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ABSTRACT: Most reproductive biologists who study female gametes will agree with the 16th century anatomist William Harvey’s
doctrine: ‘Ex Ovo Omnia’. This phrase, which literally translates to ‘everything from the egg’, recognizes the centrality of the egg in animal
development. Eggs are most impressive cells, capable of supporting development of an entirely new organism following fertilization or
parthenogenetic activation. Not so uniformly embraced in the field of reproductive biology is the nomenclature used to refer to the female
germ cell. What is an oocyte? What is an egg? Are these terms the same, different, interchangeable? Here we provide functional definitions
of the oocyte and egg, and how they can be used in the context of mammalian gamete biology and beyond.

Key words: oocyte / oocyte maturation / egg / gamete / mammalian

The mammalian oocyte is the ‘founder cell’ and refers to a female
germ cell arrested in prophase of meiosis I. In the ovary, follicle-
enclosed oocytes are found in follicles at all stages of development, in-
cluding primordial, primary, secondary, early antral and antral follicles.
Although these oocytes may vary in size due to differences in their
growth phase, they are all arrested in prophase of meiosis I. Oocytes
are characterized by a nucleus, or germinal vesicle, with an intact nu-
clear envelope that is readily visible by transmitted light microscopy
(Fig. 1A). Oocytes also have a minimal perivitelline space or gap be-
tween the plasma membrane and zona pellucida (Ueno and Niimura,
2008; Yoshida and Niimura, 2011).

The mammalian oocyte becomes an egg through the process of
meiotic maturation (Figs 1, 2, and 3). In response to the luteinizing hor-
mone surge that triggers ovulation, the oocyte resumes meiosis in vivo.
Meiotic competence—the ability to undergo meiotic maturation—is
achieved once oocytes have reached a critical size threshold, and in
mice, meiotic maturation can be induced spontaneously in vitro by re-
moving oocytes from the follicle (Durinzi et al., 1995; Kanatsu-
Shinohara et al., 2000). In the first steps of meiotic maturation,

chromatin condenses, the nuclear envelope surrounding the oocyte
breaks down (often referred to as germinal vesicle break down), and a
meiotic spindle forms. The cells complete meiosis I with separation of
homologous chromosomes and extrusion of the first polar body.
Meiosis I is followed immediately by meiosis II, which occurs without
an intervening round of DNA replication. The cells then enter a second
meiotic arrest at metaphase of meiosis II (MII) with a characteristic mei-
otic spindle. We refer to a gamete arrested at MII as an egg because
functionally at this stage, the mammalian egg can undergo normal fertili-
zation if sperm are present and support normal embryo development.
Upon fertilization, the egg completes meiosis with separation of sister
chromatids and extrusion of the second polar body.

Our nomenclature of an egg differs from others who refer to an
egg or mature oocyte as a cell that has completed meiosis. Logically
the defining characteristic of a mature egg would be its DNA content
with 1N 1C signifying a haploid cell, where N refers to the number of
chromosomes and C refers to the number of chromatids or copies
of DNA. However, careful consideration of the process of female
mammalian meiosis reveals a counterintuitive reality; if an egg is
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..defined as being 1N 1C, then mammals do not have eggs. This reality
is because in female mammals, meiosis is not completed until fertiliza-
tion occurs, and by this time, the sperm genome is already present.
Thus, unlike men, women never have purely haploid cells in their
body. From an evolutionary perspective, it may be advantageous for
mammalian eggs to lack a truly haploid phase. The tight link between
the completion of meiosis and fertilization ensures that the haploid fe-
male and male genomic content will be present synchronously within
the same cytoplasm to enable syngamy of the female and male pronu-
clei, which is a prerequisite for successful zygote development.
Moreover, the interconnected nature of the completion of meiosis
and fertilization may be a mechanism to reduce parthenogenesis.

Given the ethereal haploid phase of the egg in mammals, our no-
menclature instead relies on a functional definition in which an egg is a
cell that can be fertilized to produce a normal embryo. In mammals,
this occurs at MII when the cell has a DNA content of 1N 2C (homol-
ogous chromosomes have segregated but sister chromatids have not).
The meiotic stage of eggs appears to be consistent among all
Eutherian mammals although much of our data are based on the
mouse model. There is a paucity of information to define at what
stage fertilization occurs in the human gamete upon natural ovulation
in unstimulated cycles because of the restrictions (practical, legal and
ethical) of collecting human eggs from the ampullae. Of note, because
ART-conceived children will likely account for 1.4% of the global

Figure 1. Morphological differences between an oocyte and an egg. Transmitted light images showing key differences between a mamma-
lian (mouse) (A) oocyte and (B) egg. The egg was obtained following in-vitro maturation. The nucleus or germinal vesicle is highlighted by the arrow
and the polar body is highlighted by the asterisk. Note the increased perivitelline space (PVS) in the egg relative to the oocyte. Scale bar ¼ 20 mm.

Figure 2. Mammalian meiotic maturation transforms an oocyte into an egg. Schematic of the key steps of meiotic maturation in which
an oocyte arrested at prophase of meiosis I resumes meiosis, completes meiosis I and arrests at metaphase of meiosis II. This process is initiated
in vivo by the hormonal trigger for ovulation (LH surge) and can occur spontaneously in vitro when the oocyte is removed from the follicle.
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..population by 2100, ART has and will continue to fundamentally
change the way we reproduce (Faddy et al., 2018). Conception by
ART has demonstrated that it is technically possible to fertilize human
gametes prior to MII and even obtain live offspring from these
approaches. However, the efficacy is low, and these examples are the
exception rather than the rule (Vanhoutte et al., 2005). If fertilizing
cells prior to MII resulted in robust outcomes, this methodology would
be widely adopted in ART clinics, which is not the case. In the mouse,
IVF prior to MII is possible. However, the outcomes improve signifi-
cantly with more advanced stages of meiotic progression, and the true
developmental potential of gametes that are fertilized before MII has
not been systematically examined (Iwamatsu and Chang, 1972). In can-
ids, bitches ovulate oocytes at metaphase of meiosis I, but fertilization
occurs at 90 h post-ovulation when the cells are at the MII stage
(Reynaud et al., 2005; Nagashima et al., 2015). In fact, sperm penetra-
tion of immature oocytes is a rare exception, and only occurred 3 out
of 112 times in one study (Reynaud et al., 2005).

In mammals, oocytes and eggs are distinct in several ways (Table I,
Figs 1 and 3) (Ducibella et al., 1988; Combelles and Albertini, 2001;
Sanfins et al., 2003; Duncan et al., 2005, 2016; Ueno and Niimura,
2008; Tartia et al., 2009; Yoshida and Niimura, 2011; Duan and Sun,

2019). Oocytes are found in the ovary, are arrested in prophase of
meiosis I, are characterized by an intact nucleus, have an interphase
microtubule network, have cortical symmetry (actin, cortical granules,
zinc vesicles), have minimal perivitelline space and cannot regulate their
volume independently. Oocytes are not capable of being fertilized nor-
mally when exposed to sperm because they fail to elicit normal egg ac-
tivation, including changes in intracellular calcium and extracellular zinc
(Mehlmann and Kline, 1994; Jones et al., 1995; Miao and Williams,
2012; Duncan et al., 2016). On the other hand, eggs are found in the
oviduct in vivo and are arrested at MII. Eggs are morphologically distinct
from oocytes because they lack a nucleus, have a visible first polar
body and have an enlarged perivitelline space in the vicinity of the first
polar body. Eggs have a spindle and are characterized by cortical asym-
metry (actin, cortical granules, zinc vesicles, and polarity markers). Eggs
possess the machinery to regulate cell volume independently, and, if
fertilized, can support normal embryonic development.

Ideally, our terminology should not be unique to mammals but in-
stead would be broadly relevant to most animals. We would do the
field a great disservice if the terms we used were only applicable to
one type of animal, but the same cell in a different animal had different
terminology (Wessel, 2009). Our field is already sufficiently

............................................................................................................................................................................................................................

Table I Parameters that distinguish a mammalian oocyte from an egg.*

Oocyte Egg

In vivo tissue environment Ovary Oviduct

Meiotic stage Prophase of meiosis I Metaphase of meiosis II

Defining features by transmitted light Intact nucleus Lack of a nucleus;

presence of polar body

Perivitelline space Minimal Enlarged

Independent cell volume regulation Not possible Possible

Microtubule cytoskeleton Interphase Meiotic spindle

Cortical organization Symmetric Asymmetric

Normal fertilization Not possible Possible

*Here we distinguish between an oocyte and egg, but when the mammalian gamete is neither at prophase of meiosis I nor metaphase of meiosis II, the precise cell cycle stage should
be specified (e.g. cell at pro-metaphase I, metaphase I).

Figure 3. Cell cycle, chromosome and cytoskeleton changes during mammalian meiotic maturation. High-resolution imaging
reveals clear differences in cell cycle stage as well as chromosome and microtubule configurations as an oocyte matures into an egg during mammalian
meiotic maturation (green ¼ tubulin, blue ¼ DNA, gray ¼ centromeres; anti-centromere antibody [ACA]). The gametes shown here are mouse in
origin. Scale bar ¼ 10mm.

Oocyte and egg terminology 799
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complicated without imposing many different languages. Thus, after ini-
tiation of meiotic maturation, ‘eggs’ are fertilized at all stages of meio-
sis, depending on the species of the animal. For example, female
gametes in marine invertebrates are typically fertilized at metaphase I,
or, less commonly, at prophase I. Similarly, most insects are fertilized
at metaphase I, whereas sea urchins are fertilized after having com-
pleted meiosis. The key characteristic of the terminology is at what
point the female gamete becomes fertilizable and able to support nor-
mal embryo development. When it does, the term for this cell is ‘egg’,
and the term for the cell leading up to that point is an ‘oocyte’.

In summary, the terminology of ‘oocyte’ and ‘egg’ is ultimately
functional—mammalian oocytes mature to become eggs that are fertil-
izable and capable of supporting normal subsequent embryo develop-
ment, whereas oocytes are generally not. We encourage the field of
reproductive science and medicine to consider these distinctions and
be deliberate when using the terms oocyte and egg to communicate
effectively.
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