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Abstract
Classification of benign and malignant in lung nodules using chest CT images is a key step in the diagnosis of early-stage lung
cancer, as well as an effective way to improve the patients’ survival rate. However, due to the diversity of lung nodules and the
visual similarity of lung nodules to their surrounding tissues, it is difficult to construct a robust classification model with
conventional deep learning–based diagnostic methods. To address this problem, we propose a multi-model ensemble learning
architecture based on 3D convolutional neural network (MMEL-3DCNN). This approach incorporates three key ideas: (1)
Constructed multi-model network architecture can be well adapted to the heterogeneity of lung nodules. (2) The input that
concatenated of the intensity image corresponding to the nodule mask, the original image, and the enhanced image corresponding
to which can help training model to extract advanced feature with more discriminative capacity. (3) Select the corresponding
model to different nodule size dynamically for prediction, which can improve the generalization ability of the model effectively.
In addition, ensemble learning is applied in this paper to further improve the robustness of the nodule classification model. The
proposed method has been experimentally verified on the public dataset, LIDC-IDRI. The experimental results show that the
proposed MMEL-3DCNN architecture can obtain satisfactory classification results.

Keywords Benign and malignant classification . Computer-aided diagnosis . Image enhancement . Multi-model ensemble
architecture . 3DCNN

Introduction

According to global cancer statistics in 2018, lung cancer,
prostate cancer, breast cancer, and colorectal cancer are the
most common causes of cancer death in humans, and they
account for 45% of all cancer deaths, 25% of which are caused
by lung cancer (5-year survival rate is 18%) [1]. However, if
lung cancer can be diagnosed early, the patient’s 5-year sur-
vival rate can be tripled [2]. Early lung cancer diagnosis using
lung-based computed tomography (CT) images is an impor-
tant strategy to improve patient survival [3]. In particular, the
use of deep learning–based methods in CT images to classify

the benign and malignant lung nodules is a valuable task.
Because it can help doctors to judge the benign and malignant
of early lung nodules, to reduce the risk of misdiagnosis and
missed diagnosis, which is one of the essential tasks in the
early detection of lung cancer [4, 5]. This work has important
clinical significance, and its typical application is to provide
relevant evidence for the follow-up treatment plan for lung
cancer diagnosis. For example, if the result of the classifica-
tion is benign, CT monitoring can be performed to continue
observation; if the result of the classification is malignant,
in vivo detection or even surgical resection is required [6].

In recent years, the benign and malignant classification
methods of lung nodules have been developed [7–16].
However, due to the heterogeneity of lung nodules on CT
images, it is difficult to obtain a satisfactory classification
result. For example, for the juxtapleural nodules (Fig. 1 (b1,
m1)), calcific nodules (Fig. 1 (b3–4)), ground-glass opacity
nodules (Fig. 1 (b6, m6), and cavitary nodules (Fig. 1 (m4)),
they reflect the heterogeneity of lung nodules in terms of size,
grayscale, shape, and texture. Besides, due to the high degree
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of similarity between benign nodules and malignant nodules,
it is also a challenge to develop a robust classification model.
For example, for some isolated nodules, although they are
very similar, they do not belong to the same category (smaller
scales are shown in Fig. 1 (b2, m2), and larger scales are shown
in Fig. 1 (b5, M5))). Meanwhile, there is a similar situation for
the juxtapleural nodule (Fig. 1 (b1, m1)) and the ground-glass
opacity nodule (Fig. 1 (b6, m6)), that is, their appearance is
very similar, but they belong to different categories.

To solve the difficult problem of benign and malignant
classification of lung nodules, we propose a multi-model en-
semble learning architecture based on 3D convolutional neu-
ral network (MMEL-3DCNN). The architecture consists of
three different types of network structures, namely a 3D
multi-model network structure based on VggNet [17],
ResNet [18], and InceptionNet [19]. In addition, to better
adapt to different scales of lung nodules, we divide each net-
work architecture into three sub-network structures of differ-
ent input sizes. In general, MMEL-3DCNN can perform be-
nign and malignant judgments on various types of lung
nodules and achieve better classification results. Our

technical contributions in this work are mainly in the
following four aspects.

(1) To take full advantage of the 3D spatial informa-
tion of lung nodules, we designed three different
structures of 3D CNN based on VggNet, ResNet,
and InceptionNet (Fig. 2).

(2) To make the model had better adapt to lung nodules of
various sizes, we have designed three sub-networks with
different input sizes under a specific architecture
(“Network Architecture” section).

(3) For purpose of more efficiently extracting advanced fea-
tures with stronger discriminative ability, we concatenate
the original image and its corresponding enhanced im-
age, and then send it to the network for training (“Input
Improvement” section).

(4) To further improve the generalization ability of the mod-
el, we dynamically select the corresponding network
model for prediction according to the size of the nodule,
and then use their mean as the final prediction result
(“Output Improvement” section).

(b₁) (b₂) (b₃) (b₄) (b₅) (b₆)

(m₁) (m₂) (m₃) (m₄) (m₅) (m₆)

Fig. 1 Example image of benign and malignant nodules in CT image. Note that the green-labeled subgraph (b1–6) and the red-labeled subgraph (m1–6)
represent six benign nodules and six malignant nodules, respectively
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Fig. 2 The proposed 3D CNN-
based multi-model ensemble
learning framework: 3DMM-
VggNet, 3DMM-IncepNet, and
3DMM-ResNet represent 3D
multi-model VggNet, ResNet,
and IncepNet (InceptionNet), re-
spectively. The final prediction
result is a weighted average of the
output probabilities of the three
modules, where w1, w2, and w3
are all one-third
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Related Works

The classification task of lung nodules generally consists of
three stages, namely segmentation, feature extraction, and clas-
sification. In recent years, many solutions have been proposed
for the benign and malignant classification of lung nodules.
These methods can generally be divided into classification
methods based on traditional machine learning and classifica-
tion methods based on deep convolutional neural networks.

In the classification method based on traditional machine
learning, in order to better distinguish between benign nodules
and malignant nodules, solutions based on support vector ma-
chines, random forests, clustering, and self-encoders have
been widely used [20–26]. For example, Ashis et al. first used
semi-automatic techniques to segment the nodules, then ex-
tracted the shape and texture features of the nodules, and then
selected the features, and finally sent the relevant features to
the support vector machine for classification [27]. Similarly,
Sasidhar et al. first used the active contour model to segment
the lungs, then extracted the texture features using the gray
level co-occurrence matrix, and also extracted the Haralick
texture features, and finally used the support vector machine
to classify the nodules [28]. In addition, to ensure the validity
of feature extraction, Hu et al. extracted the intensity, shape,
and texture features of the nodules based on the nodule mask
marked by four radiologists, and finally the improved random
forest classifier was used to classify the benign and malignant
nodules [29]. Different from the above method, to avoid the
problem of data labeling (labeling of data in radiology field is
relatively expensive), Wei et al. proposed a new unsupervised
spectral clustering algorithm to distinguish benign and malig-
nant nodules [30].

In the classification method based on deep convolutional
neural networks, people use CNN to automatically extract the
relevant features of lung nodules, replacing traditional hand-
designed features (such as shape and texture features), and the
classification model of the lung nodules is trained end-to-end
in a supervised learning style. Such methods can be broadly
divided into two categories, namely, a deep learning method
based on 2D CNN and 3D CNN.

Methods based on 2D CNN have been widely proposed
[31–36]. For example, Liu et al. proposed a multi-view
convolutional neural network (MV-CNN) method to classify
the benign and malignant lung nodules. Unlike traditional
CNN methods, the MV-CNN input contains multiple views
of the lung nodules [37]. In contrast to the above method, to
reflect the spatial information of the lung nodules onto the 2D
image block, Lee et al. propose a method of weighted averag-
ing the multi-layer CT images to generate 2D image blocks for
CNN training [38]. Besides, Sun et al. proposed a multi-
channel ROI-based deep learning method. The input used to
train the model contains original data, nodule mask, and gra-
dient image of prominent texture features [39]. The most

typical of these is a new end-to-end deep learning architecture
(called the dense convolutional binary-tree networks) pro-
posed by Liu et al. Also, to introducing central cropping op-
erations into ResNet, the architecture separates the isolated
transition layer of ResNet and merges it with dense blocks to
compress the model [40].

At present, although there are not many methods for the clas-
sification of benign and malignant lung nodules using 3D CNN,
some scholars have conducted related research in recent years
[41–44]. For example, in order to make full use of the 3D spatial
information of lung nodules, Kang et al. proposed a 3D multi-
view convolutional neural network, combining the chain struc-
ture and the directed acyclic graph structure to explore the benign
and malignant classification of lung nodules [45]. Besides, there
is a hierarchical learning framework (multi-scale convolutional
neural network) proposed by Shen et al., which captures the
heterogeneity of nodules by extracting discriminative features
from the stacked layers [46]. It is worth noting that Shen et al.
proposed another deep learning architecture for the benign and
malignant classification of lung nodules, namely a multi-
cropping convolutional neural network (MC-CNN). MC-CNN
is different from the nodule classification method, which relies
on nodule segmentation and feature extraction. The main inno-
vation is to propose a multi-cropping pooling strategy that can
adapt well to nodule heterogeneity and directly to the original
nodule data is modeled [47].

The MMEL-3DCNN architecture proposed in this paper
has the following four differences from the existing methods:
(1) changing the multi-branch network structure to a multi-
model network architecture, (2) dynamically selecting an ap-
propriate model for prediction based on the size of the nodule,
(3) feeding the intensity stretched image together with the
original image data into the network for training, (4) improv-
ing the robustness of benign and malignant classification of
nodules by the ensemble learning style.

Methods

The proposed theoretical method is described in detail below.
This section is divided into four subsections: the “Network
Architecture” section outlines the proposed network architec-
ture, the “Input Improvement” section describes our improve-
ments in input, and the “Output Improvement” section de-
scribes our improvements in output, and the last section gives
our training procedure.

Network Architecture

Our proposed 3D CNN-based integrated learning frame-
work consists of three different network structures,
namely VggNet-based, ResNet-based, and InceptionNet-
based 3D multi-model network architecture. For a
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central voxel point for a given lung nodule, we extract-
ed three different scales of 3D data blocks containing
the lung nodules as inputs to the three multi-model net-
work architectures. Moreover, by combining the output
probabilities of the three network architectures to obtain
the final prediction results, Figure 2 shows the overall
architecture of the proposed benign and malignant clas-
sification of lung nodules.

3D Multi-model VggNet

Figure 3 shows the network architecture diagram of the
3D multi-model VggNet (3DMM-VggNet) proposed in
this paper. Table 1 lists the corresponding network pa-
rameters. The architecture combines three sub-networks
of different structures, and the input corresponding to
each sub-network is different. To improve the generali-
zation performance of the model, we used the batch
normalization operation [48], and after each convolution
operation, the nonlinear parameter rectification linear
unit (PReLU) was used as the activation function [49].

3D Multi-model ResNet

As shown in Fig. 4, the architectural diagram of the
proposed 3D multi-model residual network (3DMM-
ResNet) is shown, and Table 2 lists its corresponding
network parameters. Similarly, the network fuses three
sub-networks of different structures, and the input cor-
responding to each sub-network is different. In addition,
batch normalization operations and nonlinear activation
functions PReLU are also used to improve the robust-
ness of the model.

3D Multi-model IncepNet

Figure 5 shows the architecture of the proposed 3D multi-
model inception network (3DMM-IncepNet). Table 3 lists
the corresponding network parameters. The overall architec-
ture of the network is similar to 3DMM-ResNet and includes
three sub-networks of different structures. Similarly, these
three sub-networks also use batch normalization operations
and PReLU activation functions.

32x32x32x2

3x3x3,k 3x3x3,kBN, PReLU BN, PReLU

3D-ConvBlock

(a)

(b)

48x48x48x2
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3D-ConvBlock2

FC
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3D-ConvBlock2 3D-ConvBlock3 3D-ConvBlock3

3D-ConvBlock1 3D-ConvBlock2 3D-ConvBlock2

Fig. 3 (a) The proposed 3D multi-model VggNet (3DMM-VggNet),
where the symbols “MP” and “FC” represent the max pooling operation
and the fully connected operation, respectively. (b) The structural dia-
gram of 3D convolution block (3D-ConvBlock) in which the symbols
“k,” “BN,” and “PReLU” represent the number of channels, the batch

normalization operation, and the nonlinear activation function, respec-
tively. In addition, unlike the traditional 3D input, the fourth dimension
of the proposed input data has two channels, one is the original image and
the other is its corresponding enhanced image
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Input Improvement

Due to the wide variety of lung nodules, some of which have
low contrast with their surrounding environment, such nodule
networks often fail to adequately extract their features, making
it difficult to identify such nodules. The most typical are
ground-glass opacity nodules (as shown in Fig. 7(a)) and
darker small nodules (as shown in Fig. 7(b)). To solve this
problem, we perform image enhancement on the data sent to
the network, thereby suppressing features that are not of inter-
est in the image, and expanding the difference between the
lung nodules and the background.

Specifically, in order for the proposed network architecture to
better handle low-contrast nodules, we set the fourth dimension
(number of channels) of the input data to two; one is the original
image and the other is its corresponding enhanced image. Image
enhancement methods can be generally divided into two catego-
ries, one is to adjust the distribution of the intensity histogram to
achieve image enhancement and the other is to directly transform

the intensity according to the formula to improve the contrast of
the image. This paper attempts five image enhancement
methods, namely histogram equalization (HE) [50], adaptive his-
togram equalization (AHE) [51], gamma transformation
(Gamma Trans) [52], logarithmic transformation (Log Trans)
[53], and intensity stretch transformation. The intensity stretching
method differs from the Log Trans and Gamma Trans methods
in that the intensity stretching can improve the dynamic range of
the image and convert the original low-contrast image into a high
contrast image.

ce ¼ 1

1þ 0:5= niþ τð Þð Þk ð1Þ

The calculation formula of the intensity stretch transforma-
tion used in this paper is shown in Eq. (1). Wherein, the sym-
bol “ni” represents the input image after normalization, the
symbol “ce” represents the transformed output image, and
the parameter “k” represents the slope of the control function.
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3D-ConvBlock

32x32x32x2
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(b)
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1x1x1, n

3D-ResBlock1

3D-ResBlock13D-ConvBlock

3D-ResBlock1

3x3x3, m BN, PReLU

Fig. 4 (a) The proposed 3D
multi-model ResNet (3DMM-
ResNet), where the symbols
“MP” and “GAP” represent the
max pooling operation and the
global average pooling operation,
respectively. (b) The structural
diagram of 3D residual block
(3D-ResBlock) in which the
symbols “m, n,” “BN,” and
“PReLU” represent the number of
channels, the batch normalization
operation, and the nonlinear acti-
vation function, respectively.
Besides, the input data and the
3D-ConvBlock are the same as
described in Fig. 3

Table 1 Network parameters of
the 3DMM-VggNet. Building
blocks are shown in brackets with
the numbers of blocks stacked.
Downsampling is done using the
max pooling. The stride size of
the convolution operation is one.
The symbol “*” indicates that
there is no such operation

Layer name SubNet-S SubNet-M SubNet-L

Input size 16 × 16 × 16 × 2 32 × 32 × 32 × 2 48 × 48 × 48 × 2

3D-ConvBlock1 [3 × 3 × 3, 64] × 2 [3 × 3 × 3, 64] × 2 [3 × 3 × 3, 64] × 2

3D-ConvBlock2 [3 × 3 × 3, 64] × 2 [3 × 3 × 3, 128] × 2 [3 × 3 × 3, 128] × 2

3D-ConvBlock3 * [3 × 3 × 3, 128] × 2 [3 × 3 × 3, 128] × 2

FC 150 200 250

Output size 8 × 8 × 8 8 × 8 × 8 12 × 12 × 12

Nodule probability 2-d FC, softmax
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In the experiment, the value of k is 2. In addition, it should be
noted that the values of ni and ce are all [0, 1], τ is a very small
number (preventing the zero-dividing error), and the value in
the experiment is e−8.

As can be seen from Fig. 7, the image enhancement
method based on the histogram adjustment, although the
nodules are largely highlighted, the surrounding tissues
(blood vessels, lung walls, interlobular fissures, etc.) are
also enhanced to some extent. In particular, the HE

transformation method in Fig. 7. Similarly, the Log
Trans–based image enhancement method also signifi-
cantly enhanced the tissue surrounding the lung nodules,
such as the blood vessels in Fig. 7(a) and the interlob-
ular fissures in Fig. 7(b). Furthermore, as can be seen
from Fig. 7(a), the image enhancement method based on
the Gamma Trans can well suppress the tissue around
the nodule. However, for small nodules with lower in-
tensity, it does not show a good enhancement effect

3D-IncepBlock1 3D-IncepBlock2

GAP

GAP

3D-IncepBlock1 3D-IncepBlock23D-ConvBlock

3D-ConvBlock

32x32x32x2
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3D-IncepV1 3D-IncepV2 + 
3D-IncepBlock

(b)

Fig. 5 (a) The proposed 3D
multi-model InceptionNet
(3DMM-IncepNet), where the
symbol “GAP” represent the
global average pooling operation.
(b) The structural diagram of 3D
Inception block (3D-IncepBlock),
in which the detailed structures
represented by “3D-IncepV1”
and “3D-IncepV2” are shown in
Fig. 6. In addition, the input data
and the 3D-ConvBlock are the
same as described in Fig. 3

Table 2 Network parameters of the 3DMM-ResNet. Building blocks
are shown in brackets with the numbers of blocks stacked.
Downsampling is performed using Max Pooling before the first layer of

3D-ResBlock1 and 3D-ResBlock2. The stride size of the convolution
operation is one. The symbol “*” indicates that there is no such operation

Layer name SubNet-S SubNet-M SubNet-L

Input size 16 × 16 × 16 × 2 32 × 32 × 32 × 2 48 × 48 × 48 × 2

3D-ConvBlock [3 × 3 × 3, 96] × 2 [3 × 3 × 3, 64] × 2 [3 × 3 × 3, 32] × 2

3D-ResBlock1

1� 1� 1; 64
3� 3� 3; 64
3� 3� 3; 64
1� 1� 1; 128

2
664

3
775� 5

1� 1� 1; 48
3� 3� 3; 48
3� 3� 3; 48
1� 1� 1; 96

2
664

3
775� 4

1� 1� 1; 32
3� 3� 3; 32
3� 3� 3; 32
1� 1� 1; 64

2
664

3
775� 3

3D-ResBlock2 *

1� 1� 1; 64
3� 3� 3; 64
3� 3� 3; 64
1� 1� 1; 128

2
664

3
775� 7

1� 1� 1; 48
3� 3� 3; 48
3� 3� 3; 48
1� 1� 1; 96

2
664

3
775� 6

Output size 8 × 8 × 8 8 × 8 × 8 12 × 12 × 12

Nodule
probability

Global average pooling, 2-d fc, softmax
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(see the image corresponding to Gamma Trans in Fig.
7(b)). The intensity stretching method we used not only
highlights the nodules to a certain extent but also fur-
ther inhibits the tissue around the nodules. The quanti-
tative indicators corresponding to the above five image
enhancement methods are discussed in the “Ablation
Study” section.

Finally, to make the model better focus on the location,
shape, and intensity information of the nodule, we concatenate
the intensity image corresponding to the nodule mask image
with the original image and the enhanced image to form a
three-channel 3D data patch for the input of the model. In
other words, sending the mask image as input to the model
allows the model to be better extracted to representative fea-
tures, similar to the idea of an attention mechanism. In the
“Ablation Study” section, we will demonstrate its effective-
ness from an experimental perspective.

Output Improvement

At the beginning of the network architecture design, to adapt
to different sizes of lung nodules, we have designed three
multi-branch network architectures based on VggNet,
ResNet, and InceptionNet. As shown in Fig. 8, the multi-
branch network architecture based on VggNet is shown. The
other two multi-branch network architectures based on
ResNet and InceptionNet are transformed in a similar way to
VggNet, which combines them into a multi-branch network
through concatenate operations at the end of the three sub-
networks. In addition, the quantitative indicators of the
multi-branch network architecture are described in the abla-
tion experiments in the “Ablation Study” section.

The following are two reasons why we use the multi-
model network architecture to replace the multi-branch
network architecture.
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Fig. 6 The structural diagram of “3D-IncepV1” and “3D-IncepV2”, in which the symbols “p, q” and “s” indicate the number of channels and the stride of
the convolution operation, respectively, and “Concate” indicates the concatenate operation

Table 3 Network parameters of
the 3DMM-IncepNet. Building
blocks are shown in brackets with
the number of blocks stacked. The
symbol “*” indicates there is no
such operation

Layer name SubNet-S SubNet-M SubNet-L

Input size 16 × 16 × 16 × 2 32 × 32 × 32 × 2 48 × 48 × 48 × 2

3D-ConvBlock [3 × 3 × 3, 96] × 2 [3 × 3 × 3, 64] × 2 [3 × 3 × 3, 32] × 2

3D-IncepBlock1 p = 32, q = 128 p = 24, q = 96 p = 16, q = 64

3D-IncepBlock2 * p = 32, q = 128 p = 24, q = 96

Output size 8 × 8 × 8 8 × 8 × 8 12 × 12 × 12

Nodule probability Global average pooling, 2-d fc, softmax
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One is that the training time of the network model can be
greatly reduced (if the computer used for training must have at
least three or more GPUs). After we split a multi-branch net-
work architecture into three sub-networks, the complexity of
the network is greatly reduced. Since the three sub-networks
are independent, the training can be performed in parallel, that
is, the time for the completion of the training of the three sub-
networks depends only on the training time required for the
sub-network that trains the slowest. It is assumed that the
slowest training sub-network is the sub-network SubNet-L,
but the training time of the sub-network SubNet-L is largely
less than its corresponding multi-branch network architecture.
Because it is far less than the corresponding multi-branch
network architecture in terms of the size of the input data
and the network parameters that need to be trained. In

addition, if the experimental hardware environment has
enough GPUs and large enough video memory and memory,
then the nine sub-networks can be trained at the same time,
further reducing the training time of the entire classification
network. The time we spend training the network will be ex-
plained in the description of the “Experimental Environment”
section.

The second is that you can use the size information provid-
ed by LIDC to describe the size of the lung nodules. That is, an
appropriate network model can be dynamically selected for
prediction according to the size of the nodule. For example,
we train three network models M1, M2, and M3 using 16 ×
16 × 16, 32 × 32 × 32, and 48 × 48 × 48 sizes, respectively. If
the size of a given candidate nodule is less than 16 mm, then
we can use M1 and M2 for prediction and then take their

HE Trans AHE Trans Log Trans Gamma Trans Intensity StretchingGGO Nodule

(a)

(b)

HE Trans AHE Trans Log Trans Gamma Trans Intensity StretchingSmall Nodule 

Fig. 7 The visual comparison of five image enhancement methods,
where (a) shows a ground-glass opacity (GGO) nodule and (b) shows a
small nodule with a lower contrast. Besides, “HE” represents histogram

equalization, “AHE” represents adaptive histogram equalization, and
“Tran” is an abbreviation for “transformation”
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Fig. 8 Multi-branch network
architecture based on VggNet
(3DMB-VggNet). The
corresponding network
parameters are the same as those
corresponding to Fig. 3 (Table 1).
The only difference is that there is
one more concatenate operation at
the end of the multi-branch net-
work architecture
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average as the final benign and malignant probability. This is
because, for lung nodules less than 16mm in diameter, models
trained using larger scale 48 × 48 × 48 image blocks often
bring a lot of redundant information or even noise to the net-
work, which makes it not well adapted to such nodules.
Similarly, if the size of the lung nodules is greater than
16 mm, we will use M2 and M3 for prediction, and then take
the average of the two prediction results as the final output.
The reason for not selecting the model M1 to predict a nodule
larger than 16 mm is the 16 × 16 × 16 image block corre-
sponding to a large nodule larger than 16 mm contains almost
no context information,, and the model trained using it does
not extract the high-level semantic features of the image well.
Besides, the quantitative indicators corresponding to the mea-
sure of selecting the appropriate model for prediction based on
the size of the nodule will be described in the “Ablation
Study” section.

Training Procedure

The ratio of positive and negative samples we analyzed from
the lung image database consortium and image database re-
source initiative (LIDC-IDRI) dataset is approximately 1:2.
To alleviate the problem of the imbalance in the number of
positive samples (malignant nodules) and negative samples
(benign nodules), we oversampled the positive samples in
the training set so that the proportion of positive and negative
samples approached 1:1. To further improve the generaliza-
tion ability of the model, we expand the positive and negative
samples in the training set by the traditional data expansion
method (flip in three directions of X-axis, Y-axis, and Z-axis,
and 90° rotation of XOY plane), and finally expand the size of
the training set to 16 times.

Specifically, during the training process, we use the Adam
optimizer to update the model parameters [54]. To prevent
over-fitting, we use the early stop training strategy [55] (con-
tinue training if the performance of the model is not im-
proved), where the epoch of continuing training is 30 and
the total training algebra is 100. Besides, the batch size and
learning rate of the nine sub-networks corresponding to
3DMM-VggNet, 3DMM-ResNet, and 3DMM-IncepNet are
listed in Table 4.

Since the training and validation of these nine sub-network
architectures are independent of each other and the training
objectives are the probabilities of maximizing the correct class,

we achieve this by minimizing the cross entropy loss of each
training sample. For a given input sample with positive and
negative labels, assuming y is their true label, and then the cross
entropy loss function is defined as shown in Eq. (2).

L ¼ −
1

N
∑
N

n¼1
ynlog yn

0
� �

þ 1−ynð Þlog 1−yn
0

� �h i
ð2Þ

Where y′ represents the predicted probability of the model
and N represents the number of samples.

Data and Experiment

This chapter is divided into three subsections, the “Data” sec-
tion describes the data used, the “Evaluation Criteria” section
describes the evaluation criteria, and the “Experimental
Environment” section describes the experimental
environment.

Data

This paper uses a public dataset from the lung image database
consortium and image database resource initiative (LIDC-
IDRI). Among them, the slice interval ranges from 0.45 to
5.0 mm, and the axial plane resolution ranges from 0.46mm×
0.46 mm to 0.98 mm× 0.98 mm. In addition, the dataset was
scored by four experienced radiologists for each nodule with a
malignancy ranging from 1 to 5. The greater the value, the
higher the degree of malignancy. To classify the benign and
malignant lung nodules, we consider the average malignancy
less than 3 as benign nodules (LMN), the average malignancy
greater than 3 as malignant nodules (HMN), and the average
malignancy equal to 3 as uncertain nodules (not involved in
training and evaluation) [47, 56, 57].

Overall, the number of nodules with an average degree of
malignancy of 1, 2, 3, 4, and 5 was 288, 575, 1182, 343, and
62, after excluding the nodule samples with ID blur and nod-
ule size from 3 to 30 mm. Finally, in order to better evaluate
the robustness of the algorithm, we adopt the 5-fold cross
validation, in which the ratio of each fold, training set, valida-
tion set, and testing set, is 3:1:1, and the specific division of
the experimental data is shown in Table 5.

Table 4 The batch size and
learning rate of nine sub-networks
corresponding to 3DMM-
VggNet, 3DMM-ResNet, and
3DMM-IncepNet

Network Name 3DMM-VggNet 3DMM-ResNet 3DMM-IncepNet

Input Size 16 32 48 16 32 48 16 32 48

Batch Size 32 24 16 32 32 24 32 32 24

Learning Rate 3 × e−5 3 × e−5 1 × e−5 3 × e−4 3 × e−4 1 × e−4 3 × e−4 3 × e−4 1 × e−5
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Evaluation Criteria

In addition to using the AUC score to assess the performance
of benign and malignant classification of lung nodules, three
more common indicators were used, sensitivity (SEN), spec-
ificity (SPC), and accuracy (ACC). Their definitions are
shown in Eqs. (3)–(5), respectively.

SEN ¼ TP
TP þ FN

ð3Þ

SPC ¼ TN
TN þ FP

ð4Þ

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

ð5Þ

where TP represents the number of samples that will predict
the positive sample correctly; TN represents the number of sam-
ples that will predict the negative sample correctly;FP represents
the number of samples that predict the negative sample as the
positive sample; FN represents the number of samples that pre-
dict the positive sample as the negative sample.

Experimental Environment

We use a dynamic, object-oriented scripting language (Python)
for related experiments, the corresponding version number is 3.6,
and the integrated development environment is PyCharm.
Besides, we use the high-level neural network API (Keras) to
build the designed network architecture. To speed up the training
of the network model, all of our experiments were performed on
a server with an Intel(R)Xeon(R) processor and 125GBofmem-
ory, and the server had ten GPUs. However, there are actually
three GPUs that can be applied for (GPUmodel NVIDIA GTX-
1080Ti GPU, video memory size 11GB).

According to our experiments, the time required for the
convergence of the three network models 3DMM-VggNet,
3DMM-ResNet, and 3DMM-IncepNet is shown in Table 6.
Correspondingly, the time required for their original three
multi-branch network architectures to converge is shown in
Table 7. Comparing the experimental results of Tables 6 and
7, it can be seen that the improvement from the original multi-
branch network architecture to the multi-model network archi-
tecture can greatly shorten the training time of the network,
which also confirms the theoretical analysis described in the
“Output Improvement” section of this paper.

Results and Discussion

This chapter is divided into four subsections, of which the
“Overall Performance” section analyzes the overall perfor-
mance of the proposed method, the “Ablation Study” section
describes the ablation experiment of the proposed architec-
ture, the “Experimental Comparison” section introduces our
comparative experiments and experimental results, and the
last section explain why we chose VggNet, ResNet, and
IncepNet for integration.

Overall Performance

For purpose of more intuitively observing the overall perfor-
mance of the proposed method, we plot the ROC curves cor-
responding to the three network architectures (3DMM-
VggNet, 3DMM-IncepNet, and 3DMM-ResNet), and the cor-
responding ROC curves for their ensemble (as shown in
Fig. 9). It can be seen from Fig. 9 that the sensitivity of the
three separate network architectures can reach more than 90%
with the false positive rate of 0.3, which indicates that the 3D
CNN-based network architecture proposed in this paper can
extract features with strong nodule discrimination ability from
CT images. Besides, we can clearly see that the ensemble
thinking is effective for the classification of benign and ma-
lignant lung nodules.

Table 8 lists the four quantitative metrics used to evaluate
the performance of the algorithm, namely the sensitivity, spec-
ificity, accuracy, and AUC score for the three network archi-
tectures and their ensemble. As can be seen from Table 8, the
three AUC scores corresponding to the three network archi-
tectures are higher than 90%, and after they are integrated, the
four evaluation indicators are improved. Especially for

Table 5 The distribution of data for the training set, validation set, and
testing set in each fold cross validation

Malignancy
level

Training
set (764)

Validation
set (252)

Testing
set
(252)

1 174 57 57

2 345 115 115

3 * * *

4 207 68 68

5 38 12 12

Table 6 Time required for the three 3D CNN-based multi-model network architectures to converge. Among them, the unit is minutes (m)

Network name 3DMM-VggNet 3DMM-ResNet 3DMM-IncepNet

Input size 16 32 48 16 32 48 16 32 48

Train time 7 m 16 m 36 m 6 m 20 m 31 m 5 m 12 m 36 m
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3DMM-IncepNet, in addition to the specificity, the other three
indicators have increased by more than two percentage points.
The results of these experiments show that the ensemble learn-
ing approach can complement each other’s defects between
different network architectures, resulting in an overall perfor-
mance improvement.

Ablation Study

To validate the effectiveness of the components in the
MMEL-3DCNN architecture, we designed an ablation exper-
iment based on 2DMB-VggNet (the same as the overall archi-
tecture of 3DMB-VggNet, the difference is that it uses a two-
dimensional convolutional neural network). The relevant re-
sults of this experiment are shown in Table 9.

Effect of the Dimensional Space

In the experiment shown in Table 9, 2DMM-VggNet is based
on the 2D convolutional neural network, the same classifica-
tion model as 3DMB-VggNet (shown in Fig. 8). 3DMB-

VggNet is a classification model based on 3D
convolutional neural network (see the “Output
Improvement” section for details). The experimental re-
sults show that the recall rate is increased by two per-
centage points compared with 2DMB-VggNet, and the
other three indicators are also improved. By comparing
the results of these two experiments, we can see that
although the model parameters of the algorithm have
increased, the performance has been greatly improved,
which also verifies the effectiveness of using more spa-
tial information.

Effect of the Multi-model

Two reasons why we have changed the multi-branch network
architecture to the multi-model network architecture have
been described in detail in the “Output Improvement” section,
and its strength in training time is also confirmed in the
“Experimental Environment” section. Here, by comparing
the 3rd and 4th rows in Table 9, we can clearly see that the
sensitivity and AUC have been greatly improved, and the
specificity and accuracy have also been improved to some
extent. This validates the effectiveness of the multi-model
network architecture proposed in this paper from an experi-
mental perspective.

Effect of the Dynamic Prediction

Based on the multi-model classification network proposed in
this paper, we can dynamically select the appropriate model to
predict the benign and malignant according to the size of the
nodule, and then use the average of their prediction results as
the final prediction result. The corresponding theoretical anal-
ysis can be found in the “Output Improvement” section. Here,
by comparing the experimental data of the 4th and 5th rows in
Table 9, we can see that the sensitivity is increased by 2.2
percentage points when the specificity, correct rate, and
AUC remain almost unchanged. This also validates the effec-
tiveness of dynamic prediction using the size information of
nodules from an experimental perspective.

Fig. 9 The ROC (receiver operating characteristic) curves for the three
networks and their integration. Among them, 3DMM-VggNet* indicates
the fusion result of its corresponding three sub-networks. Similarly,
3DMM-ResNet* and 3DMM-IncepNet* are also a fusion of their
corresponding three sub-networks

Table 8 The quantitative indicator used to evaluate the performance of
the algorithm. Also, the meanings of 3DMM-VggNet*, 3DMM-
ResNet*, and 3DMM-IncepNet* are the same as explained in Fig. 9

Method SEN SPC ACC AUC

3DMM-VggNet* 0.815 0.918 0.885 0.938

3DMM-ResNet* 0.815 0.922 0.888 0.935

3DMM-IncepNet* 0.798 0.927 0.886 0.934

MMEL-3DCNN 0.837 0.939 0.906 0.939

Table 7 Time required for the original three 3D CNN-based multi-
branch network architectures to converge

Network name 3DMB-VggNet 3DMB-ResNet 3DMB-IncepNet

Input size 16& 32& 48 16& 32& 48 16& 32& 48

Train time 79 m 52 m 50 m
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Effect of the Image Enhancement

We introduced five methods for image enhancement of input
data in the “Input Improvement” section. By comparing the
results of the 5th and 6th rows in Table 9, we can see that the
addition of the “IE” (Intensity Stretching) component caused
the sensitivity to drop by 0.8%. However, the specificity and
accuracy rate increased by 2.0% and 1.1%, respectively.
Overall, image enhancement of the data is advantageous.

The “Input Improvement” section only visually demon-
strates that the grayscale stretching method is superior to the
other four image enhancement methods, while Table 10
shows their corresponding quantitative indicators. As can be
seen from Table 10, the intensity stretching method we use
can be better applied to the classification of benign and ma-
lignant lung nodules.

Effect of the Mask Image

By comparing the experimental results of the 6th and 7th rows
in Table 9, it can be seen that under the condition that the AUC
remains unchanged, the other three indicators have a certain
degree of improvement. This verifies from an experimental

point of view that it is effective to add an intensity image
corresponding to the nodule mask to the input of the model.

Effect of the Testing Set Augmentation

Testing set enhancement is a common strategy for improving the
generalization ability of models. Specifically, when predicting
the sample S in the testing set, we not only predict itself but also
predict the expansion samples (the expansionmethod is the same
as the training set) corresponding to it, and then use the mean of
these predicted values corresponding to the sample S as its final
prediction result. By comparing the experimental results of the
7th and 8th rows in Table 9, we can see that although the spec-
ificity decreased by 0.2%, the sensitivity and AUC increased by
0.8% and 1.5%, respectively. In general, the testing set augmen-
tation method has played a role.

Effect of the Ensemble Learning

The results of the last four lines of Table 9 demonstrate
the effectiveness of the ensemble learning method.
Among them, 3DMM-ResNet_DP_IE_MI_TSA and
3DMM-IncepNet_DP_IE_MI_TSA, except for the net-
work a r ch i t ec tu r e , a r e d i f f e r en t f rom 3DMB-
VggNet_DP_IE_MI_TSA, and the other conditions are
the same. MMEL-3DCNN is the integration of the above
three. By comparing the experimental data of the last four
lines, it can be seen that the experimental results corre-
sponding to MMEL-3DCNN have a small increase in
AUC, but the other three indicators have improved signif-
icantly. In particular, the specificity and accuracy of
MMEL-3DCNN increased by 3.9% and 2.0%, respective-
ly, relative to 3DMM-IncepNet_DP_IE_MI_TSA.

Table 9 Note that “MB” indicates the original multi-branch structure,
“MM” indicates the proposed multi-model structure, “DP” indicates that
the appropriate model is selected according to the diameter for dynamic

prediction; “IE” indicates image enhancement, “MI” indicates mask im-
age, “TSA” indicates testing set augmentation, and “ParaA” means the
amount of parameters that need to be trained

Method ParaA SEN SPC ACC AUC

2DMB-VggNet 0.7 × 107 0.731 0.898 0.845 0.895

3DMB-VggNet 7.8 × 107 0.756 0.899 0.853 0.908

3DMM-VggNet 7.8 × 107 0.788 0.905 0.867 0.925

3DMM-VggNet_DP 7.8 × 107 0.810 0.897 0.869 0.924

3DMM-VggNet_DP_IE 7.8 × 107 0.802 0.917 0.880 0.923

3DMM-VggNet_DP_IE_MI 7.8 × 107 0.807 0.920 0.884 0.923

3DMM-VggNet_DP_IE_MI_TSA 7.8 × 107 0.815 0.918 0.885 0.938

3DMM-ResNet_DP_IE_MI_TSA 3.7 × 107 0.815 0.922 0.888 0.935

3DMM-IncepNet_DP_IE_MI_TSA 2.8 × 107 0.798 0.927 0.886 0.934

MMEL-3DCNN * 0.837 0.939 0.906 0.939

Table 10 The quantitative indicators for the five image enhancement
methods

Method SEN SPC ACC AUC

HE Trans 0.741 0.931 0.870 0.927

AHE Trans 0.753 0.948 0.876 0.921

Log Trans 0.716 0.936 0.866 0.927

Gamma Trans 0.704 0.960 0.878 0.911

Intensity stretching 0.802 0.917 0.880 0.923
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Experimental Comparison

To verify the superiority of the proposed method, we com-
pared it with the benign and malignant classification of lung
nodules published in recent years. Table 11 shows the quan-
titative results in the comparison of traditional machine
learning–based classification methods and CNN-based classi-
fication methods.

As can be seen from Table 11, although the AUC of the
SVM-based lung nodule classification method proposed by
Dhara et al. is the highest, the method requires manual inter-
vention and only partial data of the LIDC-IDRI dataset is
evaluated [27]. Lee et al. [20] combined genetic algorithm
and random subspace method to classify benign and malig-
nant pulmonary nodules; Kaya et al. [23] proposed a classifi-
cation method based on weighting rules to predict the malig-
nancy of lung nodules, and they all achieved good results. In
addition, both Liu et al. [37] and Sun et al. [39] proposed the
method based on 2D CNN, which only utilizes the character-
istic information of the central layer of the nodule, and its
sensitivity is less than 70%, and the effect is not ideal. The
method proposed by Lee et al. [38], by sending multiple slices
of different views and different angles together into the net-
work for training, enables the network to learn more spatial
information. This type of method has some improvement over
the single view and single angle method. Tomake fuller use of
the spatial information of nodules, Liu et al. [40] and Shen
et al. [47] proposed a 3D CNN-based classification of benign
and malignant lung nodules, and they obtained better results.
Themethod proposed in this paper is also based on themethod
of 3D CNN construction. Through comparative experiments,
it can be seen from the experimental results in Table 11 that
this method is superior to other existing lung and nodule clas-
sification methods.

Conclusion

In the study of benign and malignant judgment of lung nod-
ules, to adapt to the heterogeneity of lung nodules, we de-
signed a multi-model ensemble network framework based
on 3D CNN. Meanwhile, in order to better identify lung nod-
ules with low contrast to surrounding tissues, we performed
image enhancement on the input data to improve the contrast
of such samples. Furthermore, we have improved the multi-
branch network architecture into a multi-model network archi-
tecture, which can greatly shorten the training time of the
model, and dynamically select the appropriate model for pre-
diction based on the size of the nodule. Besides, we draw on
the idea of “expert consultation” to build multiple independent
networks to simulate different expert behaviors, and then use
ensemble learning to fuse the prediction results of multiple
models to reflect the joint decision of experts. This comple-
ments each other’s defects, making the system more stable.
Finally, through the comparison of ablation research and ex-
periment, we verified the overall performance of the proposed
network architecture and the effectiveness of each component.
According to the experimental results shown in Tables 9, 10,
and 11, it can be seen that for the benign and malignant clas-
sification of lung nodules, the method proposed in this paper
can obtain ideal experimental results.
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