mental disorder, Paralysis, Schizophrenia, heat stroke, headache Chemoprotective in brain [4, 14, 98, 108, 173, 174]
Cucumis callosus Cogn. Bangi Vine Fruit, seed Memory loss, vertigo NRE [171]
Lagenaria vulgaris Ser. Lau, Kadu Vine Fruit Heat stroke, Headache NRE [113, 171]
Solena amplexicaulis (Lam.) Gandhi Kundri Shrub Leaves Epilepsy, mental disorder NRE [89]
Trichosanthes bracteata (Lam.) Voigt Makalphal Climber Fruit, seed Headache NRE [97]
Trichosanthes cucumerina L. Chichinga Climber Fruit, seed Headache NRE [129]
Cyperaceae Cyperus rotundus L. Mutha, Takudare (Sa) Graminoid Root Paralysis, (Sa) Modulate memory impairment [175, 176]
Dilleniaceae Dillenia indica L. Chalta Tree Fruit Epilepsy, headache Inhibit diabetic neuropathic pain [114, 177, 178]
Dioscoreaceae Dioscorea bulbifera L. Banalu Climber Aerial part, tuber Headache NRE [101]
Dioscorea pentaphylla L. Thubri Vine Leaves Paralysis NRE [114]
Droseraceae Drosera indica L. Mukhjali Herb Whole plant Headache NRE [179]
Euphorbiaceae Acalypha indica L. Muktajhuri Herb Whole plant Insanity NRE [107]
Croton caudatus Geiseler Sabarjala Shrub Root, leaves Paralysis (Ch) NRE [160]
Euphorbia neriifolia L. Monshaseez Tree Leaves Schizophrenia Anti-anxiety, anti-psychotic, anti-convulsant [4, 180]
Euphorbia tirucalli L. Lanka Sij Tree Stem Paralysis (Ba) CNS depressant [181, 182]
Macaranga denticulate Müll.Arg. Dati bura Tree Leaves, flower Epilepsy NRE [101]
Macaranga peltata Müll.Arg. Pelta bura Tree Bark, root Paralysis NRE [101]
Pedilanthus tithymaloides (L.) Poit. Barakut (Ch) Shrub whole plant Headache (Ch) Sedative [160, 183]
Fabaceae Cassia occidentalis L. Kalkasunde Undershrub Leaves, fruit Paralysis NRE [14]
Desmodium gangeticum DC. Alpani Shrub Leaves, root Mental disorder CNS depressant [101]
Desmodium triquetrum DC. Komorsina Undershrub Root Epilepsy, paralysis (Ch) NRE [89, 129, 184]
Mucuna pruriens DC. Alkushi Climber Root, seed Nervine tonic Neuroprotection for Parkinson's disease [101, 185]
Saraca indica L. Ashok Tree Leaves, bark Nervous debility Antidepressant [186, 187]
Lamiaceae Callicarpa arborea Roxb. Bormala Tree Leaves, bark, root, stem Epilepsy NRE [101]
Clerodendrum indicum Kuntze Bamunhatti Shrub Leaves, root Epilepsy NRE [99]
Clerodendrum viscosum Vent. Bhat Shrub Leaves Paralysis CNS depressant [89, 188]
Leucas aspera Link Donkolos Herb Whole plant Headache (Kh, Ma) NRE [99, 118]
Leucas zeylanica (L.) R.Br. Kusha Herb Leaves, flower Epilepsy, headache (Kh), insomnia (Kh) NRE [99]
Ocimum americanum L. Radha tulshi Undershrub Leaves, seed Schizophrenia Anti-cholinesterase activity [4, 189]
Ocimum gratissimum L. Ram Tulsi Subshrub Whole plant Paralysis, mental disorder (Be), headache Neurodegenerative disorder [91, 119, 160, 190]
Premna corymbosa Merr. Ganiari Shrub Root Neurological problem Antinociceptive [179, 191]
Vitex negundo L. Nishinda Small tree Leaves Schizophrenia, headache Reduce cerebral oxidative stress [4, 192194]
Vitex peduncularis Wall. Horina Tree Leaves, bark, root Epilepsy NRE [101]
Lauraceae Actinodaphne obovate Blume Kula pata Tree Leaves, root Epilepsy, mental disorder NRE [101]
Litsea polyantha Juss. Uruijja, Menda Tree Bark Schizophrenia CNS depressant, anti-convulsant [4, 195, 196]
Lecythidaceae Barringtonia acutangula (L.) Gaertn. Hijal Tree Seed, root bark Headache CNS depressant activities [86, 170]
Leguminosae Abrus precatorius L. Kuch Climber Root, seed Headache, Paralysis Neuroinflammatory disorder [97, 179, 197]
Acacia farnesiana (L.) Willd. Belatibabla Tree Flower, leaves, root Vertigo, headache (Ch) Antinociceptive [99, 129, 198]
Adenanthera pavonina L. Rokto chondon Tree Wood Headache (Sa) NRE [199]
Bauhinia acuminata L. Kanchan Tree Root, flower Mental disorder, epilepsy NRE [89]
Caesalpinia crista L. Baghinjanum (Sa) Climber Fruit, seed Headache (Sa) Alzheimer's disease [89, 200]
Cassia fistula L. Sonalu Tree Leaves, fruit, root Epilepsy, nervous debility Antinociceptive [14, 113, 201]
Clitoria ternatea L. Aparajita Herb Flower Memory loss Enhances cognitive function [202204]
Codariocalyx motorius H.Ohashi, (Desmodium motorium Merr.) Gorachand Shrub Leaves Mental disorder (Be) NRE [91]
Crotalaria pallida Aiton Jhun Jhuni Undershrub Whole plant Paralysis Central inflammatory diseases [2, 205]
Erythrina variegate L. Mandar Tree Leaves, seed Epilepsy NRE [86]
Mimosa diplotricha C.Wright Bra lojjaboti Shrub Seed, root Mental disorder (Be) NRE [91]
Mimosa pudica L. Lajjaboti Undershrub Whole plant Insomnia Memory enhance, 5-HT neuronal activity [113, 206, 207]
Senna tora Roxb. Chakunda Forb/herb Leaves Mental disorder, insanity Alzheimer’s disease, amyloid-beta induced diseases [89, 208, 209]
Sesbania cannabina (Retz.) Poir. Lal chainche Shrub Root, bark, leaves Epilepsy NRE [94]
Sesbania grandiflora Poir. Bock phool Tree Leaves Epilepsy (Sa) Neuroprotective [199, 210]
Uraria crinita (L.) DC. Diangleja Shrub Whole plant Paralysis (Ch) NRE [184]
Uraria prunellaefolia Graham Bilai-langur Undershrub Root Epilepsy (Ch) NRE [129]
Lygodiaceae Lygodium flexuosum (L.) Sw. Shona jhuri Climber Leaves, stem, root Headache, mental disorder, epilepsy NRE [101, 141]
Lygodium altum Alderw. Dheki Shak Fern Whole plant Epilepsy, mental disorder, headache (Kh, Tr) NRE [99]
Lythraceae Lawsonia inermis L. Mehedi Shrub Leaves Mental disorder (Be), epilepsy Enhances memory [91, 93, 211]
Malvaceae Abroma augusta (L.) L.f. Ulothkombal Shrub Fruit, flower Schizophrenia, Heat stroke, mental disorder (Ta) CNS depressant [4, 113, 212, 213]
Grewia laevigata Vahl Monsimais (Ch) Herb Leaves, root, bark Paralysis (Ch) NRE [160]
Grewia serrulata DC. Panicherra Tree Leaves, root Paralysis NRE [101]
Pterospermum acerifolium (L.) Willd. Kanokchapa Tree Flower Brain disorder (Mental disorder) (Sa) NRE [176]
Sida acuta Burm.f. Ban Methi Shrub Leaves Nervous system disorder CNS Depressant [13, 214]
Sida cordata (Burm.f.) Borss.Waalk. Junka Forb/herb Leaves Nervous system disorder, heat stroke NRE [215]
Sida cordifolia L. Berela Subshrub Leaves, bark of roots Nervous debility Parkinson’s disease [173, 216]
Marantaceae Maranta arundinacea L. Ararut Forb/herb Rhizome Epilepsy NRE [93]
Marsileaceae Marsilea minuta L. Shusni Shak Forb/herb Leaves, whole plant Epilepsy, insomnia Improve memory and learning [106, 217, 218]
Melastomataceae Oxyspora cernua Hook. f. & Thomson Chokha Herb Leaves, root Mental disorder NRE [101]
Menispermaceae Stephania japonica (Thunb.) Miers Akanadi Climber Leaves Paralysis (Ch), vertigo, mental disorder Antinociceptive [13, 97, 160, 219, 220]
Tinospora crispa (L.) Hook.f. & Thomson Gulancha Climber Leaves, stem Paralysis Cerebral malaria [118, 221]
Moraceae Ficus auriculata Lour. Kani-bot Tree Root Epilepsy NRE [101]
Ficus hispida L.f. Dumur Tree Leaves, flower, seed, root, bark Epilepsy, paralysis CNS stimulation [101, 222]
Ficus benghalensis L. Bot Tree Aerial root, bark Epilepsy Antinociceptive [93, 223]
Ficus hederacea Roxb. Dumur Shrub Fruit, leaves Epilepsy, paralysis NRE [99]
Ficus hirta Vahl Pakur Shrub Leaves, root Schizophrenia NRE [4]
Ficus religiosa L. Pipal Tree Leaves, bark Insanity Memory deficit, Anti-Parkinson, [113, 224, 225]
Moringaceae Moringa oleifera Lam. Sajina Shrub Leaves, fruit Epilepsy (Sa), paralysis CNS depressant, neuroprotective, dementia [97, 106, 131, 226, 227]
Musaceae Musa sapientum L. Acchi-mio-bong (Ra) Forb/herb Leaves, stem Memory loss Acetylcholinesterase inhibition [106, 228]
Nelumbonaceae Nelumbo nucifera Gaertn. Rakta padma Forb/herb Whole plant Nervous debility Memory impairment and brain damage [106, 229]
Nyctaginaceae Boerhavia repens L. Punarnava Herb Leaves, whole plant, root Epilepsy NRE [91, 97]
Oleaceae Jasminum sambac (L.) Aiton Bely Phul Vine Root Insanity Antidepressive and modulate mood in humans [119, 230, 231]
Ophioglossaceae Helminthostachys zeylanica (L.) Hook. Shada Dhekia Herb Rhizome headache (Kh) Reduce inflammation of brain cells [99, 232]
Orchidaceae Cymbidium aloifolium (L.) Sw. Tosabak, Suri mach (Ta) Herb Whole plant Paralysis Antinociceptive [233, 234]
Rhynchostylis retusa (L.) Blume Tosabak Herb Whole plant Epilepsy, vertigo NRE [234]
Vanda tessellata Hook. (Syn:Vanda roxburghii R.Br.) Rasna Epiphytic herb Aerial roots Nervous system disorder Anticholinesterase activity [234236]
Pandanaceae Pandanus foetidus Roxb. Keya kanta Shrub Root Nervous debility CNS depressant [14, 237]
Parmeliaceae Usnea longissima Ach. Shailaj gach Tree Root, leaves Nervous debility NRE [238]
Passifloraceae Adenia cardiophylla Engl. Pindopata Tree Bark, root Headache, vertigo NRE [101]
Passiflora foetida L. Jhumkoludhi (Ch) Climber Leaves Headache (Ch) Epilepsy [84, 252]
Phyllanthaceae Phyllanthus emblica L. Amloki Tree Fruit Epilepsy (Tr), paralysis, headache Alzheimer's disease, memory enhance [88, 149, 239, 240]
Phyllanthus reticulatus Poir. Chitki, Panjuli, Chitkidari (Sa) Shrub Root, leaves Epilepsy, heat stroke Alzheimer's disease, Cognitive dysfunction [113, 241, 242]
Piperaceae Piper betel Blanco Pan Climber Whole plant Mental disorder (Be) Cognitive dysfunction [91, 165, 243]
Piper cubeba L.f. Kabab chini Shrub Fruit Headache, mental disorder Acetylcholinesterase inhibitor [91, 107, 244]
Piper longum L. Pepul Vine Leaves, root Paralysis Neuroprotective, Parkinson's disease [91, 245, 246]
Piper peepuloides Roxb. Pipil Shrub Leaves Nervous debility NRE [98]
Piper retrofractum Vahl Choi Climber Leaves Schizophrenia Neurotrophic Activity, Alzheimer’s disease [4, 247]
Plantaginaceae Bacopa monniera (L.) Wettst. Brammishak Herb Whole plant Brain disorder (mental disorder), (Be), mental peace, insomnia, epilepsy Memory enhance, Alzheimer's disease, neuroprotective [91, 93, 219, 248, 249]
Scoparia dulcis L. Misridana Subshrub Root, fruit Nerve system disorder Increase memory [14, 88, 177, 250]
Plumbaginaceae Plumbago auriculata Lam. Nil Chita Shrub Root, bark Epilepsy, headache (Ga) NRE [127]
Plumbago rosea L. Lal Chita Shrub Root Paralysis, memory loss NRE [88, 104]
Poaceae Cymbopogon citratus Stapf Dhan shabang Herb Leaves Headache Sedative, anxiolytic, hypnotic, neuroprotective [251253]
Polygonaceae Persicaria hydropiper (L.) Delarbre Bishkatal, Jiyoto (Sa) Herb Whole plant Epilepsy Acetylcholinesterase inhibitor [241, 254]
Drynaria quercifolia (L.) J.Sm. Pankhiraj Fern Rhizome Epilepsy (Ta), vertigo Antinociceptive [89, 212, 255]
Primulaceae Maesa indica Wall. Sesu, Sirkhi Shrub Whole plant Paralysis NRE [99]
Ranunculaceae Nigella sativa L. Kalojira Forb/herb Fruit Epilepsy Alzheimer’s, Parkinson’s, schizophrenia [93, 256, 257]
Rhamnaceae Gouania tiliifolia Lam. Moshkantur Shrub Leaves Headache NRE [141]
Ziziphus mauritiana Lam. (Ziziphus jujube Mill.) Boroi Tree Leaves Headache Epilepsy, anxiolytic and hypnotic-sedative [98, 99, 258260]
Rubiaceae Borreria articularis F.N.Williams Todargil shak Herb Whole plant Headache NRE [179]
Ceriscoides campanulata Roxb. Behlom Tree Leaves, fruit Brain tonic (Nervous debility) NRE [261]
Hedyotis scandens Roxb. Bishlata Climber Whole plant Paralysis, vertigo NRE [99]
Ixora cuneifolia Roxb. Beophul Shrub Leaves, root Epilepsy NRE [99]
Ixora nigricans R.Br. ex Wall. Kalashona Small tree Leaves Paralysis (Ch) NRE [129]
Maesa ramentacea A.DC. Moricha Shrub Leaves, root Paralysis NRE [101]
Morinda angustifolia Roxb. Rang gach Tree Root, leaves Epilepsy NRE [252]
Morinda citrifolia L. Holdi Kachu, Noni Tree Fruit, leaves Schizophrenia Stress-induced neurological disorder, prevent ischemic neuronal damage [4, 66, 262]
Mussaenda roxburghii Hook.f. Ranirtak Shrub Root Paralysis, epilepsy, headache (Ma) NRE [89, 252]
Ophiorrhiza mungos L. Gandhanakuli Herb Leaves, root Mental disorder, paralysis NRE [89, 129]
Paederia foetida L. Gandal Vine Leaves Paralysis (Sa) NRE [199]
Randia dumetorum (Retz.) Poir. Monkata Shrub Bark Schizophrenia NRE [4]
Rutaceae Aegle marmelos (L.) Correa Bel Tree Leaves, fruit Memory loss, schizophrenia, paralysis Anticholinesterase activity [4, 14, 88, 263]
Citrus grandis Osbeck Jambura Tree Fruit Epilepsy Memory enhance [113, 264]
Clausena heptaphylla Wight & Arn. Alkatra (Ch), Pan mouri Shrub Fruit Headache (Ch), mental disorder, epilepsy NRE [101, 129]
Santalaceae Santalum album L. Sheto chandan Tree Stem Mental disorder, epilepsy, headache Sedative [93, 107, 108, 265]
Smilacaceae Smilax zeylanica L. Kumarialata Climber Leaves, stem Memory loss NRE [146]
Solanaceae Datura metel L. Dhutura Shrub Leaves, flower, seed Insanity, schizophrenia, mental disorder (Be) Acute psychoactive [4, 14, 91, 104, 266]
Solanum indicum L. Pokhongkhesi (Ma) Herb Fruit Headache (Ma) Protect blood–brain barrier breakdown [252, 267]
Solanum torvum Sw. Tit Begun Shrub Fruit, leaves, root Paralysis, insomnia Anticonvulsant, antidepressant, anxiolytic [113, 268, 269]
Withania somnifera (L.) Dunal Aswagandha Undershrub Whole plant Mental disorder (Be) Alzheimer’s disease, Parkinson’s disease [79, 91, 270]
Stemonaceae Stemona tuberosa Lour. Lalguraniya alu Herb Tuber Mental disorder NRE [179]
Taccaceae Tacca integrifolia Ker. Gawl Bara hikand Herb Tuber Epilepsy, paralysis NRE [101]
Thymeliaceae Aquilaria agallocha Roxb. Agor Tree Wood Nervous debility, headache NRE [114, 177]
Trapaceae Trapa natans var. bispinosa (Roxb.) Makino Panifol Herb Flower Nervous debility NRE [101]
Urticaceae Boehmeria glomerulifera Miq. Borthurthuri Shrub Leaves Epilepsy NRE [101]
Boehmeria kurzii Hook.f. Barokurzi Shrub Leaves, stem Epilepsy NRE [101]
Elatostema papillosum Wedd. Silajhara Herb Leaves Paralysis Anticholinesterase activity [101, 271]
Pouzolzia zeylanica (L.) Benn. Aguni-bolla gach Herb Leaves, root Paralysis (Tr) NRE [149]
Sarcochlamys pulcherrima Gaudich Korobi Shrub Leaves Paralysis NRE [101]
Verbenaceae Lantana camara L. Chotra, Tree Leaves Headache (Ma) Anxiolytic [99, 272]
Phyla nodiflora (L.) Greene Saitta okra Herb Whole plant Nervous system disorder NRE [273]
Vitaceae Cissus adnata Roxb. Bhatia-lota, Bodlar (Sa) Climber Stem Paralysis (Sa), mental disorder, epilepsy, paralysis Antinociceptive [176, 274]
Cissus assamica Craib Amasha lata Climber Leaves Mental disorder, paralysis NRE [101]
Cissus carnopa Lam. Gai goblae Climber Leaves, stem Headache NRE [141]
Cissus javana DC. Rangila lata Climber Leaves, stem, root Mental disorder NRE [101]
Cissus repens Lam. Marmaria Pata Climber Leaves Epilepsy, vertigo Antinociceptive [89, 275]
Leea indica Merr. Bonfotka Shrub Leaves, root Epilepsy Sedative and anxiolytic [101, 276]
Leea macrophylla Roxb. Hastikarma Shrub Leaves Brain and nervous debility NRE [113]
Tetrastigma bracteolatum (Wall.) Planch Khurangul ludi Leaves Headache (Ch) NRE [129]
Xanthorrhoeaceae Aloe vera L. Ghritakumari Herb Leaves Stroke, Paralysis Protect neurotoxicity [113, 258, 277]
Zingiberaceae Alpinia conchigera Griff Khetranga Herb Rhizome Headache, vertigo (Ma) Antinociceptive [99, 278]

Alpinia nigra

(Gaertn.) B.L.Burtt

Jangli ada Herb Stem, rhizome Vertigo (Ta) CNS depressant [212, 279]
Amomum aromaticum Roxb. Elach Herb Fruit Mental and nervous system disorders, epilepsy NRE [107]
Curcuma aromatica Salisb. Jangli Halud Herb Leaves, rhizome Vertigo (Ta) Anti- depressant [212, 280]
Curcuma longa L. Halud Forb/herb Rhizome Memory loss Reduce memory loss, Parkinson’s disease [14, 88, 281, 282]
Kaempferia galanga L. Chandumula Herb Rhizome Headache, paralysis (Ch) CNS depressant [160, 283]
Zingiber zerumbet (L.) Sm. Bhul-changa Herb Rhizome Paralysis (Ch) NRE [184]

NRE: no recorded experiment on CNS disorder; Tribal community in parentheses

Ba Bauri; Be Beideye; Ch Chakma; Ga Garo; Kh Khumi; Ma Marma; Or Oraon; Ra Rakhain; Sa Santal; Ta Tanchongya; Tr Tripura

The CNS is a complex and sophisticated system, and today, CNS disorders are categorized and treated considering critical single or multiple targets. The traditional healers, particularly herbal medicine practitioners, focus on a typical category of disease commensurate with their knowledge and experience rather than employing a specific single biomarker targeted therapy. However, this review highlights ethnobotanical together with the respective experimental records focused on broadly categorized CNS disorders. The reviewed plant species, as a group, have been recommended against almost all classical types of CNS disorders.

Materials and Methods

Search Strategy

A comprehensive literature study published in journals, books, and reports was performed to get a systematic overview about the medicinal plants used against CNS disorders in Bangladesh. Various electronic databases were searched, including Web of Science, SciFinder, PubMed, Science Direct, Scopus, Springer, Taylor & Francis online, Wiley online library, and Google Scholar. The following keywords were employed in combination with Bangladesh: brain, memory, CNS, neurological disorder, neurodegenerative disease, psychological disorder, medicinal plants, traditional plants, survey of medicinal plants, ethnobotanical survey, ethnomedicinal survey, and survey of plants acting on CNS.

Study Selection and Data Extraction

All publications dealing with plant species effective against CNS disorder have been identified from all of the possible sources published until the end of July 2020. The search was limited to literature published in English. The name of the plant species responsible in the treatment of CNS disorders has only been extracted among all other uses and species. For the pharmacological evidence, articles presenting first-hand research information including clinical, pre-clinical, ex-vivo, and in-vitro studies were also part of the inclusion criteria.

History and Present Status of Traditional Bangladeshi Medicine (TBM)

Bangladesh, a tropical South Asian country, harbors a huge range of biodiversity including numerous medicinal plant species due to its diverse landscape and pronounced seasonal diversity [11]. Large parts of Bangladesh are covered by tropical forests featuring heterogeneous ecologic conditions such as fertile alluvial lands, warm and humid climates. Bangladesh is home to a rich plant diversity with more than 5300 species of higher plants [12]. Around 80% of the population of Bangladesh use herbal medicines for their primary healthcare where plants used in traditional ethnomedicine constitute a major component [13]. Bangladesh is also home to 35 indigenous communities living in various, mostly hilly, remote areas of Bangladesh; these communities contribute about 2% to the total population of the country. Each of these communities has a diverse cultural background and practices their own traditional ethnomedicine for primary healthcare [14].

Distribution of Plant Species and Their Taxonomy

A total of 224 plant species from 182 genera and from 81 different families were reported to be used against CNS disorders. All recorded plant species are presented in Table 1, detailing their family, local name(s), life-form, plant part(s) used, traditional uses, and the available pharmacological data supporting their traditional use. The life forms of the documented species were (in decreasing order) herbs (24.5%), trees (22.7%), shrubs (20.0%), climbers (9.8%), forbs/herbs (6.6%), vines (4.9%), undershrubs (4.4%), subshrubs (2.2%), palms (1.7%), ferns (1.3%), and epiphytes (1.3%) (Fig. 1). Analogous studies from other areas in tropical Asia yielded similar results regarding the life form of the medicinally used species [1517].

Fig. 1.

Fig. 1

Growth habits of the covered species

The most often utilized plant parts were leaves (51.3%), followed by roots (26.3%), fruits (15.6%), whole plants (14.2%), stems (12.5%), barks (9.3%), seeds, flowers, and rhizomes; while other parts were only rarely utilized (Fig. 2). Leaves are very often used in herbal medicine, because they often contain high amounts of active compounds and are easy to collect and prepare, and consequently, a larger number of plant natural product studies are available for leaves compared to studies concerning other plant organs. In our survey, roots were the second most frequently used plant organs, possibly due to their high concentration of bioactive compounds [18]. Regarding botanical systematics, the families with the highest number of species used against CNS disorders were the Fabaceae (syn.: Leguminosae; seventeen), Rubiaceae (twelve), Lamiaceae (ten), Apocynaceae, Cucurbitaceae and Vitaceae (each eight species), Euphorbiaceae, Malvaceae, and Zingiberaceae (each seven species), Araceae, Compositae, Fabaceae, Piperaceae, and Urticaceae (each five species), Amaranthaceae, Asteraceae, Moraceae, and Solanaceae (each four species). The remainder of the medicinally used plant families contributed only one to three species (Table 1).

Fig. 2.

Fig. 2

List of the most frequently used plant parts along with the number of corresponding species used in ethnomedicinal preparations

According to the fundamental book on the Bangladeshi Flora [12], the largest five families in Bangladesh are the Poaceae, Fabaceae, Orchidaceae, Rubiaceae, and Asteraceae, respectively. The dominance of Fabaceae and Rubiaceae species in treating CNS disorder might amongst other factors, be explained by the presence of bioactive alkaloids, flavonoids, and terpenoids in many members of these families [19].

CNS-Active Natural Products

Numerous plant natural products have been reported to have beneficial effects on the human CNS. Table 2 presents some of these natural products and their mechanism of actions. Two general postulates try to explain why natural products elicit effects on the human CNS: firstly, due to the connection of the numerous molecular signaling pathways that are conserved between the taxa and the systematic actions in natural product synthesis within plants [20]. The second hypothesis is that plant natural products exhibit similar effects on the nervous systems of humans and the most prevalent natural herbivores, via the same mechanisms [21].

Table 2.

Bioactive compounds against CNS disorders from native species of Bangladesh

Species name Active compounds Mechanism of action Ailments References
Acorus calamus L. α-Asarone, β-asarone Acetylcholiesterase inhibitor Alzheimer’s disease, memory loss [284]
Bacopa monniera (L.) Wettst. Bacoside A3, bacopaside II, bacopasaponin C, bacopaside X Inhibits β-amyloid (Aβ) and fibrilation Alzheimer’s disease, memory loss [41]
Blumea balsamifera DC. Blumpenes A, B, C, and D Inhibition of NO Alzheimer’s disease [158]
Cannabis sativa L. Δ9-Tetrahydrocannabinol Inhibits β-amyloid Alzheimer’s disease [285]
Attenuates the motor coordination deficits and huntingtin aggregate Huntington’s disease [85]
Prevent neuronal damage Parkinson’s disease [286]
Cannabidiol Reduces Aβ–induced neuroinflammation Alzheimer’s disease [287]
Prevent neuronal damage Parkinson’s disease [286]
Centella asiatica (L.) Urb. Asiatic acid Prevent MPTP/p-induced neuronal cells loss Parkinson’s disease [47]
Citrus grandis Osbeck 3,5,6,7,8,3′,4′-Heptamethoxyflavone Induce activation of ERK1/2 and CREB in cultured neurons Memory disorders, Alzheimer’s disease [264]
Clerodendrum infortunatum L. (Syn:Clerodendrum viscosum Vent.) Acteoside Inhibits β-amyloid Alzheimer’s disease, cognitive deficit [82, 83]
Costus speciosus (J.Koenig) Sm. Costunolide Inhibition of NFkappaB and MAPKinase activation Neuroinflammatory diseases [167]
Curcuma longa L. Curcumin, demethoxycurcumin, bis-demethoxycurcumin Prevent acute neuroinflammation, mitochondrial dysfunction and apoptosis Neuroinflammation and memory impairment, Parkinson’s disease [50, 51]
Cyperus rotundus Vahl α-Cyperone, terpinen-4-ol Destabilization of microtubule fibers in brain Brain inflammation [61, 62]
Lantana camara L. Ursolic acid stearoyl glucoside Unknown Anxiety [272]
Nigella sativa L. Thymoquinone Inhibits β-amyloid Alzheimer’s disease [288]
Retrieved dopaminergic neurons Parkinson’s disease [257]
Oroxylum indicum (L.) Benth. Apigenin, baicalein, baicalin, chrysin, hispidulin, oroxylin A Induce neuronal differentiation Disorder of nerve tissue development [144]
Piper betel Blanco Hydroxychavicol Atenuate cytokines and both β- and γ-secretase Cognitive dysfunction, Alzheimer’s disease [243]
Piper cubeba L.f. Cubebin Acetylcholiesterase inhibitor Cognitive dysfunction, Alzheimer’s disease [244]
Piper retrofractum Vahl Piperodione Nerve growth factor (NGF) potentiation Neurodegenerative diseases, Alzheimer’s disease [247]
Santalum album L. α-Santalol, β-santalol Sedation Anxiety [289]
Solanum indicum L. Seasmol Protect blood–brain barrier breakdown Alzheimer’s disease and multiple sclerosis [267]
Withania somnifera (L.) Dunal Withanolide A, withanone, withaferin A, withanoside IV, sitoindoside VII, sitoindoside VIII, sitoindoside IX, sitoindoside X Prevent loss of axons, dendrites, and synapses; neuroprotection, enhance antioxidant enzymes Alzheimer’s disease [73, 78, 80, 290]
Ziziphus mauritiana Lam. (Syn: Ziziphus jujube Mill.) cis-9,10Octadecenamide, jujuboside-A, jujuboside-B Increase cholinesterase and cholinesterasetrasferase activity, GABA-binding modulation Epilepsy, depression, memory loss [259, 260, 291]

CREB cAMP response element-binding protein; MAPKinase mitogen-activated protein kinases; ERK1/2 extracellular signal-regulated kinase-1/2; NFkappaB nuclear factor kappa of activated B cells

Alkaloids are one of the largest groups of plant natural products. These compounds usually act as agonists and antagonists to a variety of neurotransmitter through direct binding to neuro-receptors and/or by interference with neurotransmitter metabolism. Plant-derived alkaloids possess potential therapeutic effects against several neurodegenerative disorders (Alzheimer's disease, Huntington's disease, and Parkinson's disease), epilepsy, schizophrenia, and stroke [22].

Phenols are the most widespread and ubiquitous class of natural products. Besides free radical and reactive oxygen species scavenging, and metal chelating abilities, phenolic compounds demonstrate a significant role in various CNS disorders by direct interaction with neurotransmitter systems including sedative, anxiolytic, antipsychotic, cognitive enhancement, cholinergic upregulation, and antidepressant effects [23].

Saponins are a structurally diverse group of glycosidic compounds, featuring either pentacyclic triterpenoids or steroids as aglycones. Saponins have significant neuroprotective effects on the attenuation of CNS disorders, such as stroke, Alzheimer's disease, Parkinson's disease, and Huntington's disease [24]. In this review, Table 2 displays a selection of saponins (Fig. 9), which are potentially effective on brain disorders. Terpenes are a large class of natural products exhibiting a wide range of effects within the CNS. Many natural terpenoids have been reported to interact with the octopaminergic and noradrenergic systems, to inhibit cholinesterase, and to directly or allosterically bind to the GABAergic system; all with a relation to disorders like anxiety, insomnia, convulsion, pain, and cognitive deficits [25].

Fig. 9.

Fig. 9

Triterpenes 2: steroidal saponins

Plants, Traditional Medicines, and CNS Disorder: Globally

Approximately one out of nine human deaths is related to a nervous system disorder worldwide, and more than 28% have to live with disability caused by nervous system disorder at some stage of their lives [26]. Depression is the major cause of disability and is globally more frequent than all other nervous system disorders. The top twenty leading causes for disability also include anxiety disorders, schizophrenia, autism and Asperger syndrome, Alzheimer’s disease and other dementias, and illicit drug use [27].

In traditional systems of medicine, plants have been used to treat a huge number of disorders including nervous disorder for centuries, because they are easily available and affordable. The latest global survey of traditional and complementary medicine (T&CM) shows that significant momentum has been achieved over the past decade (WHO, 2013). Over 100 million Europeans are currently using T&CM. Thus, in Europe one fifth of the population regularly use T&CM and the same share is preferring healthcare, which includes T&CM [28]. It is evident that there are many more T&CM users in Africa, Asia, Australia, and North America [29]. Traditional medicines could be a potential source of novel compounds or phytomedicines/supplements in the management of nervous disorders. Apomorphine, galanthamine, lisdexamfetamine, and valproic acid (Fig. 4) are the first line drugs currently used to treat Parkinson’s disease, Alzheimer’s disease, attention-deficit/hyperactivity disorder, and epilepsy, respectively. The active compounds were originally derived from Papaver somniferum L, Galanthus nivalis L., Ephedra sinica Stapf., and Valeriana officinalis L., respectively. Since the 1950s, the FDA approved six plant derived drugs (Fig. 4), namely benzatropine (1954) (derived from atropine from e.g. Atropa belladonna L.), levodopa (1970) [from Mucuna pruriens (L.) DC.], carbidopa (1975) (from levodopa, e.g. from Mucuna pruriens), pergolide (1988) [from ergot alkaloids from, e.g. Claviceps purpurea (Fr.) Tul.], melevodopa (1993) (from levodopa from, e.g. Mucuna pruriens), and apomorphine (2004) (from morphine from e.g. Papaver somniferum) to treat Parkinson’s disease. A report showed that by the end of 2013, the FDA had approved 307 natural products and natural product derivatives from plants, bacteria, fungi, and marine organisms, respectively. These comprise 21% of all approved new chemical entities [30].

Fig. 4.

Fig. 4

Chemical structure of some commonly used natural products for the treatment of nervous system disorders

Plants, Traditional Medicines, and CNS Disorder: in Bangladesh

In a global study, Bangladesh has been ranked 133rd among 195 countries regarding personal healthcare access and quality [31]. In Bangladesh, over six million people experience depressive disorders and almost seven million people are suffering from anxiety disorders [32]. It is estimated that more than ten thousand people are dying every year by suicide in the country [33]. Most of the nervous system disorders are chronic and polygenic in nature. The development of more effective treatments, for example in schizophrenia and depression, based on selective drugs for single molecular targets has been largely unsuccessful [34]. Hence, multi-targeted therapeutic approach of nervous system disorders employing traditional medicine is often advantageous, easier, cheaper, and more cost effective. A handful of ethnomedicinal surveys on medicinal plants over different divisions, districts, villages, and even hill tract and tribal areas of the country revealed that medicinal plants are used to treat various disorders including nervous system disorders. Among the medicinal plants used in nervous system disorders Sotamuli (Asparagus racemosus), Thankuni (Centella asiatica), Akanadi (Stephania japonica), Bel (Aegle marmelos), Telakucha (Coccinia grandis), Tagar (Tabernaemontana divaricate), Misridana (Scoparia dulcis), Brammishak (Bacopa monnieri), and Aswagandha (Withania somnifera) are the most popular herbal medications for nervous system disorders in Bangladesh (Table 1). Table 1 contains all local names of the plant species used against CNS disorders in Bangladesh.

Ulothkombal (Abroma augusta), Apang (Achyranthes aspera), Halud (Curcuma longa), Noni (Morinda citrifolia), Sajina (Moringa oleifera), and Mutha (Cyperus rotundus) are also widely used in the management of CNS disorders. All of the above-mentioned species have demonstrated their notable pharmacological activity against nervous system disorders in different experimental models. The experimental evidence available for Achyranthes aspera, Aegle marmelos, Asparagus racemosus, Bacopa monnieri, Bryophyllum pinnatum, Centella asiatica, Clitoria ternatea, Coccinia grandis, Convolvulus pluricaulis, Curcuma aromatica, Curcuma longa, Datura metel, Euphorbia neriifolia, Hemidesmus indicus, and Musa sapientum also support the claims of traditional users (Table 1). In addition, for some of the species traditionally used in various nervous disorders, no pharmacological investigations have been performed yet, including Ghetkaachu (Typhonium trilobatum), Kundri (Solena amplexicaulis), Lal Chita (Plumbago rosea), Dheki shak (Lygodium altum), and Kanchan (Bauhinia acuminata) (Table 1). To cure paralysis, epilepsy, insanity and mental disorder, and nervous debility are the most often mentioned indications among all covered CNS disorders. In contrast, most experimental evidence so far has been provided for activity against insanity and mental disorder, memory loss, and Alzheimer’s disease (Fig. 3).

Fig. 3.

Fig. 3

Comparison of the documented plant species with traditional use and experimental evidence over categorized CNS disorders

Traditional medicine and conventional healthcare systems are offered in separate facilities at secondary and tertiary levels in nine countries in South-Eastern Asia (Bangladesh, Bhutan, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, and Thailand), while all three levels of care are available in the same health care facilities in South Korea. In Bangladesh, there are 469 small factories (268 Unani and 201 Ayurvedic) producing traditional drugs worth approximately US$ 100 million every year [35] (Fig. 4).

Evidence-Linked Plants and Active Metabolites of TBM Effective on CNS Disorder

Many plant-derived natural products are claimed to have beneficial effects against CNS disorders. Some pure natural products derived from the plant species mentioned in this review, have already been tested as efficacious candidates against CNS disorders. Table 2 displays these metabolites with the corresponding disorder, where they were found to be active. Name and structures of all mentioned plant natural products from different source species have been summarized in Table 2 and in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 (based on chemical compound classes). From all of the mentioned species, Bacopa monnieri, Centella asiatica, Curcuma longa, Cyperus rotundus, Morinda citrifolia, and Withania somnifera have been selected and discussed in some detail below. The focus of the discussion is on their impact on nervous system disorders. The species have been selected based on their widespread use, a large body of experimental records, and commercial availability. The main point of giving in-depth records on some selected species is to show the large potential of such traditional medicinal plants both from a medicinal and from a commercial perspective.

Fig. 5.

Fig. 5

Monoterpenes

Fig. 6.

Fig. 6

Sesquiterpenes

Fig. 7.

Fig. 7

Diterpene

Fig. 8.

Fig. 8

Triterpenes 1: ursane derivatives

Fig. 10.

Fig. 10

Triterpenes 3: steroidal lactones

Fig. 11.

Fig. 11

Flavonoids

Fig. 12.

Fig. 12

Phenylpropanoids

Fig. 13.

Fig. 13

Diphenylheptanoids

Fig. 14.

Fig. 14

Miscellaneous (cannabinoid, lignan, oleamide, and alkaloid)

Bacopa monnieri, "Brammishak", a small herb from the Plantaginaceae family, is distributed mainly in the coastal area of Bangladesh such as Chittagong, Cox's Bazar, and Saint Martin's island. Brammishak is named after the word ‘Brama’, the mythical ‘creator’ in the Hindu pantheon. ‘Brahmi’, which also means ‘bringing knowledge of the Supreme Reality’ [36]. The herb was used by ancient Vedic scholars to sharpen the cognitive functions and is mentioned as part of many Ayurvedic preparations. Brammishak is also traditionally used as a green leafy vegetable (shak) due to its well-known health benefits [37]. The experimental evidence has proven potent activity of Brammishak on the regulation of reactive oxygen species, neuroprotection, acetylcholinesterase (AChE) inhibition, choline acetyltransferase activation, β-amyloid reduction, increased cerebral blood flow, and monoamine potentiation and modulation [38]. Brammishak contains triterpenoid saponins called bacosides. Among the twelve analogs of bacosides, bacoside A is the best studied and most potent constituent of Brammishak, which additionally includes bacoside A3, bacopaside II, bacopasaponin C, and bacopaside X (a jujubogenin isomer of bacosaponin C) (Fig. 9) [39]. Bacoside A significantly inhibit β-amyloid toxicity, fibrillation, improve memory and cognitive functions, decreased GABA receptors associated with epilepsy as well as increased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase [40, 41]. In a review study on human trials, Neale et al. [42] compared the nootropic effects of two neutraceuticals Brammishak and Panax ginseng with modafinil (a synthetic eugeroic drug); in this comparison, Brammishak displayed the most consistent and largest effect of the three tested preparations.

Centella asiatica, "Thankuni", a perennial herbaceous creeper with kidney shaped leaves belonging to the Apiaceae family, is distributed throughout Bangladesh in fallow lands. Thankuni leaf is an ancient Ayurvedic, Unani, and has been used as a folk medicine in Bangladesh and South Asian countries for many centuries. The species is used as a revitalizing herb that supposedly strengthens nervous function and memory. An aqueous extract of C. asiatica leaves contributes to improved learning and memory processes by modulating dopamine, 5-hydroxytryptamine (5-HT), and noradrenaline systems in rat brains in vivo [43]. This result suggested that the polar compounds, for example asiatic acid present in C. asiatica leaves, may enhance cognitive functions by influencing neurotransmitter systems in the CNS. Further research proved that asiatic acid (triterpenoid) (Fig. 8) from C. asiatica down-regulates β-secretase (BACE1) as well as up-regulates ADAM10 in primary rat cortical neurons [44], inhibits induced neurotoxicity of aged rats [45], attenuates glutamate-induced cognitive deficiencies of mice, and protects SH-SY5Y cells against glutamate-induced apoptosis [46], which are all related to potential routes in Alzheimer’s disease treatment. Asiatic acid from C. asiatica effectively offered neuro-protection in chronic Parkinson’s disease by activation of dopaminergic neurons [47]. Orhan et al. [48] showed that butyrylcholinesterase inhibitory activity of South Asian C. asiatica is stronger than from Chinese sources.

Curcuma longa, "Halud", is a perennial rhizomatous herb from the Zingiberaceae family and is cultivated all over Bangladesh and used as one of the main spice. Along with the protection of memory loss, it contributes to a wide range of potential medicinal applications because of the presence of curcuminoids (Fig. 13). Curcumin, an extensively studied plant natural product isolated from the rhizome of Curcuma longa has displayed neuro-pharmacological activity against neuro-inflammation, memory impairment, and different biomarkers of Alzheimer’s disease and Parkinson’s disease in vitro and in vivo [4951]. More importantly, curcumin has already been clinically evaluated against a few central nervous system disordersseases. Initially, Rainey-Smith et al. [52] reported a low efficacy of curcumin against dementia symptoms. However, recently developed novel curcumin formulations (Longvida® and Theracurmin) ensure a higher bioavailability, combined with good acute and chronic activities for both products, even at low doses (80–180 mg/day) [53]. The study carried out by Burns et al. [54] showed a marked improvement in a patient trial of Déjérine-Sottas disease, where curcumin was administered for twelve months in two escalating doses (1500 and 2500 mg/day). In the curcumin-treated group, it was observed that curcumin decreased IL-1β, TNFα, salivary cortisol levels, and increased plasma BDNF [55]. Lopresti et al. [56] identified a significant increase in urinary molecular markers thromboxane B2, substance P, baseline plasma endothelin-1, and leptin that can all be related to the antidepressant mechanism of action of curcumin.

Cyperus rotundus, "Mutha", a perennial herb as well as an obnoxious weed, is widely distributed in tropical and subtropical regions, including Bangladesh. This species traditionally used in the management of paralysis in Bangladesh, and epilepsy in India [57]. Additionally, experimental evidence showed a potential role in improving memory and cognition. Rhizomes of C. rotundus possess anti-AChE activity [58], anticonvulsant properties [59], inhibits memory loss [60] and pyramidal cell loss. Nóbrega et al. [61] reported that terpinen-4-ol (Fig. 5) (contained in the essential oil of C. rotundus) is effective against convulsion in behavioral and electrophysiological studies. Azimi et al. [62] identified α-cyperone from C. rotundus as capable of interactions with tubulin and as a destabilizing agent of microtubule polymerization. This interaction results in reduction of inflammation, which could be beneficial for the treatment of inflammatory diseases such as Alzheimer’s disease.

Morinda citrifolia, "Noni", a small tropical tree of the Rubiaceae family, is native to South Asia and cultivated all over Bangladesh [63]. All parts of the plant are claimed to have various pharmacological properties, in particular, the fruit has a long history of dietary use in tropical regions [64]. In 2002, Noni fruit juice has been recognized as a novel food in the European Union [65]. Evidence showed that Noni fruit juice had a preventive effect against cerebral ischemic neuronal damage in a mice model [66]. Muto et al. [67] also reported that Noni juice protected mice brains from stress induced cognitive dysfunction, predominantly reducing the blood vessel density caused by stress. The administration of an ethyl acetate extract of noni fruit increased serotonin, dopamine, and antioxidant-enzyme serum levels in mice model with beta-amyloid induced cognitive dysfunction [68]. The ethanol extract of Noni fruit also improved memory, brain blood flow, and attenuated oxidative stress, acetylcholinesterase activity in a mice model [69]. A behavioral test revealed that the administration of the methanolic extract of Noni fruits decreased the negative effects of heroin and alcohol dependence [70, 71]. Despite a number of experimental evidence related to nervous system disorders, no specific natural product from this species has so far been identified and evaluated against nervous system disorders.

Withania somnifera, "Ashwagandha", is an undershrub commonly used in the traditional medicine of Bangladesh, naturally occurring in the North Bengal region. Among the 23 species of genus Withania, Ashwagandha is the most highly valued medicinal plant in traditional medicine and has been used since more than 3000 years. Various uses of this species including nervous system disorders (tonic, senile debility, nervous tension, loss of memory) reflect the ethno-pharmacological importance. Recent studies also demonstrated its multiple activities on nervous system disorders, particularly neuritic regeneration activity [72], neuroprotective activity [73], anti-anxiety and anti-depression activity [74], anti-Parkinson’s activity [75], nootropic and anti-Alzheimer’s activity [76], and anti-convulsant effects [77]. Roots are the most frequently used parts and the compounds isolated from these roots are effective against nervous system disorders. For example, withanolide A and withanoside IV (steroidal lactones) (Fig. 10) attenuated the β-amyloid (25–35) protein with the hope of enabling Alzheimer’s disease management [78, 79]. In an in vivo experimental report, it has been demonstrated that bioactive glyco-withanolides (Fig. 10) enhanced the activity levels of various antioxidant enzymes in the frontal cortex and striatum of rats, which may also be relevant for Alzheimer’s disease therapy [80].

Plants Used Against CNS Disorder: Economical and Botanical Context

Apart from the medicinal benefits, many of the mentioned species are economically important and cultivated or collected as part of Bangladeshi tradition. Many medicinal plant species have also other uses such as foodstuff, in cosmetics and hygiene, as additives in different preparations, as part of rituals, and as medicines for ailments not related to the CNS.

The fruits of many medicinal plant species, including Aegle marmelos, Citrullus lanatus, Citrus grandis, Phoenix sylvestris, Phyllanthus embelica, Solanum torvum, and Terminalia chebula, are predominantly used as foods. The same holds true for various green leaves commonly consumed as vegetables namely, Alpinia nigra, Amaranthus viridis, Bacopa monnieri, Centella asiatica, Coccinia grandis, Ipomoea aquatica, Moringa oleifera, and Nelumbo nucifera. Aloe vera, Curcuma longa, Curcuma aromatica, and Santalum album are natural cosmetics used in Bangladesh since centuries. Spices are substances with pungent and aromatic properties used to flavor foods or beverages. Cissus repens, Curcuma longa, Dillenia indica, Kaempferia galanga, Ocimum americanum, and Ocimum gratissimum are common spices used in different curries and beverages. Species used as ornament (Tabennaemontana divaricata), masticatory substances (Achyranthes aspera, Areca catechu, and Piper betel), aquatic plants (Nelumbo nucifera), and incense plants (Santalum album) are sometimes included in the management of nervous system disorder [37].

Future Prospects

Traditional plant-derived medicines are used throughout the world for a range of nervous disorders and may offer leads for drug development. In the past, native people around the world have helped to introduce many plant-derived products currently used to treat nervous disorders. Galanthamine (Fig. 4), a drug used against Alzheimer’s disease, is a natural alkaloid and was first isolated from Galanthus nivalis. Evidence-based and safe use of non-expensive plant-derived medications against nervous disorders may offer an enormous public health benefit, particularly for low-income countries. Research showed that fruit juice of noni (Morinda citrifolia, a traditional medicine of Bangladesh) has more inhibitory effects on hydrocephalus-induced degenerative disorders than memantine, a synthetic drug used against Alzheimer’s disease [81]. However, most of the pharmacological investigations carried out on the properties of the above-mentioned plants are only on a preliminary level. In addition, plant natural product as well as pharmacological potentials of many species mentioned in this review have not been scientifically examined at all yet.

It is therefore of pronounced interest to perform in-depth phyto-pharmacological assessments of traditionally used species to reveal potential new applications. This will additionally lead to a better understanding of traditional knowledge and clinical observations. For example, acteoside (Fig. 12) previously isolated from Clerodendrum infortunatum [82] and recently has been proved as an efficacious natural product against neurocytotoxicity, cognitive deficit, and neurochemical disturbances [83]. On the other hand, semisynthetic modifications of old and new natural compounds may yield substances for therapy, which are more effective than the genuine natural products they are derived from. One notable example is rivastigmine, which is more active than physostigmine (Fig. 4) (originally isolated from Physostigma venenosum Balf.) in the treatment of Alzheimer's and Parkinson's disease. Moreover, the multifactorial nature of Alzheimer’s disease suggests that a multi-targeted therapeutic approach might be more advantageous than single target drugs and combination therapies. This review shows that Bacopa monnieri, Citrus grandis, Piper betel, and Withania somnifera have an interesting activity against different biomarkers of Alzheimer’s disease and have distinct mechanism of action (Table 2). A combined therapy of these species or their bioactive natural products may contribute to an all-encompassing treatment strategy for Alzheimer’s disease. At the same time, combinatory herbal therapy could be more beneficial for those who are suffering from multiple nervous disorders.

Conclusion

In many fields, traditional medicinal knowledge offers interesting leads for pharmacological research. Bangladesh is abundant in medicinal plants with various ethno-medicinal uses. In this review, we have compiled data on a large number of plant species, used as traditional medicine against neurological problems in Bangladesh. Many of these species have also displayed activity in bioassays matching their traditional uses. Based on these observations, future extensive investigations on those particular species can be targeted to identify the compounds responsible for the observed bioactivities as well as to unravel their mechanisms of action. Up to date, only a few of those active natural products and their respective modes of action have been identified (Table 2). We hope that the findings compiled in this review will contribute to the successful usage of ethno-medicinal knowledge of medicinal plants and their bioactive natural products in the treatment of CNS disorders.

Abbreviations

CAM

Complementary and alternative medicine

CNS

Central nervous system

FDA

Food and drug administration

TBM

Traditional Bangladeshi medicine

T&CM

Traditional and complementary medicine

WHO

World Health Organization

Author contributions

MJU and CZ conceived and designed the review. MJU studied literatures and compiled data. MJU and CZ wrote the manuscript. All authors revised and approved the final version of the manuscript.

Funding

This research did not receive any specific grants.

Compliance with Ethical Standards

Competing interests

The authors declare that they have no competing interest.

Contributor Information

Md. Josim Uddin, Email: juddin@pharmazie.uni-kiel.de.

Christian Zidorn, Email: czidorn@pharmazie.uni-kiel.de.

References

  • 1.Upadhyay RK. Biomed. Res. Int. 2014;1:37. doi: 10.1155/2014/869269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Kundap UP, Bhuvanendran S, Kumari Y, Othman I, Shaikh MF. Front. Pharmacol. 2017;8:76. doi: 10.3389/fphar.2017.00076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Lakea S. UBCMJ. 2015;7:40–41. [Google Scholar]
  • 4.Ahmed MN, Azam K, Nur M. Schizophr. Res. Treat. 2014;2014:679810. doi: 10.1155/2014/679810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Kantati YT, Kodjo KM, Dogbeavou KS, Vaudry D, Leprince J, Gbeassor M. J. Ethnopharmacol. 2016;181:214–220. doi: 10.1016/j.jep.2016.02.006. [DOI] [PubMed] [Google Scholar]
  • 6.Kumar H, More SV, Han SD, Choi JY, Choi DK. Molecules. 2012;17:10503–10539. doi: 10.3390/molecules170910503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Newman DJ, Cragg GM. J. Nat. Prod. 2012;75:311–335. doi: 10.1021/np200906s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Fabricant DS, Farnsworth NR. Environ. Health Perspect. 2001;109:69–75. doi: 10.1289/ehp.01109s169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Adams M, Gmünder F, Hamburger M. J. Ethnopharmacol. 2007;113:363–381. doi: 10.1016/j.jep.2007.07.016. [DOI] [PubMed] [Google Scholar]
  • 10.Kumar V. Phytother. Res. 2006;20:1023–1035. doi: 10.1002/ptr.1970. [DOI] [PubMed] [Google Scholar]
  • 11.Rahman MH. Int. Scholarly Res. Not. 2013;2013:369138. [Google Scholar]
  • 12.Pasha MK, Uddin SB. Dictionary of Plant Names of Bangladesh (Vascular Plants) Chittagong: Janokalyan Prokashani; 2013. p. 434. [Google Scholar]
  • 13.Yusuf M, Begum J, Hoque MN, Chowdhury JU. Medicinal Plants of Bangladesh. Chittagong: Bangladesh Council of Scientific and Industrial Research Laboratories; 2009. [Google Scholar]
  • 14.Khan MA, Islam MK, Siraj MA, Saha S, Barman AK, Awang K, Rahman MM, Shilpi JA, Jahan R, Islam E, Rahmatullah M. J. Ethnobiol. Ethnomed. 2015;11:44. doi: 10.1186/s13002-015-0033-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Ghorbani A, Langenberger G, Feng L, Sauerborn J. J. Ethnopharmacol. 2011;134:651–667. doi: 10.1016/j.jep.2011.01.011. [DOI] [PubMed] [Google Scholar]
  • 16.Singh H, Husain T, Agnihotri P, Pande PC, Khatoon S. J. Ethnopharmacol. 2014;154:98–108. doi: 10.1016/j.jep.2014.03.026. [DOI] [PubMed] [Google Scholar]
  • 17.Kayani S, Ahmad M, Sultana S, KhanShinwari Z, Zafar M, Yaseen G. J. Ethnopharmacol. 2015;164:186–202. doi: 10.1016/j.jep.2015.02.004. [DOI] [PubMed] [Google Scholar]
  • 18.Basualdo I, Zardini EM, Ortiz M. Econ. Bot. 1995;49:387–394. [Google Scholar]
  • 19.Rodrigues E, Mendes FR, Negri G. Cent. Nerv. Syst. Agents Med. Chem. 2006;6:211–244. [Google Scholar]
  • 20.Schultz JC. Integr. Comp. Biol. 2002;42:454–462. doi: 10.1093/icb/42.3.454. [DOI] [PubMed] [Google Scholar]
  • 21.Kennedy DO, Wightman EL. Adv. Nutr. 2011;2:32–50. doi: 10.3945/an.110.000117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei W, Ali M, Li J, Li X. Int. J. Biol. Sci. 2018;14:341–357. doi: 10.7150/ijbs.23247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Ayokun-nun Aja A, Alimi AA, Olatunji OA, Balogun FO, Saheed SA. Trans. R. Soc. S. Afr. 2018;73:33–41. [Google Scholar]
  • 24.Sun A, Xu X, Lin J, Cui X, Xu R. Phytother. Res. 2015;29:187–200. doi: 10.1002/ptr.5246. [DOI] [PubMed] [Google Scholar]
  • 25.Manayi A, Nabavi SM, Daglia M, Jafari S. Pharmacol. Rep. 2016;68:671–679. doi: 10.1016/j.pharep.2016.03.014. [DOI] [PubMed] [Google Scholar]
  • 26.Bergen DC, Silberberg D. Arch. Neurol. 2002;59:1194–1196. doi: 10.1001/archneur.59.7.1194. [DOI] [PubMed] [Google Scholar]
  • 27.World Health Organization, Bangladesh. https://www.searo.who.int/bangladesh/mental-health/en. Accessed August 16 2019.
  • 28.Zhang Q. Tradit. Med. Mod. Med. 2018;1:11–13. [Google Scholar]
  • 29.Barnes PM, Bloom B, Nahin RL. Natl. Health Stat. Report. 2008;12:1–23. [PubMed] [Google Scholar]
  • 30.Patridge E, Gareiss P, Kinch MS, Hoyer D. Drug Discov. Today. 2015;21:204–207. doi: 10.1016/j.drudis.2015.01.009. [DOI] [PubMed] [Google Scholar]
  • 31.Fullman N, Yearwood J, Abay SM, Abbafati C, Abd-Allah F, Abdela J, Abdelalim A, Abebe Z, Abebo TA, Aboyans V, Abraha HN. The Lancet. 2018;391:2236–2271. doi: 10.1016/S0140-6736(18)30994-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.World Health Organization, 2017. Depression and other common mental disorders: global health estimates (No. WHO/MSD/MER/2017.2). World Health Organization.
  • 33.World Health Organization, 2014. Preventing suicide: a global imperative. https://www.who.int/mental_health/suicide-prevention/world_report_2014/en/. Accessed August 16 2019
  • 34.Roth BL, Sheffler DJ, Kroeze WK. Nat. Rev. Drug Discov. 2004;3:353–359. doi: 10.1038/nrd1346. [DOI] [PubMed] [Google Scholar]
  • 35.World Health Organization, 2013. WHO traditional medicine strategy: 2014–2023. https://apps.who.int/iris/bitstream/10665/92455/1/9789241506090_eng.pdf. Accessed August 19 2019
  • 36.Braun L, Cohen M. Herbs and Natural Supplements: An Evidence-Based Guide. London: Churchill Livingstone Australia; 2014. p. 1384. [Google Scholar]
  • 37.S.B. Uddin, Medicinal plants database of Bangladesh (www.mpbd.info). Accessed February 26 2019
  • 38.Sukumaran NP, Amalraj A, Gopi S. Complement. Ther. Med. 2019;44:68–82. doi: 10.1016/j.ctim.2019.03.016. [DOI] [PubMed] [Google Scholar]
  • 39.Deepak M, Sangli GK, Arun PC, Amit A. Phytochem. Anal. 2005;16:24–29. doi: 10.1002/pca.805. [DOI] [PubMed] [Google Scholar]
  • 40.Mathew J, Soman S, Sadanandan J, Paulose CS. J. Ethnopharmacol. 2010;130:255–261. doi: 10.1016/j.jep.2010.04.043. [DOI] [PubMed] [Google Scholar]
  • 41.Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R, Chem ACS. Neuroscience. 2017;8:884–891. doi: 10.1021/acschemneuro.6b00438. [DOI] [PubMed] [Google Scholar]
  • 42.Neale C, Camfield D, Reay J, Stough C, Scholey A. Br. J. Clin. Pharmacol. 2013;75:728–737. doi: 10.1111/bcp.12002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Nalini K, Aroor AR, Rao A, Karanth KS. Fitoterapia. 1992;63:231–238. [Google Scholar]
  • 44.Patil SP, Maki S, Khedkar SA, Rigby AC, Chan C. J. Nat. Prod. 2010;73:1196–1202. doi: 10.1021/np900633j. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Haleagrahara N, Ponnusamy K. J. Toxicol. Sci. 2010;35:41–47. doi: 10.2131/jts.35.41. [DOI] [PubMed] [Google Scholar]
  • 46.Xu MF, Xiong YY, Liu JK, Qian JJ, Zhu L, Gao J. Acta Pharmacol. Sin. 2012;33:578–587. doi: 10.1038/aps.2012.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Nataraj J, Manivasagam T, Thenmozhi AJ, Essa MM. Neurochem. Res. 2017;42:1354–1365. doi: 10.1007/s11064-017-2183-2. [DOI] [PubMed] [Google Scholar]
  • 48.Orhan IE, Atasu E, Senol FS, Ozturk N, Demirci B, Das K, Sekeroglu N. Ind. Crops Prod. 2013;47:316–322. [Google Scholar]
  • 49.Yang FS, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM. J. Biol. Chem. 2005;280:5892–5901. doi: 10.1074/jbc.M404751200. [DOI] [PubMed] [Google Scholar]
  • 50.Van der Merwe C, van Dyk HC, Engelbrecht L, van der Westhuizen FH, Kinnear C, Loos B, Bardien S. Mol. Neurobiol. 2017;54:2752–2762. doi: 10.1007/s12035-016-9843-0. [DOI] [PubMed] [Google Scholar]
  • 51.Sorrenti V, Contarini G, Sut S, DallAcqua S, Confortin F, Pagetta A, Giusti P, Zusso M. Front. Pharmacol. 2018;9:183. doi: 10.3389/fphar.2018.00183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Rainey-Smith SR, Brown BM, Sohrabi HR, Shah T, Goozee KG, Gupta VB, Martins RN. Br. J. Nutr. 2016;115:2106–2113. doi: 10.1017/S0007114516001203. [DOI] [PubMed] [Google Scholar]
  • 53.Small GW, Siddarth P, Li Z, Miller KJ, Ercoli L, Emerson ND, Martinez J, Wong KP, Liu J, Merrill DA, Chen ST. Am. J. Geriatr. Psychiatry. 2018;26:266–277. doi: 10.1016/j.jagp.2017.10.010. [DOI] [PubMed] [Google Scholar]
  • 54.Burns J, Joseph PD, Rose KJ, Ryan MM, Ouvrier RA. Pediatr. Neurol. 2009;41:305–308. doi: 10.1016/j.pediatrneurol.2009.04.030. [DOI] [PubMed] [Google Scholar]
  • 55.Yu JJ, Pei LB, Zhang Y, Wen ZY, Yang JL. J. Clin. Psychopharmacol. 2015;35:406–410. doi: 10.1097/JCP.0000000000000352. [DOI] [PubMed] [Google Scholar]
  • 56.Lopresti AL, Maes M, Meddens MJ, Maker GL, Arnoldussen E, Drummond PD. Eur. Neuropsychopharmacol. 2015;25:38–50. doi: 10.1016/j.euroneuro.2014.11.015. [DOI] [PubMed] [Google Scholar]
  • 57.Panda D, Pradhan S, Palita SK, Nayak JK. Ecol. Environ. Conserv. 2014;20:35–38. [Google Scholar]
  • 58.Sharma R, Gupta R. Life Sci. 2007;80:2389–2392. doi: 10.1016/j.lfs.2007.01.060. [DOI] [PubMed] [Google Scholar]
  • 59.Sonwa MM, König WA. Phytochemistry. 2001;58:799–810. doi: 10.1016/s0031-9422(01)00301-6. [DOI] [PubMed] [Google Scholar]
  • 60.Rabbani M, Ghannadi A, Malekian N. Adv. Biomed. Res. 2014;3:217–221. doi: 10.4103/2277-9175.143293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Nóbrega FF, Salvadori MG, Masson CJ, Mello CF, Nascimento TS, Leal-Cardoso JH, de Sousa DP, Almeida RN. Oxid. Med. Cell. Longev. 2014;2014:1–9. doi: 10.1155/2014/703848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Azimi A, Ghaffari SM, Riazi GH, Arab SS, Tavakol MM, Pooyan S. J. Ethnopharmacol. 2016;194:219–227. doi: 10.1016/j.jep.2016.06.058. [DOI] [PubMed] [Google Scholar]
  • 63.Das SC, Rahman MA. Bangladesh J. Bot. 2011;40:113–120. [Google Scholar]
  • 64.Wang MY, West BJ, Jensen CJ, Nowicki D, Su C, Palu AK, Anderson G. Acta Pharmacol. Sin. 2002;23:1127–1141. [PubMed] [Google Scholar]
  • 65.Dussossoy E, Brat P, Bony E, Boudard F, Poucheret P, Mertz C, Giaimis J, Michel A. J. Ethnopharmacol. 2011;133:108–115. doi: 10.1016/j.jep.2010.08.063. [DOI] [PubMed] [Google Scholar]
  • 66.Harada S, Hamabe W, Kamiya K, Satake T, Tokuyama S. J. Pharm. Soc. Jpn. 2009;129:203–207. doi: 10.1248/yakushi.129.203. [DOI] [PubMed] [Google Scholar]
  • 67.Muto J, Hosung L, Uwaya A, Isami F, Ohno M, Mikami T. Physiol. Behav. 2010;101:211–217. doi: 10.1016/j.physbeh.2010.04.014. [DOI] [PubMed] [Google Scholar]
  • 68.Muralidharan P, Kumar VR, Balamurugan G. Phytother. Res. 2010;24:252–258. doi: 10.1002/ptr.2922. [DOI] [PubMed] [Google Scholar]
  • 69.Pachauri SD, Tota S, Khandelwal K, Verma PRP, Nath C, Hanif K, Shukla R, Saxena JK, Dwivedi AK. J. Ethnopharmacol. 2012;139:34–41. doi: 10.1016/j.jep.2011.09.057. [DOI] [PubMed] [Google Scholar]
  • 70.Narasingam M, Pandy V, Mohamed Z. Exp. Anim. 2016;65:157–164. doi: 10.1538/expanim.15-0088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Pandy V, Khan Y. Exp. Anim. 2016;65:437–445. doi: 10.1538/expanim.16-0018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Jayaprakasam B, Nair MG. Tetrahedron. 2003;59:841–849. [Google Scholar]
  • 73.Konar A, Shah N, Singh R, Saxena N, Kaul SC. PLoS ONE. 2011;6:e27265. doi: 10.1371/journal.pone.0027265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Bhattacharya SK, Bhattacharya A, Sairam K. Phytomedicine. 2000;6:463–469. doi: 10.1016/S0944-7113(00)80030-6. [DOI] [PubMed] [Google Scholar]
  • 75.RajaSankar S, Manivasagam T, Surendran S. Neurosci. Lett. 2009;454:11–15. doi: 10.1016/j.neulet.2009.02.044. [DOI] [PubMed] [Google Scholar]
  • 76.Bhattacharya SK, Kumar A, Ghosal S. Phytother. Res. 1995;9:110–113. [Google Scholar]
  • 77.Kulkarni SK, Akula KK, Dhir A. Ind. J. Experim. Biol. 2008;46:465–469. [PubMed] [Google Scholar]
  • 78.Kuboyama T, Tohda C, Komatsu K. Eur. J. Neurosci. 2006;23:1417–1426. doi: 10.1111/j.1460-9568.2006.04664.x. [DOI] [PubMed] [Google Scholar]
  • 79.Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V. Proc. Natl. Acad. Sci. 2012;109:3510–3515. doi: 10.1073/pnas.1112209109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Bhattacharya SK, Satyan KS, Ghosal S. Indian J. Exp. Biol. 1997;35:236–239. [PubMed] [Google Scholar]
  • 81.Köktürk S, Ceylan S, Etus V, Yasa N, Ceylan S. Neural. Regen. Res. 2013;8:773–782. doi: 10.3969/j.issn.1673-5374.2013.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Sinha NK, Pandey VB, Dasgupta B, Higuchi R, Kawasaki T. Indian J. Chem. B. 1982;22:97–98. [Google Scholar]
  • 83.Shiao YJ, Su MH, Lin HC, Wu CR. Int. J. Mol. Sci. 2017;18:895. doi: 10.3390/ijms18040895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Ramaprasasd P, Basha CS, Santosh, Tirupati, Srikanth Indian J. Pharmacol. 2008;40:86–86. [Google Scholar]
  • 85.Blázquez C, Chiarlone A, Sagredo O, Aguado T, Pazos MR, Resel E, Palazuelos J, Julien B, Salazar M, Börner C, Benito C. Brain. 2011;134:119–136. doi: 10.1093/brain/awq278. [DOI] [PubMed] [Google Scholar]
  • 86.Bhowmik R, Saha MR, Rahman MA, Islam MAU. Bangladesh Pharm. J. 2015;17:205–214. [Google Scholar]
  • 87.Thakur AK, Rai G, Chatterjee SS, Kumar V. Pharm. Biol. 2016;54:1528–1538. doi: 10.3109/13880209.2015.1107107. [DOI] [PubMed] [Google Scholar]
  • 88.Kabir MH, Hasan N, Rahman MM, Rahman MA, Khan JA, Hoque NT, Bhuiyan MRQ, Mou SM, Jahan R, Rahmatullah M. J. Ethnobiol. Ethnomed. 2014;10:19. doi: 10.1186/1746-4269-10-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Uddin SN. Traditional uses of Ethnomedicinal plants of the Chittagong Hill Tracts. Dhaka: Bangladesh National Herbarium; 2006. p. 992. [Google Scholar]
  • 90.Yusuf M, Wahab MA, Chowdhury JU, Begum J. Bangladesh J. Plant Taxon. 2006;13:55–61. [Google Scholar]
  • 91.Mollik AH. Alzheimer’s Dement. 2010;6:S43. [Google Scholar]
  • 92.Reddy S, Rao G, Shetty B, Hn G. Turk. Neurosurg. 2015;25:425–431. doi: 10.5137/1019-5149.JTN.11405-14.1. [DOI] [PubMed] [Google Scholar]
  • 93.Mollik MAH. Epilepsia. 2012;53:1–245. [Google Scholar]
  • 94.Dulla O, Jahan FI. J. Intercult. Ethnopharmacol. 2017;6:316–325. doi: 10.5455/jice.20170719010256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Viswanatha GL, Venkataranganna MV, Prasad NBL, Godavarthi A. Metab. Brain Dis. 2017;32:867–879. doi: 10.1007/s11011-017-9981-8. [DOI] [PubMed] [Google Scholar]
  • 96.Dinesh Y, Chand R, Kumar R. J. Ethnopharmacol. 2017;202:97–102. [Google Scholar]
  • 97.Rahman AHMM. Wudpecker J. Med. Plants. 2013;2:44–52. [Google Scholar]
  • 98.Walid R, Suvro KFA, Harun-or-Rashid M, Mukti M, Rahman S, Rahmatullah M. Am. Eur. J. Sustain. Agric. 2013;7:61–74. [Google Scholar]
  • 99.M.A. Motaleb, M.K. Hossain, M.K. Alam, M.M.A.A. Mamun, M. Sultana, Commonly used medicinal herbs and shrubs by traditional herbal practitioners: glimpses from Thanchi upazila of Bandarban. (International Union for Conservation of Nature and Natural Resources, Bolipara Nari Kalyan Somity, and Keidanren Nature Conservation Fund, 2013), p. 294.
  • 100.Ibrahim B, Sowemimo A, van Rooyen A, Van de Venter M. J. Ethnopharmacol. 2012;141:282–289. doi: 10.1016/j.jep.2012.02.032. [DOI] [PubMed] [Google Scholar]
  • 101.S. Rudra, K.N. Islam, M.M. Rahman, S.B. Uddin, J. Herbs Spices Med. Plants. (in press): 10.1080/10496475.2020.1786874
  • 102.Bhatnagar M, Shukla SD, Bhatnagar R. J. Herb. Pharmacother. 2005;5:21–30. [PubMed] [Google Scholar]
  • 103.Faysal M. Ethnobot. Leaflets. 2008;12:231–1235. [Google Scholar]
  • 104.Khan NA, Rashid AM. Afr. J. Tradit. Complement. Altern. Med. 2006;3:37–47. [Google Scholar]
  • 105.Ahmad MR, Justin AT, Manivasagam T, Nataraj J, Mohamed ME, Chidambaram SB. Front. Biosci. Elite Ed. 2018;10:287–299. doi: 10.2741/e823. [DOI] [PubMed] [Google Scholar]
  • 106.Azam FMS, Biswas A, Mannan A, Afsana NA, Jahan R, Rahmatullah M. J. Evid. Based Complement. Altern. Med. 2014;2014:1–28. doi: 10.1155/2014/741712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Akber M, Seraj S, Islam F, Ferdausi D, Ahmed R, Nasrin D, Nahar N, Ahsan S, Jamal F, Rahmatullah M. Am. Eur. J. Sustain. Agric. 2011;5:177–195. [Google Scholar]
  • 108.Mollik AH, Hassan AI, Paul TK, Sintaha M, Khaleque HN, Noor FA, Nahar A, Seraj S, Jahan R, Chowdhury MH, Rahmatullah M. Am. Eur. J. Sustain. Agric. 2010;1:349–357. [Google Scholar]
  • 109.Joshi H, Parle M. J. Med. Food. 2006;9:413–417. doi: 10.1089/jmf.2006.9.413. [DOI] [PubMed] [Google Scholar]
  • 110.Jash R, Chowdary KA. Pharmacogn. Res. 2014;6:46–51. doi: 10.4103/0974-8490.122917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Azam MNK, Ahmed MN, Rahman MM, Rahmatullah M. Am. Eur. J. Sustain. Agric. 2013;7:391–402. [Google Scholar]
  • 112.Yoneyama T, Arai MA, Akamine R, Koryudzu K, Tsuchiya A, Sadhu SK, Ahmed F, Itoh M, Okamoto R, Ishibashi M. J. Nat. Prod. 2017;80:2453–2461. doi: 10.1021/acs.jnatprod.7b00282. [DOI] [PubMed] [Google Scholar]
  • 113.Mollik MAH, Hossan MS, Paul AK, Taufiq-Ur-Rahman M, Jahan R, Rahmatullah M. Ethnobot. Res. Appl. 2010;8:195–218. [Google Scholar]
  • 114.Rahmatullah M, Noman A, Hossan MS, Rashid MH, Rahman T, Chowdhury MH, Jahan R. Am. Eur. J. Sustain. Agric. 2009;3:862–876. [Google Scholar]
  • 115.Hegde K, Thakker SP, Joshi AB, Shastry CS, Chandrashekhar KS. Trop. J. Pharm. Res. 2009;8:117–125. [Google Scholar]
  • 116.Kundu A, Mitra A. Plant Foods Hum. Nutr. 2013;68:247–253. doi: 10.1007/s11130-013-0363-z. [DOI] [PubMed] [Google Scholar]
  • 117.Mathew M, Subramanian S. PLoS ONE. 2014;9:e86804. doi: 10.1371/journal.pone.0086804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Kadir MF, Sayeed MSB, Setu NI, Mostafa A, Mia MMK. J. Ethnopharmacol. 2014;155:495–508. doi: 10.1016/j.jep.2014.05.043. [DOI] [PubMed] [Google Scholar]
  • 119.Ghani A. Medicinal plants of Bangladesh: chemical constituents and uses. 2. Dhaka: Asiatic Society of Bangladesh; 2003. p. 603. [Google Scholar]
  • 120.Benthall AP. Trees of Calcutta and its neighborhood. 1. Calcutta: Thacker, Spink & Co; 1946. p. 613. [Google Scholar]
  • 121.Nakdook W, Khongsombat O, Taepavarapruk P, Taepavarapruk N, Ingkaninan K. J. Ethnopharmacol. 2010;130:122–126. doi: 10.1016/j.jep.2010.04.027. [DOI] [PubMed] [Google Scholar]
  • 122.Chattipakorn S, Pongpanparadorn A, Pratchayasakul W, Pongchaidacha A, Ingkaninan K, Chattipakorn N. J. Ethnopharmacol. 2007;110:61–68. doi: 10.1016/j.jep.2006.09.007. [DOI] [PubMed] [Google Scholar]
  • 123.Singh D, Singh A. Chemosphere. 2005;60:135–140. doi: 10.1016/j.chemosphere.2004.12.078. [DOI] [PubMed] [Google Scholar]
  • 124.Uddin MZ, Kibria MG, Hassan MA. J. Asiat. Soc. Bangladesh Sci. 2015;41:203–223. [Google Scholar]
  • 125.Prajapati R, Kalariya M, Umbarkar R, Parmar S, Sheth N. Int. J. Nutr. Pharmacol. Neurol. Dis. 2011;1:90–96. [Google Scholar]
  • 126.Paul AK, Al Arif H, Seraj S, Nahar A, Nasrin D, Chowdhury MH, Islam F, Jahan R, Bashar AA, Freedma R, Rahmatullah M. Am. Eur. J. Sustain. Agric. 2011;5:132–145. [Google Scholar]
  • 127.Yeasmin M, Karmaker S, Hossain MS, Ahmed S, Tabassum A, Malek I, Rahmatullah M. World J. Pharm. Pharmaceut. Sci. 2015;4:70–78. [Google Scholar]
  • 128.Faisal M, Hossain AI, Rahman S, Jahan R, Rahmatullah M, Complement BMC. Altern. Med. 2014;14:335. doi: 10.1186/1472-6882-14-335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Rahman MA, Uddin SB, Wilcock CC. Indian J. Tradit. Knowl. 2007;6:508–517. [Google Scholar]
  • 130.Dar A, Khatoon S. Pharmacol. Biochem. Behav. 2000;65:1–6. doi: 10.1016/s0091-3057(99)00179-3. [DOI] [PubMed] [Google Scholar]
  • 131.Rahmatullah M, Mollik AH, Rahman S, Hasan N, Agarwal B, Jahan R. Alter. Complement. Med. 2010;16:419–425. doi: 10.1089/acm.2009.0186. [DOI] [PubMed] [Google Scholar]
  • 132.Chu CN, Kim JW, Chung SY, Park JH. J. Oriental Neuropsychiatry. 2010;21:43–57. [Google Scholar]
  • 133.Shajib MS, Akter S, Ahmed T, Imam MZ. Front Pharmacol. 2015;6:212. doi: 10.3389/fphar.2015.00212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.H. Joshi, M. Parle, Cognition improving and antioxidant effects of Asparagus racemosus willd in mice. Paper presented at 28th CINP world congress of neuropsychopharmacology, Stockholm, Sweden, 3–7 June 2012
  • 135.Ojha R, Sahu AN, Muruganandam AV, Singh GK, Krishnamurthy S. Brain Cogn. 2010;74:1–9. doi: 10.1016/j.bandc.2010.05.009. [DOI] [PubMed] [Google Scholar]
  • 136.Jabbar S, Khan MT, Choudhuri MS. Pharmazie. 2001;56:506–508. [PubMed] [Google Scholar]
  • 137.Thakur VD, Mengi SA. J. Ethnopharmacol. 2005;102:23–31. doi: 10.1016/j.jep.2005.05.037. [DOI] [PubMed] [Google Scholar]
  • 138.Roy SK, Mazumder UK, Islam A. Pharmacologyonline. 2011;1:632–643. [Google Scholar]
  • 139.Amoateng P, Adjei S, Osei-Safo D, Kukuia KK, Bekoe EO, Karikari TK, Kombian SB, Complement BMC. Altern. Med. 2017;17:389. doi: 10.1186/s12906-017-1901-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Roy S, Dutta S, Chaudhuri TK. J. Basic Clin. Physiol. 2015;26:395–401. doi: 10.1515/jbcpp-2014-0100. [DOI] [PubMed] [Google Scholar]
  • 141.Khatun A, Khan MAA, Rahman MA, Akter MS, Hasan A, Parvin W, Ripa RJ, Moniruzzaman M, Mahal MJ, Rahmatullah M. Am. Eur. J. Sustain. Agric. 2013;7:319–339. [Google Scholar]
  • 142.Aderibigbe AO, Olufunmilayo T, Agboola OI. Planta Med. 2013;79:PE4. [Google Scholar]
  • 143.Sohn SH, Yoon M, Kim J, Choi HL, Shin M, Hong M, Bae H. Mol. Cell. Toxicol. 2012;8:343–348. [Google Scholar]
  • 144.Fuentes RG, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. J. Nat. Med. 2015;69:589–594. doi: 10.1007/s11418-015-0919-3. [DOI] [PubMed] [Google Scholar]
  • 145.Oboh G, Akomolafe TL, Adefegha SA, Adetuyi AO. Exp. Toxicol. Pathol. 2011;63:257–262. doi: 10.1016/j.etp.2010.01.003. [DOI] [PubMed] [Google Scholar]
  • 146.Afroz R, Islam N, Biswas KR, Ishika T, Rahman M, Swarna A, Khan T, Monalisa MN, Seraj S, Rahman MA, Mou SM. Am. Eur. J. Sustain. Agric. 2011;5:226–232. [Google Scholar]
  • 147.Rahmatullah M, Mollik MAH, Khatun MA, Jahan R, Chowdhury AR, Seraj S, Hossain MS, Nasrin D, Khatun Z. Adv. Nat. Appl. Sci. 2010;4:39–44. [Google Scholar]
  • 148.Huang X, Li Q, Li H, Guo L. Cell. Mol. Neurobiol. 2009;29:1211–1221. doi: 10.1007/s10571-009-9417-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Rahmatullah M, Rahman MA, Hossan MS, Taufiq-Ur-Rahman M, Jahan R, Mollik MAH. J. Altern. Complement. Med. 2010;16:769–785. doi: 10.1089/acm.2009.0497. [DOI] [PubMed] [Google Scholar]
  • 150.Holgado MA, Martín-Banderas L, Álvarez-Fuentes J, Fernández-Arévalo M. J. Drug Delivery Sci. Technol. 2017;42:84–93. [Google Scholar]
  • 151.Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Acta Biochim. Biophys. Sin. 2017;49:853–866. doi: 10.1093/abbs/gmx073. [DOI] [PubMed] [Google Scholar]
  • 152.Gnahoué G, N’guessan JD, Koffi E, Traoré F, Guédé-Guina F. Trop. J. Pharm. Res. 2009;8:11–17. [Google Scholar]
  • 153.Martini LH, Jung F, Soares FA, Rotta LN, Vendite DA, dos Santos Frizzo ME, Yunes RA, Calixto JB, Wofchuk S, Souza DO. Neurochem. Res. 2007;32:1950–1956. doi: 10.1007/s11064-007-9393-y. [DOI] [PubMed] [Google Scholar]
  • 154.Yaidikar L, Thakur S. Pharmacol. Rep. 2015;67:890–895. doi: 10.1016/j.pharep.2015.02.003. [DOI] [PubMed] [Google Scholar]
  • 155.Mubassara S, Hossain SJ, Ahmed F, Yamamoto M, Tan N, Aoshima H. Food Sci Technol. Res. 2009;15:315–324. [Google Scholar]
  • 156.Park JH, Joo HS, Yoo KY, Shin BN, Kim IH, Lee CH, Choi JH, Byun K, Lee B, Lim SS, Won MH. Neurochem. Res. 2011;36:2043–2050. doi: 10.1007/s11064-011-0528-9. [DOI] [PubMed] [Google Scholar]
  • 157.Sampson JH, Phillipson JD, Bowery NG, Oneill MJ, Houston JG, Lewis JA. Phytother. Res. 2000;14:24–29. doi: 10.1002/(sici)1099-1573(200002)14:1<24::aid-ptr537>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  • 158.Ma J, Ren Q, Dong B, Shi Z, Zhang J, Jin DQ, Xu J, Ohizumi Y, Lee D, Guo Y. Bioorg. Chem. 2018;76:449–457. doi: 10.1016/j.bioorg.2017.12.008. [DOI] [PubMed] [Google Scholar]
  • 159.Hossain ABMA. Blumea balsamifera DC. In: Ahmed ZU, Begum ZNT, Hassan MA, Khondker M, Kabir SMH, Ahmed M, Ahmed ATA, Rahman AKA, Haque EU, editors. Encyclopedia of flora and fauna of Bangladesh. Angiosperms: Dicotyledons (Acanthaceae-Asteraceae) Dhaka: Asiatic Society of Bangladesh; 2008. pp. 272–273. [Google Scholar]
  • 160.Yusuf M, Wahab MA, Yousuf MD, Chowdhury JU, Begum J. Bangladesh J. Plant Taxon. 2007;14:117–128. [Google Scholar]
  • 161.Couto VM, Vilela FC, Dias DF, dos Santos MH, Soncini R, Nascimento CGO, Giusti-Paiva A. J. Ethnopharmacol. 2011;134:348–353. doi: 10.1016/j.jep.2010.12.028. [DOI] [PubMed] [Google Scholar]
  • 162.Melo AS, Monteiro MC, da Silva JB, de Oliveira FR, Vieira JLF, de Andrade MA, Baetas AC, Sakai JT, Ferreira FA, da Cunha Sousa PJ, Maia CDSF. J. Ethnopharmacol. 2013;147:293–301. doi: 10.1016/j.jep.2013.03.002. [DOI] [PubMed] [Google Scholar]
  • 163.Bihaqi SW, Sharma M, Singh AP, Tiwari M. J. Ethnopharmacol. 2009;124:409–415. doi: 10.1016/j.jep.2009.05.038. [DOI] [PubMed] [Google Scholar]
  • 164.Manvar M, Desai T. Indian J. Med. Sci. 2013;67:49–60. [PubMed] [Google Scholar]
  • 165.Islam MK, Saha S, Mahmud I, Mohamad K, Awang K, Uddin SJ, Rahman MM, Shilpi JA. J. Ethnopharmacol. 2014;151:921–930. doi: 10.1016/j.jep.2013.11.056. [DOI] [PubMed] [Google Scholar]
  • 166.Sivaraman D, Panneerselvam P, Muralidharan P. Int. J. Pharmacol. 2016;12:52–65. [Google Scholar]
  • 167.Rayan NA, Baby N, Pitchai D, Indraswari F, Ling EA, Lu J, Dheen T. Front. Biosci. Elite Ed. 2011;3:1079–1091. doi: 10.2741/e312. [DOI] [PubMed] [Google Scholar]
  • 168.Yemitan OK, Salahdeen HM. Fitoterapia. 2005;76:187–193. doi: 10.1016/j.fitote.2004.11.009. [DOI] [PubMed] [Google Scholar]
  • 169.Pal S, Sen T, Chaudhuri AN. J. Pharm. Pharmacol. 1999;5:1313–1318. doi: 10.1211/0022357991772312. [DOI] [PubMed] [Google Scholar]
  • 170.Sohel MDD, Kawsar MDH, Sumon MDHU, Sultana T. Altern. Integr. Med. 2016;5:1–9. [Google Scholar]
  • 171.Rahman AHMM. Am. J. Life Sci. 2010;1:77–81. [Google Scholar]
  • 172.Ademosun AO, Oboh G. Orient. Pharm. Exp. Med. 2017;17:269–276. [Google Scholar]
  • 173.Nawaz AHMM, Hossain M, Karim M, Khan M, Jahan R, Rahmatullah M. Am. Eur. J. Sustain. Agric. 2009;3:143–150. [Google Scholar]
  • 174.Nitharwal RK, Patel H, Karchuli MS, Ugale RR. Indian J. Pharmacol. 2013;45:502–507. doi: 10.4103/0253-7613.117783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Kandikattu HK, Deep SN, Razack S, Amruta N, Prasad D, Khanum F. Physiol. Behav. 2017;175:56–65. doi: 10.1016/j.physbeh.2017.03.035. [DOI] [PubMed] [Google Scholar]
  • 176.Uddin MZ, Hassan MA, Sultana M. Bangladesh J. Plant Taxon. 2006;13:63–68. [Google Scholar]
  • 177.Rahmatullah M, Khatun MA, Morshed N, Neogi PK, Khan SUA, Hossan MS, Mahal MJ, Jahan R. Adv. Nat. Appl. Sci. 2010;4:52–62. [Google Scholar]
  • 178.Kaur N, Kishore L, Singh R. J. Ethnopharmacol. 2017;206:19–30. doi: 10.1016/j.jep.2017.05.018. [DOI] [PubMed] [Google Scholar]
  • 179.Biswas A, Bari MA, Roy M, Bhadra SK. Indian J. Tradit. Know. 2010;9:77–89. [Google Scholar]
  • 180.Bigoniya P, Rana AC. Indian J. Exp. Biol. 2005;43:859–862. [PubMed] [Google Scholar]
  • 181.Rafael CD, Kathryn Ana BSS, Allisson FB, Rodrigo M, Ana FP, Flavia CM. Neuropharmacol. 2012;63:593–605. [Google Scholar]
  • 182.Das PR, Islam MT, Mostafa MN, Rahmatullah M. Anc. Sci. life. 2013;32:144–149. doi: 10.4103/0257-7941.122997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Cabrera S, Núñez F. Rev. Cubana Plant Med. 2010;15:96–104. [Google Scholar]
  • 184.Roy S, Uddin MZ, Hassan MA, Rahman MM. Bangladesh J. Plant Taxon. 2008;15:67–72. [Google Scholar]
  • 185.Rai SN, Birla H, Zahra W, Singh SS, Singh SP. J. Chem. Neuroanat. 2017;85:27–35. doi: 10.1016/j.jchemneu.2017.06.005. [DOI] [PubMed] [Google Scholar]
  • 186.Shetty P, Krishnamoorthy M, Vijayanarayana K, Satyanarayana DS. Asian J. Chem. 2008;20:1075–1180. [Google Scholar]
  • 187.Rahmatullah M, Ferdausi D, Mollik A, Jahan R, Chowdhury MH, Haque WM. Afr. J. Tradit. Complement. Altern. Med. 2010;7:91–97. doi: 10.4314/ajtcam.v7i2.50859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Ahmed F, Shahid IZ, Biswas UK, Roy BA, Das AK, Pharma MSK. Biology. 2007;45:587–593. [Google Scholar]
  • 189.Farag MA, Ezzat SM, Salama MM, Tadros MG. J. Pharm. Biomed. Anal. 2016;125:292–302. doi: 10.1016/j.jpba.2016.03.037. [DOI] [PubMed] [Google Scholar]
  • 190.Olayinka OI, Nta HA, Ganiyat A. J. Med. Plants Res. 2011;5:2743–2747. [Google Scholar]
  • 191.Karthikeyan M, Deepa K. J. Basic Clin. Physiol. Pharmacol. 2010;21:347–356. doi: 10.1515/jbcpp.2010.21.4.347. [DOI] [PubMed] [Google Scholar]
  • 192.Siddique NA, Bari MA, Naderuzzaman ATM, Khatun N, Rahman MH, Sultana RS, Matin MN, Shahnewaz S, Rahman MM. J. Biol. Sci. 2004;4:72–80. [Google Scholar]
  • 193.Rahmatullah M, Kabir AABT, Rahman MM, Hossan MS, Khatun Z, Khatun MA, Jahan R. Adv. Nat. Appl. Sci. 2010;4:45–51. [Google Scholar]
  • 194.Umamaheswari M, Asokkumar K, Umamageswari N, Sivashanmugam T, Subhadradevi V. Protective effect of the leaves of Vitex negundo against ethanol-induced cerebral oxidative stress in rats. Tanzan. J. Health Res. 2012;14:21–28. doi: 10.4314/thrb.v14i1.5. [DOI] [PubMed] [Google Scholar]
  • 195.Sinha BN, Sasmal D. Asian J. Chem. 2011;23:315–318. [Google Scholar]
  • 196.Biswas NN, Acharzo AK, Anamika S, Khushi S, Bokshi B. Evid. Based Complement. Alternat. Med. 2014;2017:1–11. doi: 10.1155/2017/3701349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Jeong YH, Park JS, Kim DH, Kang JL, Kim HS. Pharmacol. Res. 2017;119:431–442. doi: 10.1016/j.phrs.2017.02.027. [DOI] [PubMed] [Google Scholar]
  • 198.Leal L, Silva R, Araujo T, Silva V, Barbosa A, Medeiros J, Oliveira J, Ventura C. Rev. Bras. Plant Med. 2016;18:38–47. [Google Scholar]
  • 199.Rahmatullah M, Hasan A, Parvin W, Moniruzzaman M, Khatun A, Khatun Z, Jahan FI, Jahan R. Afr. J. Tradit. Complement. Altern. Med. 2012;9:350–359. doi: 10.4314/ajtcam.v9i3.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Ramesh BN, Indi SS, Rao KSJ. Neurosci. Lett. 2010;475:110–114. doi: 10.1016/j.neulet.2010.03.062. [DOI] [PubMed] [Google Scholar]
  • 201.Yoon WH, Lee KH. Nat. Prod. Sci. 2017;23:108–112. [Google Scholar]
  • 202.Rai KS, Murthy KD, Karantha KS, Rao MS. Indian J. Physiol. Pharmacol. 2001;45:305–313. [PubMed] [Google Scholar]
  • 203.Rahmatullah M, Mollik MAH, Islam MK, Islam MR, Jahan FI, Khatun Z, Seraj S, Chowdhury MH, Islam F, Miajee ZUM, Jahan R. Am. Eur. J. Sustain. Agric. 2010;4:363–373. [Google Scholar]
  • 204.Mehla J, Pahuja M, Gupta P, Dethe S, Agarwal A, Gupta YK. Psychopharmacol. 2013;230:589–605. doi: 10.1007/s00213-013-3185-7. [DOI] [PubMed] [Google Scholar]
  • 205.Ko HH, Weng JR, Tsao LT, Yen MH, Wang JP, Lin CN. Bioorg. Med. Chem. Lett. 2004;14:1011–1014. doi: 10.1016/j.bmcl.2003.11.074. [DOI] [PubMed] [Google Scholar]
  • 206.Ayissi MR, Gartside S, Ngo Bum E, Njikam N, Okello E, McQuade R. J. Psychopharmacol. 2012;26:575–583. doi: 10.1177/0269881111398686. [DOI] [PubMed] [Google Scholar]
  • 207.Patro G, Bhattamisra SK, Mohanty BK. Avicenna J. Phytomed. 2016;6:696–710. [PMC free article] [PubMed] [Google Scholar]
  • 208.Yi JH, Park HJ, Lee S, Jung JW, Kim BC, Lee YC, Ryu JH, Kim DH. J. Ethnopharmacol. 2016;178:50–57. doi: 10.1016/j.jep.2015.12.007. [DOI] [PubMed] [Google Scholar]
  • 209.Jung HA, Ali MY, Jung HJ, Jeong HO, Chung HY, Choi JS. J. Ethnopharmacol. 2016;191:152–160. doi: 10.1016/j.jep.2016.06.037. [DOI] [PubMed] [Google Scholar]
  • 210.Ramesh T, Sureka C, Bhuvana S, Begum VH. Metab. Brain Dis. 2015;30:573–582. doi: 10.1007/s11011-014-9614-4. [DOI] [PubMed] [Google Scholar]
  • 211.Rajesh V, Riju T, Venkatesh S, Babu G. Orient. Pharm. Exp. Med. 2017;17:127–142. [Google Scholar]
  • 212.Hossan MS, Roy P, Seraj S, Mou SM, Monalisa MN, Jahan S, Khan T, Swarna A, Jahan R, Rahmatullah M. Am. Eur. J. Sustain. Agric. 2012;6:349–359. [Google Scholar]
  • 213.Zulfiker AHM, Hoque MA, Akter T, Afroz A, Momin AM. Trop. J. Pharm. Res. 2014;13:1925–1931. [Google Scholar]
  • 214.Bansod MS, Rajgure DT, Harle UN, Vyawahare NS, Yende SR. Indian J. Pharmacol. 2008;40:126–127. [Google Scholar]
  • 215.Rahman AHMM, Gondha R. Open J. Bot. 2014;1:19–24. [Google Scholar]
  • 216.Khurana N, Gajbhiye A. Neurotoxicol. 2013;39:57–64. doi: 10.1016/j.neuro.2013.08.005. [DOI] [PubMed] [Google Scholar]
  • 217.Tumpa SI, Hossain MI. J. Pharmacogn. Phytochem. 2014;3:23–33. [Google Scholar]
  • 218.Bhattamisra SK, Singh PN, Singh SK. Pharm. Biol. 2012;50:766–772. doi: 10.3109/13880209.2011.632421. [DOI] [PubMed] [Google Scholar]
  • 219.Hossain U, Rahman MO. Bangladesh J. Plant Taxon. 2018;25:241–255. [Google Scholar]
  • 220.Moniruzzaman M, Hossain MS, Bhattacharjee PS. J. Ethnopharmacol. 2016;186:205–208. doi: 10.1016/j.jep.2016.04.008. [DOI] [PubMed] [Google Scholar]
  • 221.Izzati N, Fitri LE, Dalhar M. Univ. Med. 2016;35:222–228. [Google Scholar]
  • 222.Howlader MSI, Siraj MA, Dey SK, Hira A, Ahmed A, Hossain MH. Evid. Based Complement. Alternat. Med. 2017;2017:7390359. doi: 10.1155/2017/7390359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Varija D, Kumar KP, Reddy KP. J. Appl. Anim. Res. 2001;39:49–52. [Google Scholar]
  • 224.Singh D, Mishra A, Goel RK. Epilepsy Behav. 2013;27:206–211. doi: 10.1016/j.yebeh.2012.11.004. [DOI] [PubMed] [Google Scholar]
  • 225.Bhangale JO, Acharya SR. Adv. Pharmacol. Sci. 2016;2016:1–9. doi: 10.1155/2016/9436106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-mee W. Oxid. Med. Cell. Longev. 2013;2013:1–9. doi: 10.1155/2013/695936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Ekong MB, Ekpo MM, Akpanyung EO, Nwaokonko DU. Metab. Brain. Dis. 2017;32:1437–1447. doi: 10.1007/s11011-017-0011-7. [DOI] [PubMed] [Google Scholar]
  • 228.Ayoola IO, Gueye B, Sonibare MA, Abberton MT. J. Food Meas. Charact. 2017;11:488–499. [Google Scholar]
  • 229.Prabsattroo T, Wattanathorn J, Somsapt P, Sritragool O. Oxid. Med. Cell Longev. 2016;2016:1–11. doi: 10.1155/2016/5789857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Ahmed ZU, Hassan MA, Begum ZNT, Khondker M, Kabir SMH, Ahmed M, Ahmed ATA, Rahman AKA, Haque EU. Encyclopedia of flora and fauna of Bangladesh. Angiosperms: Dicotyledons (Fabaceae-Lythraceae) Dhaka: Asiatic Society of Bangladesh; 2009. pp. 40–41. [Google Scholar]
  • 231.Hongratanaworakit T. Nat. Prod. Commun. 2010;5:157–162. [PubMed] [Google Scholar]
  • 232.Hsieh HL, Yang SH, Lee TH, Fang JY, Lin CF. Mol. Neurobiol. 2016;53:5995–6005. doi: 10.1007/s12035-015-9511-9. [DOI] [PubMed] [Google Scholar]
  • 233.Howlader MA, Alam M, Ahmed K, Khatun F, Apu AS. Pak. J. Biol. Sci. 2011;14:909–911. doi: 10.3923/pjbs.2011.909.911. [DOI] [PubMed] [Google Scholar]
  • 234.Hossain MM. Med. Aromat. Plant Sci. Biotechnol. 2009;42:101–106. [Google Scholar]
  • 235.Khasim SM, Rao PRM. The Botanica. 1999;49:86–91. [Google Scholar]
  • 236.Uddin MN, Afrin R, Uddin MJ, Uddin MJ, Alam AHMK, Rahman AA, Sadik G, Complement BMC. Altern. Med. 2015;15:195. doi: 10.1186/s12906-015-0728-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Uddin SJ, Shilpi JA, Rahman MT, Ferdous M, Rouf R, Sarker SD. Die Pharmazi. 2006;61:362–364. [PubMed] [Google Scholar]
  • 238.Ferdoushi A, Mahmud S, Rana MM, Islam MS, Salauddin ABA, Hossain MF. Eur. J. Med. Plants. 2016;11:1–22. [Google Scholar]
  • 239.Shalini B, Sharma JD. Toxicol. Int. 2015;22:35–39. doi: 10.4103/0971-6580.172254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Thenmozhi AJ, Dhivyabharathi M, William Raja TR, Manivasagam T, Essa MM. Nutr. Neurosci. 2016;19:269–278. doi: 10.1179/1476830515Y.0000000016. [DOI] [PubMed] [Google Scholar]
  • 241.Khatun MR, Rahman AM. Bangladesh J. Plant Taxon. 2019;26:117–126. [Google Scholar]
  • 242.Uddin MS, Al Mamun A, Iqbal MA, Islam A, Hossain MF, Khanum S, Rashid M. Adv. Alzheimer's Dis. 2016;5:87–102. [Google Scholar]
  • 243.Pandey A, Bani S. J. Neuroimmunol. 2010;226:48–58. doi: 10.1016/j.jneuroim.2010.05.031. [DOI] [PubMed] [Google Scholar]
  • 244.Somani GS, Nahire MS, Parikh AD, Mulik MB, Ghumatkar PJ, Laddha KS, Sathaye S. Indian J. Med. Res. 2017;146:255–159. doi: 10.4103/ijmr.IJMR_156_14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Subramanian U, Poongavanam S, Vanisree AJ. Invest. New Drugs. 2010;28:615–623. doi: 10.1007/s10637-009-9301-1. [DOI] [PubMed] [Google Scholar]
  • 246.Bi Y, Qu PC, Wang QS, Zheng L, Liu HL, Luo R, Chen XQ, Ba YY, Wu X, Yang H. Pharm. Biol. 2015;53:1516–1524. doi: 10.3109/13880209.2014.991835. [DOI] [PubMed] [Google Scholar]
  • 247.Kubo M, Ishii R, Ishino Y, Harada K, Matsui N, Akagi M, Kato E, Hosoda S, Fukuyama Y. J. Nat. Prod. 2013;76:769–773. doi: 10.1021/np300911b. [DOI] [PubMed] [Google Scholar]
  • 248.Saini N, Singh D, Sandhir R. Neurochem. Res. 2012;37:1928–1937. doi: 10.1007/s11064-012-0811-4. [DOI] [PubMed] [Google Scholar]
  • 249.Promsuban C, Limsuvan S, Akarasereenont P, Tilokskulchai K, Tapechum S, Pakaprot N. Neuro. Rep. 2017;28:1031–1035. doi: 10.1097/WNR.0000000000000862. [DOI] [PubMed] [Google Scholar]
  • 250.Loganathan S, Rathinasamy S. Pharmacogn. Mag. 2016;12:S7–S13. doi: 10.4103/0973-1296.176119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Da-Silva VA, De-Freitas JC, Mattos AP, Paiva-Gouvea W, Presgrave OA, Fingola FF, Menezes MA, Paumgartten FJ. Braz. J. Med. Biol. Res. 1991;24:827–831. [PubMed] [Google Scholar]
  • 252.Uddin SN, Uddin MZ, Hassan MA, Rahman MM. Bangladesh J. Plant Taxon. 2004;11:39–48. [Google Scholar]
  • 253.Tayeboon GS, Tavakoli F, Hassani S, Khanavi M, Sabzevari O, Ostad SN. Vitro Cell. Dev. Biol. Anim. 2013;49:706–715. doi: 10.1007/s11626-013-9656-7. [DOI] [PubMed] [Google Scholar]
  • 254.Miyazaki Y. Biosci. Microbiota. Food. Health. 2016;35:69–75. doi: 10.12938/bmfh.2015-016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Anuja GI, Latha P, Suja SR, Shyamal S, Shine VJ, Sini S, Pradeep S, Shikha P, Rajasekharan S. J. Ethnopharmacol. 2010;132:456–460. doi: 10.1016/j.jep.2010.08.038. [DOI] [PubMed] [Google Scholar]
  • 256.Ismail N, Ismail M, Azmi NH, Bakar MFA, Yida Z, Abdullah MA, Basri H. Biomed. Pharmacother. 2017;95:780–788. doi: 10.1016/j.biopha.2017.08.074. [DOI] [PubMed] [Google Scholar]
  • 257.Radad K, Moldzio R, Taha M, Rausch WD. Phytother. Res. 2009;23:696–700. doi: 10.1002/ptr.2708. [DOI] [PubMed] [Google Scholar]
  • 258.Rahman AHMM, Biswas MC, Islam AKMR, Zaman ATMN. Wudpecker J. Med. Plants. 2013;2:99–109. [Google Scholar]
  • 259.Heo HJ, Park YJ, Suh YM, Choi SJ. Biosci. Biotechnol. Biochem. 2003;67:284–1291. doi: 10.1271/bbb.67.1284. [DOI] [PubMed] [Google Scholar]
  • 260.Cao JX, Zhang QY, Cui SY, Cui XY. J. Ethnopharmacol. 2010;130:163–166. doi: 10.1016/j.jep.2010.03.023. [DOI] [PubMed] [Google Scholar]
  • 261.Uddin MZ, Arefin MK, Alam MF, Kibria G, Podder SL, Hassan MA. J. Asiat. Soc. Bangladesh Sci. 2017;43:101–123. [Google Scholar]
  • 262.Thamizhoviya G, Kirjayini PP, Vanisree AJ. Curr. Sci. 2017;112:295–303. [Google Scholar]
  • 263.Asaduzzaman M, Uddin MJ, Kader MA, Alam AHMK, Rahman AA, Rashid M, Kato K, Tanaka T, Takeda M, Sadik G. Psychogeriatrics. 2014;14:1–10. doi: 10.1111/psyg.12031. [DOI] [PubMed] [Google Scholar]
  • 264.Furukawa Y, Okuyama S, Amakura Y, Watanabe S, Fukata T, Nakajima M, Yoshimura M, Yoshida T. Int. J. Mol. Sci. 2012;13:1832–1845. doi: 10.3390/ijms13021832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Satou T, Ogawa Y, Koike K. Phytother. Res. 2015;29:1246–1250. doi: 10.1002/ptr.5372. [DOI] [PubMed] [Google Scholar]
  • 266.Fu Y, Si Z, Li P, Li M, Zhao H, Jiang L, Xing Y, Hong W, Ruan L, Wang JS. Metab. Brain Dis. 2017;32:1295–1309. doi: 10.1007/s11011-017-0038-9. [DOI] [PubMed] [Google Scholar]
  • 267.VanGilder RL, Kelly KA, Chua MD, Ptachcinski RL, Huber JD. Exp. Brain Res. 2009;197:23–34. doi: 10.1007/s00221-009-1866-6. [DOI] [PubMed] [Google Scholar]
  • 268.Mohan M, Attarde D, Momin R, Kasture S. Nat. Prod. Res. 2013;27:2140–2143. doi: 10.1080/14786419.2013.778853. [DOI] [PubMed] [Google Scholar]
  • 269.Challal S, Buenafe OE, Queiroz EF, Maljevic S, Marcourt L, Bock M, Kloeti W, Dayrit FM, Harvey AL, Lerche H, Esguerra CV, Chem ACS. Neurosci. 2014;5:993–1004. doi: 10.1021/cn5001342. [DOI] [PubMed] [Google Scholar]
  • 270.De Rose F, Marotta R, Poddighe S, Talani G, Catelani T, Setzu MD, Solla P, Marrosu F, Sanna E, Kasture S, Acquas E. PLoS ONE. 2016;11:e0146140. doi: 10.1371/journal.pone.0146140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 271.Reza AA, Hossain MS, Akhter S, Rahman MR, Nasrin MS, Uddin MJ, Sadik G, Alam AHMK, Complement BMC. Altern. Med. 2018;18:123. doi: 10.1186/s12906-018-2182-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 272.Kazmi I, Afzal M, Ali B, Damanhouri ZA, Ahmaol A, Anwar F. Asian Pac. J Trop. Med. 2013;6:433–437. doi: 10.1016/S1995-7645(13)60069-3. [DOI] [PubMed] [Google Scholar]
  • 273.Rahmatullah M, Jahan R, Azam FS, Hossan S, Mollik MAH, Rahman T. Afr. J. Tradit. Complement. Altern. Med. 2011;8:53–65. doi: 10.4314/ajtcam.v8i5S.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 274.Shoibe M, Chy MNU, Alam M, Adnan M, Islam MZ, Nihar SW, Rahman N, Suez E. Biomedicines. 2017;5:63. doi: 10.3390/biomedicines5040063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 275.Chang CW, Chang WT, Liao JC, Chiu YJ, Hsieh MT, Peng WH, Lin YC. Evid. Based Complement. Alternat. Med. 2012 doi: 10.1155/2012/135379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.Raihan MO, Habib MR, Brishti A, Rahman MM, Saleheen MM, Manna M. Drug Discov. Ther. 2011;5:185–189. doi: 10.5582/ddt.2011.v5.4.185. [DOI] [PubMed] [Google Scholar]
  • 277.Kumar L, Ali SA. Biosci. Biotech. Res. Comm. 2015;8:197–203. [Google Scholar]
  • 278.Sulaiman MR, Zakaria ZA, Mohamad AS, Ismail M, Hidayat MT, Israf DA, Adilius M. Pharm. Biol. 2010;48:861–868. doi: 10.3109/13880200903302820. [DOI] [PubMed] [Google Scholar]
  • 279.Sharmen F, Mannan A, Rahman MM, Chowdhury MAU, Uddin ME, Ahmed AA. Asian Pac. J Trop. Biomed. 2014;4:137–142. doi: 10.1016/S2221-1691(14)60222-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280.Mao QQ, Huang Z, Zhong XM, Feng CR, Pan AJ, Li ZY, Ip SP, Che CT. J. Ethnopharmacol. 2010;128:336–341. doi: 10.1016/j.jep.2010.01.050. [DOI] [PubMed] [Google Scholar]
  • 281.Chen M, Chang YY, Huang S, Xiao LH, Zhou W, Zhang LY, Li C, Zhou RP, Tang J, Lin L, Du ZY. Mol. Nutr. Food Res. 2018;62:1700281. doi: 10.1002/mnfr.201700281. [DOI] [PubMed] [Google Scholar]
  • 282.Wang XS, Zhang ZR, Zhang MM, Sun MX, Wang WW, Xie CL, Complement BMC. Altern. Med. 2017;17:412. doi: 10.1186/s12906-017-1922-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283.Ali MS, Dash PR, Nasrin M. BMC Complement. Altern. Med. 2015;15:158. doi: 10.1186/s12906-015-0670-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Mukherjee PK, Kumar V, Mac M, Houghton PJ. Planta Med. 2007;73:283–285. doi: 10.1055/s-2007-967114. [DOI] [PubMed] [Google Scholar]
  • 285.Eubanks LM, Rogers CJ, Beuscher AE, Koob GF, Olson AJ, Dickerson TJ, Janda KD. Mol. Pharm. 2006;3:773–777. doi: 10.1021/mp060066m. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J. Neurobiol. Dis. 2005;19:96–107. doi: 10.1016/j.nbd.2004.11.009. [DOI] [PubMed] [Google Scholar]
  • 287.Esposito G, Scuderi C, Savan C, Steardo L, Jr, De Filippis D, Cottone P, Iuvone T, Cuomo V, Steardo L. Br. J. Pharmacol. 2007;151:1272–1279. doi: 10.1038/sj.bjp.0707337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 288.Alhebshi A, Gotoh M, Suzuki I. Biochem. Biophys. Res. Commun. 2013;433:362–367. doi: 10.1016/j.bbrc.2012.11.139. [DOI] [PubMed] [Google Scholar]
  • 289.Okugawa H, Ueda R, Matsumoto K, Kawanishi K, Kato A. Phytomedicine. 1995;2:119–126. doi: 10.1016/S0944-7113(11)80056-5. [DOI] [PubMed] [Google Scholar]
  • 290.Kuboyama T, Tohda C, Komatsu K. Br. J. Pharmacol. 2005;144:961–971. doi: 10.1038/sj.bjp.0706122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 291.Zhang Y, Qiao L, Song M, Wang L. Pharmacogn. Mag. 2014;10:509–516. doi: 10.4103/0973-1296.141777. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Natural Products and Bioprospecting are provided here courtesy of Springer

RESOURCES