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Abstract
The early stage lung cancer often appears as ground-glass nodules (GGNs). The diagnosis of GGN as preinvasive lesion (PIL) or
invasive adenocarcinoma (IA) is very important for further treatment planning. This paper proposes an automatic GGNs’
invasiveness classification algorithm for the adenocarcinoma. 1431 clinical cases and a total of 1624 GGNs (3–30 mm) were
collected from Shanghai Cancer Center for the study. The data is in high-resolution computed tomography (HRCT) format.
Firstly, the automatic GGN detector which is composed by a 3DU-Net and a 3Dmulti-receptive field (multi-RF) network detects
the location of GGNs. Then, a deep 3D convolutional neural network (3D-CNN) called Attention-v1 is used to identify the
GGNs’ invasiveness. The attention mechanism was introduced to the 3D-CNN. This paper conducted a contract experiment to
compare the performance of Attention-v1, ResNet, and random forest algorithm. ResNet is one of the most advanced
convolutional neural network structures. The competition performance metrics (CPM) of automatic GGN detector reached
0.896. The accuracy, sensitivity, specificity, and area under curve (AUC) value of Attention-v1 structure are 85.2%, 83.7%,
86.3%, and 92.6%. The algorithm proposed in this paper outperforms ResNet and random forest in sensitivity, accuracy, and
AUC value. The deep 3D-CNN’s classification result is better than traditional machine learning method. Attention mechanism
improves 3D-CNN’s performance compared with the residual block. The automatic GGN detector with the addition of Attention-
v1 can be used to construct the GGN invasiveness classification algorithm to help the patients and doctors in treatment.
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Introduction

With the increasing popularization of low-dose CT (LDCT),
numerous pulmonary nodules appearing as ground-glass nod-
ules (GGNs) [1] are detected. Although GGNs are slow-
growing lesions [2], recent studies have shown that GGNs
are closely related to the early stage of lung cancer [3]. The

adenocarcinoma appearing as GGN has a development from
non-solid to solid. There are similar HRCT manifestations at
GGNs’ different development stages. The accuracy of patho-
logical classification is always crucial for the further treat-
ment. Whether the patient is diagnosed with preinvasive le-
sion (PIL) or invasive adenocarcinoma (IA) has a significant
effect on the prognosis and disease-specific survival.
Therefore, this paper focuses on the accurate identification
of this GGNs’ invasiveness.

The invasiveness categories of lung adenocarcinoma
appearing as GGN have become more and more detailed in
the latest classification standards. In 2011, the International
Association for the Study of Lung Cancer (IASLC),
American Thoracic Society (ATS), and European
Respiratory Society (ERS) classified small (< 3 cm), solitary
adenocarcinomas into four main types: atypical adenomatous
hyperplasias (AAH), adenocarcinoma in situ (AIS), minimally
invasive adenocarcinoma (MIA), and invasive adenocarci-
nomas (IA) [4]. The AAH, AIS, and MIA are regarded as
preinvasive lesion (PIL). PILs have nearly 100% disease-

* Weidong Wang
wangwd301@126.com

1 Laboratory for Medical Imaging Informatics, Shanghai Institute of
Technical Physics, Chinese Academy of Science, Shanghai 200083,
China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Interventional Radiology, Fudan University Shanghai

Cancer Center, Shanghai 200032, China
4 The General Hospital of the People’s Liberation Army, No. 28

Fuxing Road, Haidian District, Beijing 100039, China

https://doi.org/10.1007/s10278-020-00355-9

Published online: 23 July 2020

Journal of Digital Imaging (2020) 33:1144–1154

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-020-00355-9&domain=pdf
mailto:wangwd301@126.com


specific survival, and the IAs’ disease-specific survival is
greatly reduced.

Deep learning has been proven to have great advantages
over traditional machine learning methods in image classifi-
cation and target detection [5]. So, the three-dimensional
convolutional neural network (3D-CNN) is used to undertake
this task. Some study shows that the accuracy of differentiat-
ing GGNs’ invasiveness by experienced radiologists is about
80% [6]. Compared with the radiologists, the method pro-
posed by this paper has a better performance.

This paper proposed a new architecture for automatic inva-
siveness classification. The contributions of this paper are as
follows: (1) This paper designed an automatic glass-ground
nodule detection algorithm by using a 3D U-Net as the candi-
date generator and a 3D multi-receptive field network as the
false positive reduction method. (2) In order to achieve better
performance of predicting the invasiveness probability of
GGNs, the attention mechanism is applied to 3D-CNN. (3)
This paper combines two modules: the automatic GGN detec-
tor and GGN invasiveness classification network, which can
automatically detect and analyze the GGN.

Related Work

Recently, deep convolutional neural networks such as faster
R-CNN [7] and deep fully convolutional neural network [8]
are employed to generate candidate nodules’ bounding boxes.
W Zhu et al. [9] used a 3D Faster R-CNN to achieve the
candidates. This U-net-like encoder-decoder structure can ef-
fectively learn latent features [10]. Then, they designed a spe-
cial 3D network called dual-path network (DPN). This DPN is
mainly used to reduce the false positive rate. Q Dou et al. [11]
designed a 3D multi-scale network as the false positive reduc-
tion network. They proposed a simple yet effective method to
encode multilevel contextual information to meet the chal-
lenges comingwith the large variations of pulmonary nodules.

Due to the effective performance of U-net-like encoder-de-
coder, in this paper, a 3DU-Net is designed to obtain candidates’
locations. Meanwhile, a special designed 3D multi-receptive
field network (the multi-RF network) is used to conduct the false
positive reduction operation. Inspired by the 3D multi-scale net-
work [11], the 3D multi-RF network uses three different recep-
tive field branches to encode the multi-scale features. However,
different from multi-scale network, the multi-RF network uses
only one input image scale to reduce the input redundancy.

In terms of GGN invasiveness classification, Liu J et al.
[12] used multi-detector computed tomography (MDCT) fea-
tures of PIL and MIA to perform the differentiation diagnosis.
This research pointed out that PILs and MIAs have significant
differences (P < 0.05) in some features, such as size of lesion,
size of solid portion, content of solid portion, and morpholog-
ical characteristics of the lesion edge. Hwang I et al. [13] used

computed tomography texture analysis for differentiating in-
vasive pulmonary adenocarcinomas (IPAs) from preinvasive
adenocarcinomas (MIAs) manifesting as persistent pure
ground-glass nodules (PGGNs) larger than 5 mm. Each
GGN was segmented manually, and their texture features
were quantitatively extracted. The multivariate logistic regres-
sion and C-statistic analyses were used to identify significant
differentiating factors of IPAs from PILs/MIAs. They con-
cluded that CT texture features are significant differentiating
factors of IAs presenting as PGGNs larger than 5 mm. These
two methods both manually extract the GGN samples and use
traditional machine learning method to obtain image features.
Recently, the attention mechanism achieves good perfor-
mance on ImageNet [14]. The SENet [15] introduced the
channel attention mechanism to 2D image classification and
became the championship of ImageNet2017. The residual at-
tention network [16] applied the spatial attention mechanism
to a very deep 2D ResNet [17] and achieved better perfor-
mance on CIFAR than the original ResNet. Inspired by these
two different attention methods, this paper combines the spa-
tial attention mechanism and channel mechanism to construct
a dedicated deep 3D attention CNN to automatically classify
the invasiveness of the GGNs.

Method

Dataset

Ethical approval was obtained for this retrospective analysis,
and informed consent requirement was waived. This paper
collected 1431 cases from the cooperative hospital and a total
of 1624 GGNs for the experiment. GGNs’ size ranges from 3
to 30 mm. The experimental data were obtained through the
labeling of radiologists referenced by pathological reports and
HRCTs. The label of dataset consists of three parts: the three-
dimensional coordinates of the GGN’s center point in CT
image, the invasiveness category, and the diameter.

There are 768 cases that only exist PILs and 663 cases exist
IAs. The number of nodules labeled as PILs is 907, and the
number of nodules labeled as IAs is 717. The GGNs’ infor-
mation is shown in Table 1.

Table 1 The distribution of the GGNs in this study

Diameter (mm) PIL IA Total P
907 717 1624

3 < d < 10 470, 51.8% 74, 10.3% 544, 33.5% < 0.01

10 < d < 20 415, 45.8% 403, 56.2% 818, 50.4%

20 < d < 30 22, 2.4% 240, 33.5% 262, 16.1%
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Data Preprocessing

To make the spatial resolution of each HRCT unified and
reduce the input redundancy, several methods were used to
preprocess the raw 3D-CT image. Firstly, the 3D interpolation
was used to reconstruct the HRCT. After reconstruction, the
spatial resolution of each HRCT was converted to 1 mm×
1 mm× 1 mm. Finally, the 16-bit signed medical data was
converted to 8-bit unsigned integer. The pixel value of each
training cubes is bounded from − 1000 to 400 Hu and quan-
tized to an integer from 0 to 255.

Because of the 3D-CNN requires large memory space and
computational capacity, this paper selected relatively small
3D data as input. The reconstructed 3D-CT was cropped into
a batch of 3D cubes with pixel size 96 × 96 × 96 as the 3D U-
Net input. The 3D U-Net was trained by the cropped cubes
effectively to conduct pixel-wise classification. This step gen-
erated candidates with its center point coordination. Then, the
GGN candidates were extracted according to their 3D coordi-
nates with pixel size 48 × 48 × 48 to train 3D multi-RF
network.

The train samples of the GGN invasiveness classification
network were also extracted by the reconstructed CT images
with pixel size 48 × 48 × 48 according to the label.
Meanwhile, the train samples were augmented by rotating at
arbitrary angles along the X, Y, Z axis with their center point
as the origin.

The CNN Architecture

The Automatic GGN Detector: 3D U-Net and Multi-Receptive
Field Network

The automatic GGN detector is composed by two steps: GGN
candidate detection and false positive reduction.

The 3DU-Net is one of the best effective CNN structures to
conduct pixel-wise predicting. In order to make the candidate
detection more efficient, each CT image is cropped into a
batch of image cubes with pixel size of 96 × 96 × 96. The
coordinate matrix (the coordinates of input image’s each point
in raw CT) is another input of the 3D U-Net to predict the
GGN candidates’ center in CT image. The coordinate matrix
is scaled with a shape of 48 × 48 × 48 to reduce the memory
cost.

Three anchors, 5, 15, 30, are designed for different scale
GGNs. According to the label, each GGN is represented by
the most appropriate anchor. If an anchor overlaps the GGN
ground truth bounding box with the intersection over union
(IoU) higher then 0.5, this anchor will bemarked as positive (p
′ = 1, p′ represents the label of GGN probability). Otherwise, if
the IoU less than 0.05, the anchor will be marked as negative
(p′ = 0). The GGN ground truth is a sphere segmented from
raw CT image whose center point is the GGN’s center and

diameter is the GGN’s diameter. Thus, each anchor has two
main attributes: GGN probability, center points’ coordinate
value of each axis (x, y, z). The multi-task loss function can
be defined as

L pk; ckð Þ ¼ Lclass pk; p
0
kð Þ þ Lregression ck; c0kð Þ ð1Þ

where p′k is the ground truth of GGN probability of anchor
k, c′k is the ground truth of GGN’s relative center position of
anchor k, pk and ck are the prediction of GGN probability and
its relative center position. The relative center position ck and c
′k can be represented as

ck ¼ x−xa
da

;
y−ya
da

;
z−za
da

� �
ð2Þ

c
0
k ¼

x
0−xa
da

;
y
0−ya
da

;
z
0−za
da

� �
ð3Þ

where (x, y, z) are the regression predict of the anchor
center, (x′, y′, z′) are the ground truth position of the anchor
center, and (xa, ya, za, da) are the coordinates and anchor size of
anchor k. Focal loss function [18] is served as the Lclass, and
smooth l1 loss function is served as Lregression. The output of
the 3D U-Net contains two predictors for each GGN candi-
date: its center point coordinate and GGN possibility. This
information can be used to extract the candidates from the
CT image. This method can automatically analyze every an-
chor in input image. So, we do not need to segment the lung
and remove the organs.

After obtaining candidates, the next step is false positive
reduction. Due to the fact that diameter of each GGN varies,
the network needs to be sensitive to all scale GGNs, especially
the small lesions. Different from the multi-scale network, in
this paper, the multi-RF network is applied to screen out
GGNs. The structure of the multi-RF network is composed
of three different branches. Each branch has a specific recep-
tive field [19]. The aim is to increase the sensitivity for GGNs
of different sizes with only one input image scale.

As shown in Fig. 1, candidate cubes are trained by three
different network branches. Each branch has three residual
modules. In order to increase the depth of each branch, this
paper chooses ResNet as the basic structure of multi-RF net-
work. Because of the different output shape, flatten operation
is conducted before merging features of each branch. In the
last layer, the final feature is obtained by merging the three
different receptive field branches’ output. Since there are a
large number of negative samples during false-positive reduc-
tion, focal loss function is served as the classification loss of
multi-RF network.

After finishing training, the model of automatic GGN de-
tector would be used to scan the HRCTs. The GGN location
information of each HRCT is obtained and sent to the next
classification step.
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The GGN Invasiveness Classification Network: the Residual
Attention Network

The GGN invasiveness classification network is con-
structed by assembling multiple cutting edge network
structures. The 3D residual block is the basic structure
of classification network. Residual blocks are designed
to deal with the problem of the gradient vanishing when
the network becomes deep.

However, while increasing the capacity of the network, the
overfitting risk and the overhead of the network are also increas-
ing. In this task, the original ResNet is modified. The attention
mechanism is introduced to construct the classification network.

Attention plays a very important role in human visual cogni-
tion [20]. The application of attention mechanism is extensive in
computer vision. Several attention structures in computer vision
area have been proposed, such as residual attention network [16],
SENet [15], and DANet [21]. They are proven to help improve
network performance in recent research. However, these atten-
tion structures were applied to analyze 2D images. In order to
improve the classification performance, this paper modified the
basic attention structures to classify 3D medical image.

The attention module is composed by spatial attention part
and channel attention part. The spatial attention part is a

bottom-up top-down feedforward structure [22]. The max
pooling operation can be used to down sample the input data.
The down-sample and convolution layer are aimed to expand
the receptive field and extract the larger-scale feature maps.
The feature maps in deeper layer with smaller scales are
passed through a convolution transportation layer to restore
the shape before down-sampling; it is named as the up-sample
operation. The combination of larger scale feature maps and
the smaller scale feature maps is used to create the spatial
attention part. The detailed structure is shown in Fig. 2.

After conducting the bottom-up and top-down operation,
the spatial attention features are extracted from the raw input.
Then, Sigmoid function normalizes spatial attention feature to
[0–1]. In order to apply the spatial attention feature to the
output, the output of the whole part is calculated as

Fspatial ¼ σ f spatial X rð Þ
� �

ð4Þ

Os ¼ 1þ Fspatial

� �
⊙X r ð5Þ

where σ stands for the activation function sigmoid, fspatial
represents the spatial attention operation, Xr ∈ RC ×H ×W × Z is
the raw input data (the 3D feature maps’ channel size is C,
shape is H ×W × Z ), Fspatial ∈ RC × H ×W × Z is the spatial
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Fig. 1 The automatic GGN detector’s structure. The resampled CT image
is firstly cropped into a batch of image cubes with same shape. Then, the
3D U-Net generates GGN candidates. Finally, false positive reduction is
operated by multi-RF network to screen out non-nodule. Si represents the

output shape of the residual module. Due to the different kernel size of
each branch, the output shape is different (Si×Si×Si). Flatten operation
flats the output of each branch
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attention feature which is normalized between 0 and 1, Os ∈
RC×H ×W × Z is the output of the whole part. This is equivalent to

Os ¼ X r þ X r⊙Fspatial ð6Þ

This formula is similar to the operations in the resid-
ual block. The spatial attention output can be gradually
trained by the back-propagation algorithm. The deep
structure of the attention network can extract the 3D
image feature from shallow level to deep level. The dif-
ference from the traditional residual blocks is the bottom-
up top-down structure. This structure is used to extract
the spatial attention feature of the original input and limit
its range between 0 and 1. This is similar to the gate

structure, which will suppress the influence of back-
ground on the performance of modules [16]. The param-
eters of spatial attention part are randomly initialized,
and the network will gradually learn its spatial attention-
al weight by back-propagation.

The channel attention part is constructed by the modi-
fied SENet structure; the detail structure is shown in Fig.
2. In order to exploit contextual information of the whole
channel filter, the global average pooling operation is
used to squeeze the whole channel information into one
descriptor. Every channel descriptor has the channel-wise
receptive field information. Then, the excitation operator
[15] is applied on the channel descriptors. This operation
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in shallow level and deep level are
merged to consist the spatial at-
tention feature map. The channel
attention part: global pooling to
exploit the whole channel filter’s
contextual information. The pa-
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paper
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aims to learn the non-linear interaction between descrip-
tors and reduce the network overhead. The excitation op-
erator is composed of two fully connection layers and two
activation function. The output of the excitation operation
can be calculated by

Fchannel ¼ f Rescale σ r X CWC;Cr
þ bC

r

� �
WC

r ;C
þ bC

� �� �
ð7Þ

The function r represents the activation function ReLU.
After passing the global average pooling layer, the input of
the channel attention part will become a vector Xc ∈ R1 ×C (C
is the channel size of the input data). Fchannel ∈ RC ×H ×W × Z is
the output of the excitation operation. Rescale operation
fRescale rescales vector into the same shape of the input X ∈
RC ×H ×W × Z by copying the elements of each channel. The
full connection weight WC, C/r ∈ RC ×C/r and WC/r, CR

C/r ×C

are randomly initialized, which make the channel attention
vector trained gradually by two multiple perceptions.
Finally, the output of the channel attention part Oc ∈ RC ×H ×

W × Z is obtained by

Oc ¼ X⊙Fchannel ð8Þ

where X ∈ RC ×H ×W × Z stands for the raw input data.

The outputs of the spatial attention part and the channel
attention part are merged as the attention module’s output.
The spatial attention and the channel attention weights will
be gradually trained by back-propagation algorithm.
Figure 3 shows the shape changes of the feature map of one
attention module. As shown in Fig. 4, the network uses three
stages to extract the 3D images’ feature. The attention mod-
ules are cascaded after the residual block. This deep 3D resid-
ual attention network can also predict the GGN’s diameter
accurately. So, this GGN invasiveness classification net-
work’s loss function will be as

L p; dð Þ ¼ Lclass p; p0ð Þ þ Lregression d; d0ð Þ ð9Þ

where p and d represent the invasiveness probability and
diameter (mm) of the network’s output and p′ and d′ denote
their ground truth. The binary cross entropy loss function is
chosen as the Lclass, and the smooth l1 loss function is chosen
as Lregression.

The Overall Workflow
The automatic invasiveness classification algorithm is

shown in Fig. 5. The overall workflow can be divided into
two steps: the detection phase and classification phase.

Attention 
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Attention 
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Stage3Conv

Invasiveness 
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Diameter

Attention Module ×1 Residual Block Attention Module ×3 Residual Block

Attention Module ×2 Residual Block

Fig. 4 The residual attention
network structure

GGN location

Extracted 3D 
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Resampled 

CT images

Diamteter

Invasiveness probability

Automatic 

GGN detector 

Classification

network

Fig. 5 The overall workflow of
the GGN invasiveness
classification algorithm
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① In training process, the 3D resampled CT image from
training samples is served as the input of the automatic
GGN detector. The detector will be trained to complete
the GGN detection task. Meanwhile, the labeled GGN
data is used to train the GGN invasiveness classification
model.

② In testing process, the test samples in dataset will be in
turn put through the GGN detector and invasiveness clas-
sification network. The automatic GGN detector will give
the predicted GGN’s coordinate in raw CT, and the inva-
siveness classification network will give the GGN’s inva-
siveness probability and diameter.

Experiments and Results

Data Dividing

This paper randomly selected 1158 cases with a total of 1298
GGNs as the training samples. These training cases are used
for training the automatic GGN detector and GGN invasive-
ness network. Five sections for 5-fold cross-validation are
divided for training the GGN invasive classification network,

so as to make the result more reliable [23–25]. The remaining
273 cases are used as test sets for testing the GGN detector and
invasiveness classification network. Data augmentation oper-
ations on training GGN samples multiply the number of train-
ing sets and increase the robustness of the network.

The Algorithm Performance

Automatic GGN Detector Performance

Firstly, 878 cases of train samples are used to train the 3D U-
Net. Then, the rest 280 cases in train samples are scanned by
3D U-Net to test the performance of the model and get the
false positive nodules. In the candidate generation phase, the
3D U-Net achieves high sensitivity (98.07%) and relatively
low candidate per scan (16.05 candidates per scan). After de-
tecting, 1500 false positive GGNs along with 1298 positive
GGNs are used for false positive reduction training. All these
candidates are augmented 8 times by 3D rotation for training
the false positive reduction network.

The baseline methods multi-scale network [11] and 3D
DPN26 [9] are conducted to evaluate the performance of 3D
multi-RF network in the task of false positive reduction. The
free-response receiver operating characteristic curves (FROC)
and detection performance are shown in Fig. 6 and Table 2.

Fig. 6 The FROC of three nodule
detection algorithms

Table 2 Comparison among
different CAD schemes for lung
nodule detection

FP/s 1/8 1/4 1/2 1 2 4 8 CPM

3D U-Net + DPN26 [9] 0.603 0.729 0.831 0.885 0.930 0.952 0.968 0.843

3D U-Net + multi-scale [11] 0.733 0.823 0.881 0.918 0.950 0.960 0.970 0.891

3D U-Net + multi-RF 0.712 0.849 0.909 0.922 0.947 0.952 0.976 0.896

Italic entries represent the best results for the performance metrics.
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FROC is the average sensitivity at the average number of false
positives at 1/8, 1/4, 1/2, 1, 2, 4, 8 per scan, and the competi-
tion performance metrics (CPM) is defined as the average
sensitivity at these seven false positive rates. The 273 test case
samples are used to test the CADmethods. 3D U-Net + multi-
RF network has the best performance among three different
CAD schemes.

The input size of the multi-RF network and DPN is 48 ×
48 × 48. The input size of multi-scale network is 20 × 20 × 6,
30 × 30 × 10, and 40 × 40 × 26. The trainable model parame-
ters of the three networks (multi-RF network, DPN26, and
multi-scale network) are 4.6 × 106, 1.8 × 106, and 9.1 × 106.
The CPM of 3D U-Net + multi-RF reaches 0.896 better than
DPN26 and multi-scale network. This automatic GGN detec-
tor can achieve better detection sensitivity at 1/4, 1/2 1, 8 false
positive per scan. Moreover, the public database LIDC-IDRI
[26] is used to test the generalization ability of the method.

Our CAD scheme can also achieve better performance than
the other two methods. It is noted that, since most CAD sys-
tems used in clinical diagnosis have their internal threshold set
to operate somewhere between 1 and 4 false positives per scan
on average [27]. The 3D U-Net + multi-RF network fits clin-
ical usage.

In this research, the CAD scheme set 1 false positive GGN
per scan among these detected GGNs, and the sensitivity is
0.922. These unavoidable false positive nodules are marked as
negative (non-invasiveness) in the next classification step.

GGN Invasiveness Network Performance

The GGN information obtained in the detection network is put
into the 3D residual attention network for invasiveness classi-
fication. In the experiment, the Attention-v1 network is the
classification network proposed by this paper. ResNet-v1
and ResNet-v2 are used as baseline. As shown in Table 3,
the Attention-v1 has lower forward FLOPs (floating point
operations per second) and less parameter amounts which
are 18.11 × 109 and 5.84 × 106. The input size of all these
three networks is 48 × 48 × 48. The three networks’ ROC,
sensitivity, specificity, accuracy, and AUC are measured and
presented in the Fig. 7 and Table 4.

These three networks are configured with exactly the same
learning rate, weight decay, and learning rate decay. The dif-
ference between Attention-v1 and ResNet-v1 is that the atten-
tion module is replaced with residual blocks. In the ResNet-v2
network, the network’s depth was deepened. As the network
deepens, the network becomes more complex. This makes the
training speed and convergence speed decrease. However, the
accuracy and sensitivity of the network have not been signif-
icantly improved.

Table 3 The network structure of the Attention-v1, ResNet-v1, and ResNet-v2

Attention-v1 ResNet-v1 ResNet-
v2

Conv1 5 × 5 × 5, 64 5 × 5 × 5, 64

Attention step 1 Attention module × 1 1�1�1;16

3� 3�3;16 1� 1� 1;64

� �
� 2 ×3

Residual block 1 1�1�1;32

3� 3�3;32;stride 21� 1� 1;128

� �
1�1�1;32

3� 3�3;32;stride 21� 1� 1;128

� �
Attention step 2 Attention module × 2 1�1�1;32

3� 3�3;32 1� 1� 1;128

� �
� 4 ×6

Residual block 2 1�1�1;64

3� 3�3;64;stride 21� 1� 1;256

� �
1�1�1;64

3� 3�3;64;stride 21� 1� 1;256

� �
Attention module

3
Attention module × 3 1�1�1;64

3� 3�3;64 1� 1� 1;256

� �
� 6 ×8

Residual block 3 1�1�1;128

3� 3�3;1281� 1� 1;512

� �
1�1�1;128

3� 3�3;1281� 1� 1;512

� �
Conv2 1 × 1 × 1, 512 1 × 1 × 1, 512

Average pooling 4 × 4 × 4 4 × 4 × 4

FC, Softmax 13,824

FLOPs × 109 18.11 19.45 24.66

Params × 106 5.84 6.27 6.27

Fig. 7 The ROC curve of the four methods. CAD is the above automatic
GGN detector
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In invasiveness classification task, the AUC value repre-
sents the network’s performance. A higher AUC value means
better network performance. The AUC value of Attention-v1
is 92.6%, outperforms ResNet-v1 (89.7%), ResNet-v2
(90.3%), and Random-Forest (89.6%). Attention-v1’s sensi-
tivity is also better than ResNet-v1, ResNet-v2, and random
forest. However, in terms of specificity, Attention-v1 is about
4% worse than two ResNets and random forest. Some false
positives are introduced due to the increased sensitivity, so the
Attention-v1’s specificity is reduced. All the three deep learn-
ing networks achieve good performance for predicting the
GGNs’ diameter, with an average error within 1.5 mm. Two
GTX 1080 graphic cards were used to test a series of HRCT
samples in parallel, with an average time of 225 s. The time
consumption mainly comes from 3D CT reconstruction and
window sliding test, which can be further optimized in the
future.

Discussion

The results are shown in Table 3. Compared with the ResNets,
Attention-v1 network has the higher AUC value with less
parameters and FLOPs. Attention-v1 also outperforms the tra-
ditional machine learning method. The result indicates that
deep 3D-CNN can further improve the performance of the
classification. The key aspect of deep learning is that these
layers of features are not designed by human engineers: they
are learned from data using a general purpose learning proce-
dure [28]. The attention mechanism focuses the CNN on the
area of interest on the input image. It can also filter the inter-
ference caused by the background. After initialization, the
weights of spatial attention part and channel attention part
optimize automatically by back-propagation algorithm [29].
As shown in Fig. 8, the three attention steps gradually extract
image features, from detail to abstraction, from small-scale
features to large-scale features.

Overfitting is one of the common problems in deep learn-
ing. The risk of overfitting increases when the CNN deepens

Table 4 The algorithm
performance using four different
methods

Network ACC (0.5 threshold) Sensitivity Specificity AUC

CAD + Attention-v1 85.2% 83.7% 86.3% 92.6%

CAD + ResNet-v1 82.1% 70.9% 90.7% 89.7%

CAD + ResNet-v2 82.7% 71.6% 90.1% 90.3%

CAD + random forest 81.5% 70.2% 91.8% 89.6%

Italic entries represent the best results for the performance metrics

Fig. 8 Image generated by intermediate steps in the network. The first
row is 3D images generated by marching cubes [30] algorithm (presented
with size of 48×48×48). The second row is the same section in 3D

images. a Input 3D GGN image. b The output image of attention stage
1. c The output image of attention stage 2. d The output image of attention
stage 3
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[31]. The ResNets, like ResNet-v1 and ResNet-v2, increase
their capacity [32] simply by stacking residual blocks, which
has little performance improvement. Meanwhile, the deep 3D
ResNets require huge computing resources. The attention
mechanism extracts the two different types of the attention
information from shallow level to deep level. This attention
information can help the CNN achieve better learning
performance.

ThisautomaticGGNinvasiveness classificationalgorithmfirst
detects theGGNs’position inHRCT.Then, thealgorithmpredicts
whether the candidates are PILs or IAs. The GGN detection sen-
sitivity can reach more than 98%, which reduces the burden on
radiologists.After completingacaseprediction, thealgorithmwill
giveus theGGNs’ location, theirdiameter, and invasivenessprob-
ability. This probability canbe an important reference for the radi-
ologists. Figure 9 shows the output of the algorithm.

The algorithm is established on the basis of high computing
power. Three GTX 1080GPUs were used for training and one
GTX 1080 GPU for testing. 3D networks are expensive to
train, so it is important to find leaner networks without
sacrificing performance. The attention mechanism is an at-
tempt. Integrative learning of multiple model structures may
be one way to improve the performance.

Conclusion

In this paper, a deep 3D-CNN-based algorithm was developed
to automatically classify the invasiveness of GGNs. The at-
tention mechanism was introduced into the construction of 3D
network and achieved better results compared to the baseline
models. This method can provide more rapid and accurate
diagnosis reference for radiologists by detecting GGN and
displaying the probability of GGNs’ invasiveness. Deep 3D-
CNNs showed great potential in distinguishing PILs from IAs;
the future work is to build a more efficient and discriminating
structure.
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