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Abstract
Ageism is the most invisible form of discrimination. While there is some awareness of gender,
racial, and socioeconomic discrimination on digital platforms, ageism has received less attention.
This article analyzes some tools that are frequently embedded on digital platforms from an old-age
perspective, in order to increase awareness of the different ways in which ageism works. We will
firstly look at how innovation teams, following homophilic patterns, disregard older people.
Secondly, we will show how ageism tends to be amplified by the methods often used on digital
platforms. And thirdly, we will show how corporate values contradict the usability issues that
mainly affect people with a low level of (digital) skills, which is more common among older people.
Counterbalancing the abusive power control of the corporations behind digital platforms and
compensating for the underrepresentation of groups in less favorable situations could help to
tackle such discrimination.
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Introduction

Discrimination is about unfairness. Stereotypes, which usually work unconsciously, contribute to

such discrimination by ignoring the real habits, interests, and values of diverse individuals (Ayalon

and Tesch-Römer, 2018). Most of today’s digital services are provided by corporate digital

platforms (van Dijck et al., 2018). There is evidence of gender, race, and religious discrimination
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on digital platforms (Buolamwini and Gebru, 2018; Hajian and Domingo-Ferrer, 2013; Kamiran

et al., 2012; Neff and Nagy, 2016; Pedreschi et al., 2009), as well as other types of discrimination.

There have also been discussions on how the automation of public policies fosters inequality

(Eubanks, 2018; González-Bailón et al., 2017; O’Neil, 2016) and how digital platforms create new

strands of discrimination (O’Neil, 2016; Wachter-Boettcher and Emmes, 2018) that move away

from the ideal of a fair networked society (Kretchmer, 2017) because of the unintended social

consequences of algorithms (González-Bailón et al., 2017).

Like gender, ethnicity, or class, age is an aspect of social structure that ‘involves differential

(and sometimes discriminatory) treatment’ (Brah and Phoenix, 2004: 81). However, ageism is

often ignored in the analysis of discrimination on digital platforms (e.g. Buolamwini and Gebru,

2018; Hajian and Domingo-Ferrer, 2013; Kamiran et al., 2012; Neff and Nagy, 2016; Pedreschi

et al., 2009). Ageism is a particular form of discrimination, in which individuals are judged

according to age-based stereotypes, or views on what people should be doing, experiencing, or

feeling depending on their age. These complex considerations can be positive or negative, subtle or

explicit (Ayalon and Tesch-Römer, 2018), and may be directed at people of any age (Bodner et al.,

2012). With regard to older people, ageism is based on a view that focuses on disabilities and

implies ‘inferiorization’ and ‘patronage’ (Neves and Amaro, 2012: 3), uses practices that

deprioritize, disregard, or even exclude older people (AGE Platform Europe, 2016), and influences

digital usage habits (e.g. Comunello et al., 2017; Lagacé et al., 2015). The limited awareness of

ageism in society has been widely discussed (Ayalon and Tesch-Römer, 2018; Palmore, 1999;

World Health Organization, 2017). Ageism is more pervasive and more invisible than sexism or

racism (World Health Organization, 2017). This is partly because ageism is based on unnoticed

ageist stereotypes, and partly because industrial society has ousted older people from the positions

of power they used to hold (Palmore, 1999).

Ageism shapes both the image(s) that individuals have of themselves and the image(s) that

society has of the different life stages. At a societal level, ageism refers to ‘the way in which

society and its institutions sustain ageist attitudes, actions or language in laws, policies, practices or

culture’ (AGE Platform Europe, 2016). We will thus analyze the influence of ageism on the design

of corporate digital platforms. The analysis takes into account three factors that foster discrimi-

nation on digital platforms:

First, despite the fact that the digital divide is blurring in terms of access and use, the second

digital divide, or the divide in skills, purpose of use and motivation, is persistent or widening

(Brandtzæg et al., 2011; Ragnedda and Ruiu, 2017; van Dijk, 2006). This means that people have

access to and make use of digital technologies but have less interest, do it for a narrower range of

purposes and with more difficulty. The second digital divide affects older people among others

excluded collectives(Brandtzæg et al., 2011; Lagacé et al., 2015), which reinforces the idea that

older people are not interested in digital technologies (Durick et al., 2013), disempowering them as

a group in digital media and perpetuating the exclusionary stigmatization of older people (Stangor

and Schaller, 2000).

Second, the prevailing negative aging-related ideas (Garattini and Prendergast, 2015) affect

research design (Ayalon and Tesch-Römer, 2018). Young people are points of reference for

Information Communication and Technologies (ICT) studies as they help identify usage trends

(Castells et al., 2006; Ito et al., 2010). Most studies on digital practices do not include older people,

do not ensure that their samples include older people or include inaccurate open-ended categories

(45þ, 55þ, or 65þ) that lump together people at different life stages (Rosales and Fernández-

Ardèvol, 2016; Sawchuk and Crow, 2011). Thus, research projects that consider the older
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population are comparatively outnumbered by research on teenagers or the adult population and

tend to focus on the younger old, because the older old are (considered) comparatively less

accessible or not of interest to stakeholders outside the biomedical sphere (Fernández-Ardèvol,

2019). Consequently, we can safely assume that older Internet users are underrepresented in the

data sets that inform algorithms on digital platforms.

Third, most approaches wrongly see later life as a homogeneous life stage, often identified by an

inaccurate ‘grey area’ label (Sawchuk and Crow, 2011). With regard to the use of digital platforms,

there are diverse levels of interest, uses, and skills among older people (Rosales and Fernández-

Ardèvol, 2019), while stereotyped views of older people describe them in general as less interested

in ICTs (Neves and Amaro, 2012), which is then used as justification to deprioritize older people in

product design decisions.

This article describes and discusses four tools provided by digital platforms in which, as we

understand it, ageist mechanisms are at work. We analyze the tools embedded on social network

sites (SNS), security systems, and smartphone technologies, as they are widely used technologies

which are of general interest. The identified mechanisms include (1) homophily (or self-centered

ideas) among the innovation teams that design digital platforms, (2) some sampling methods used

on digital platforms, and (3) the corporate ageist values hidden behind obscure algorithms (Pas-

quale, 2015), which result in the exclusion of older people.

Prejudices and stereotyped views of older people deprioritize, disregard, and exclude them

from digital platforms. These views work by means of the corporate and personal values behind

the design process and methods used. Thus, directly or indirectly, implicitly or explicitly, digital

platforms reproduce this strand of discrimination by failing to take into account the diversity of

the prevailing everyday life practices, interests, and usage conditions at the different stages of

later life.

Ageist mechanisms on digital platforms

There have been a number of efforts to heighten awareness of how stereotypes and prejudices

reinforce discrimination, and a corpus of laws and regulations that prohibit discrimination, for

example, gender equality, antidiscrimination action (Justice and fundamental rights|European

Commission, n.d.), fair housing, and the Equal Credit Opportunity Acts (Housing and Civil

Enforcement Section|CRT|Department of Justice, n.d.). However, intelligent systems are rein-

forcing discrimination (Eubanks, 2018). Discriminative biases work in digital systems by means of

different mechanisms. In this article, we focus on three kinds of ageist mechanisms that are

common in the design and implementation of digital platforms.

First, algorithms are influenced by the biases of developers, mainly young men earning

above-average salaries (Beyer, 2014; Cohoon and Aspray, 2004). Innovation teams on digital

platforms often therefore follow homophilic patterns. The principle of homophily refers to the

fact that ‘contact between similar people occurs at a higher rate than among dissimilar people’

(McPherson et al., 2001: 416). Thus, design decisions are strongly influenced by common points

of view, falling into homophilic or self-centered ideas. Some of these biases work by making

design decisions that are influenced by their common interests and practices, and ignoring the

practices of other groups. The homophilic ideas of programmers became evident when

researchers demonstrated the gender and race bias in face recognition systems, as they were less

accurate with Black women while performing better with White men (Buolamwini and Gebru,

2018). Beyond any technical limitations, the system was not tested or calibrated for Black
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women. In this case, the lack of accuracy of such systems with older people was presumably not

questioned.

Second, the research methods commonly used on digital platforms face limitations when

considering the interests of diverse groups of users. Big data implies a nontraditional way of

carrying out research (Kitchin, 2014; Manovich, 2012). Beyond research questions and controlled

experiments to collect data, in big data studies, data precedes the research question (Kitchin, 2014).

Data is a by-product of human–machine interaction, used for research purposes (Kitchin, 2014).

Thus, big data is not exempt from methodological concerns. To make predictions, intelligent

systems often build on previous data or on a continuous flux of data used as a learning data set. The

stereotypes shaping users are likely to be reflected in the content that they provide to the learning

data set and in the subsequent intelligent system. Big data relies on thousands of data points from

thousands of users to make decisions. However, being big does not mean that a sample is repre-

sentative of a population (boyd and Crawford, 2012), or that it represents older people. Finally, big

data approaches are mainly based on predictions and correlations (Bonchi et al., 2017), which are

less effective for nonmainstream uses (Hajian et al., 2016). The system looks for the most common

associations in the learning data set, meaning that the discrimination of the learning data set is

amplified by the predictions ( Zhao et al., 2017). Microsoft’s chatbot, Tay, was released in 2016

and shut down 1 day later due to the racist and sexist responses it learned from its audience (Neff

and Nagy, 2016). This failure illustrated the vulnerability of minority or disempowered groups in

big data approaches when they are not properly considered in the overall tool design process.

Moreover, the likely ageist responses were not studied in this case.

Third, in contrast to analogical algorithms, the algorithms running intelligent systems are

black boxes (Pasquale, 2015). Coders are not always able to accurately describe their computing

details (Pasquale, 2015). Thus, a complex system of data analysis and decision-making often

remains private and is not transparent (Pasquale, 2015), hiding the values involved in the

algorithm design. Algorithms are therefore the new power control tool that dominates online

social practices (Mager, 2012), from digital communications to entertainment, consumption and

life in general. Digital platforms are supported by corporations, for whom corporate interests

take precedence over the general interest. Thus, their algorithms are aligned with their objectives

(Cheney-Lippold, 2011) and keeping them hidden helps to ensure that the corporate ideology

remains invisible (Cheney-Lippold, 2011). In this sense, there is evidence of discrimination in

credit approval decisions that take into account race, income, and zip code, among other aspects

(Pedreschi et al., 2009); and in intelligent systems used to support the decision-making of

security agencies (Kamiran et al., 2012). However, none of these studies consider ageism to be a

significant source of discrimination.

There is a need to understand the way in which these mechanisms of discrimination on digital

platforms reinforce ageism, in order to raise awareness of how ageism works in the digital

society, and to incorporate this knowledge into the design of algorithms to prevent discriminative

biases.

Digital platforms from an old-age perspective

In this section, we analyze four digital platform tools which are of general interest from an old-age

perspective. The examples presented are not aimed to be exhaustive, but were selected for their

impact on society.
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Psychometric predictions on social network sites

There is a growing interest in psychometric prediction of digital platform users. This is particularly

true on SNS, where people often express their interests by sharing, following, or supporting dif-

ferent content, and digital platforms wish to profile their audience.

Applymagicsauce.com (Magic Sauce) is an academic project developed to raise awareness of

the implications of data sharing. It allows users to discover what their digital footprints might

reveal about their psychological profile (Apply Magic Sauce – Demo, n.d.). The tool can make

predictions about any Facebook user by comparing their Facebook activities with a learning data

set. They claim that their system is transparent (Apply Magic Sauce – Transparency, n.d.). To back

up this claim, they publish a list of the services using their system and explain their algorithm. A

learning data set of over 58,000 volunteers fed the algorithm. Volunteers gave their consent to the

use of their Facebook likes, detailed demographic profiles and the results of several psychometric

tests (Kosinski et al., 2013). Predictions based on this collection of data contain personal attributes,

including sexual orientation, ethnicity, religious and political views, personality traits, measure-

ment of intelligence and happiness, and use of addictive substances, among others. The authors

published the estimated probability of correct classification of each variable and claimed a higher

level of accuracy than predictions made by humans (Youyou et al., 2015).

However, the authors did not provide information on the representativeness of the learning data

set. There is no public information on the demographics of the learning data set, so it is not clear

whether or not the learning data set reproduces the Facebook population, for example, with regard

to age, country, or gender. It is therefore impossible to know, for any given users, whether the

prediction is fair or has failed because either the user is atypical or there are no similar profiles in

their learning data set. Voluntary sampling does not meet the characteristics of the population

studied on SNS, particularly taking into account the fact that the digital divide in relation to

motivations, skills, and purposes of use mainly affects older people (Ragnedda and Ruiu, 2017).

For example, recruitment processes that make use of digital media for advertising, registration, and

participation tend to exclude older people. The Magic Sauce sample might be biased toward

individuals with a high number of interests on Facebook and more diverse uses of the platform,

meaning that young users might be more likely to contribute.

Moreover, the system uses correlations to make predictions. According to the authors, per-

sonal interest prediction is accurate in 72% of the cases studied (Apply Magic Sauce – Docu-

mentation, n.d.). Thus, one in four predictions might not be accurate, and this could have a more

significant effect on individuals who use Facebook differently to most of the population on this

SNS, which is the case of older people who use digital media less often and for a narrower range

of purposes than the majority of the population (Rosales and Fernández-Ardèvol, 2019). By

ignoring 28% of the population for whom the predictions are not accurate, the system deprior-

itizes both less motivated and less skilled users, two aspects that appear to create a bias against

older people.

To predict the age of a user, other systems use the average age of the user’s network (e g.

Culotta et al., 2016; Perozzi and Skiena, 2015). This approach is based on available evidence of

age-homophily on SNS (Perozzi and Skiena, 2015), which supports the idea that contacts on SNS

would be around the user’s age, as happens at school. However, available evidence also shows

that intergenerational engagement is notably higher among older individuals, with younger

relatives being an important part of their intergenerational relationships Marsden (McPherson

et al., 2001).
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CAPTCHA security

CAPTCHA stands for the Completely Automated Public Turing test to distinguish between

Computers and Humans. Thus, CAPTCHAs are used to identify whether the subject trying to

access a digital platform is a human or a bot. To do this, the system asks the user to perform a task

that a bot would not be able to do. While studies have shown that hackers can compromise

CAPTCHAs (Yan and El Ahmad, 2008), they are designed to be a key element for the security of

digital platforms (Yan and El Ahmad, 2008).

CAPTCHAs have evolved over time, setting the user different types of challenges (Gafni and

Nagar, 2016; Kaur and Cook, 2019). Initially, they required the transcription of distorted texts or

short audios. Others involved crowdsourcing in altruistic missions. In this case, the user had to

transcribe two words instead of one. The former met the original goal of challenging bots, while the

latter contributed to the digitization of books. More recently, the identification of particular ele-

ments in an image was introduced. The latest CAPTCHAs use a secret algorithm and require most

of the users to select a checkbox (Padave, 2014).

Many users find CAPTCHAs difficult. There are a number of usability issues, as

CAPTCHAs are more difficult for people facing either the physical decline often associated

with older people (Prusty, n.d.) or learning disabilities (Kaur and Cook, 2019). There is

evidence that they also discriminate against individuals in peripheral cultures, as the texts,

audios, and images tend to be a reflection of prevailing cultural Western content (Gafni and

Nagar, 2016). In particular, image-based CAPTCHAs require the identification of images

containing cultural elements that may differ from one context to another, meaning that people

from peripheral cultures will find it more challenging to perform the identification task

correctly. Thus, for the sake of security and/or altruism, CAPTCHAs fall into ageism by

deprioritizing the limitations of older people on digital platforms in their corporate decision-

making, and by ignoring the ways in which their comparatively limited skills reduce their

chances of completing the CAPTCHA challenges.

Biometrics in security systems

Biometric technologies are meant to provide an appropriate alternative for control systems which

should be more accurate and faster than traditional username and password systems (Wagner and

Fernández-Ardèvol, 2016). Some biometric systems include iris, retina, and fingerprint scanning.

While iris and retina scanning should be more accurate than fingerprint scanning (Parei and

Hamidi, 2018), fingerprint systems have become more widespread in recent years (Thakkar, n.d.;

Trader, n.d.). They are widely used as a security feature in new smartphones (InAuth, 2017), but

also in border controls (Fingerprint Cards AB, n.d.). They could also be implemented for ATM

transactions (Bleiker, 2017) and contribute to health-care systems (Soares and Gaikwad, 2016).

However, they are far from being perfect (Hamidi, 2019).

In addition to all the other body changes that occur with aging, fingerprints may disappear with

age (Blosfield, 2018; Ng, 2016). Other factors that could influence the loss of fingerprints include

medical treatments (Harmon, 2009), prolonged use of strong chemical products, or prolonged hard

manual work (Sarbaz et al., 2016). Older individuals may therefore have more chance of being

exposed to some of the aforementioned risks and it is more probable that their fingerprints will be

less readable by conventional systems, which are likely to have been built on the basis of an

average adult population that does not have to face such physical issues. Distrust arises when
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fingerprints do not match the user’s records. Individuals not able to go through conventional

identity checking systems are therefore forced to face extraordinary controls and, in extreme

situations, could even be detained by government institutions (Harmon, 2009).

Similar to the case of face recognition systems, fingerprint systems have been widely imple-

mented in society, with limited tests and calibrations that follow homophilic patterns (Harmon,

2009). A fingerprint system which is meant to simplify the user’s life by having a more accessible

and secure system than passwords (Parei and Hamidi, 2018) thus creates new strands of discrimi-

nation. While digital platforms should provide tools for an inclusive networked society (Buolamwini

and Gebru, 2018), fingerprint systems reinforce ageism by ignoring the reality of older people.

Passive metering tools for smartphones

Passive metering tools, or trackers, collect data from digital devices by tracking system logs

(Kretchmer, 2017). They are used to make psychometric predictions (Rosales and Fernández-

Ardèvol, 2019).

Most tools based on passive metering of smartphones rely on big data approaches. Collection of

system logs depends on the voluntary participation of individuals, without checking whether the

sample is representative of the studied population (Böhmer et al., 2011; Ferreira et al., 2011; Jones

et al., 2015). Similarly to psychometric predictions on SNS, voluntary sampling methods in this

case do not allow the inclusion of older people.

Moreover, digital logs are the raw data of what are seen as nonintrusive methods for data

collection (Böhmer et al., 2011; Ferreira et al., 2011; Jones et al., 2015). Researchers often argue

that tracking systems provide real-life data with little or no inconvenience and no effort from

participants (Kiukkonen et al., 2010; Xu et al., 2016). On the one hand, passive metering tools for

smartphones are far from being universal. At present, tracking systems can monitor a limited

number of smartphones, according to their operating system (OS) version and model (Holz et al.,

2015; Lee et al., 2014; Shin et al., 2012). The effort–benefit ratio leads to the exclusion of some

models from tracking systems, particularly older or less popular models. On the other hand,

tracking systems do have an impact on the battery, memory, and processor of the tracked device. In

this vein, some studies have expressed concern about the battery drain of monitoring systems

(Wagner et al., 2013). The capacity of the smartphone could therefore act as a technical limitation

that prevents individuals from participating in tracking studies, as well as preventing the inclusion

of older and low-profile smartphones such studies. And this affects older people more, as it is the

age group that tends to have the oldest devices, since they upgrade them less frequently (Rahmati

et al., 2012; Srinivasan et al., 2014; Yan et al., 2012) and often use second-hand devices inherited

from their relatives (Jacobson et al., 2017).

Tracking systems thus reinforce ageism by deprioritizing the habits of older people in the

development of passive metering tools, particularly with regard to the use of basic and older

models of mobile phones. They also use voluntary sampling methods that disregard their com-

parative limited purposes of use. All these factors limit the chances of older individuals partici-

pating in studies that make use of smartphone logs.

Discussion and conclusion

The aim of this research is to raise awareness of different, explicit and non-explicit ageist

mechanisms that limit the participation of older people on digital platforms. Our analysis shows
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how ageism has already become part of digital platforms through the homophily that shapes

corporate teams, the discriminatory methods inadvertently embedded in their design and devel-

opment processes and the (obscure) algorithms that increasingly run them. We have shown how

these mechanisms deprioritize, disregard, or explicitly exclude older people from digital platforms,

as well as the way in which explicit and non-explicit ageism limits the chances of ‘creating digital

and social equality for all in our digital, networked society’ (Fernández-Ardèvol and Ivan, 2013;

Oreglia and Kaye, 2012).

Homophily refers to the tendency to associate with peers, for example, in terms of age,

gender, class, and societal role (Kretchmer, 2017: 88). Marsden (McPherson et al., 2001: 416)

found evidence of age-based endogamy among younger age groups, a trend that has remained

stable over time (Grossetti, 2007; Smith et al., 2014). Innovation teams on digital platforms are

primarily made up of young, educated men with above-average salaries and a keen interest in

technologies (Grossetti, 2007; Smith et al., 2014). Thus, their collective socioeconomic and

cultural references influence the processes which run the digital platforms that they develop, and

it is comparatively more unlikely for them to properly include the older population’s experiences

when designing digital tools. Homophilic dynamics therefore lead teams to disregard older

people in their design decisions.

The methods used to analyze data from digital platforms rely on big data approaches which

disregard groups that behave differently to the mainstream, something which is more common

among older people. Big data approaches implicitly assume that with large amounts of data there is

no need to evaluate representativeness (Cohoon and Aspray, 2004). They are mostly based on

predictions and correlations (boyd and Crawford, 2012) that are less accurate with minorities

(Bonchi et al., 2017) or any groups that behave differently to the mainstream. By using predictions

and correlations, the system thus deprioritizes users outside the mainstream, among whom older

people are more commonly found. In addition, voluntary samples recruited through digital media

exclude users with fewer skills and a narrower range of uses of digital media, which is more

common among older people.

Obscure algorithms (Hajian et al., 2016) help to hide corporate priorities that contradict user

interests. This article highlights usability or inclusivity issues that mainly affect nonexpert users,

who are more common among the older population. Behind these usability issues is not only the

absence of a user experience approach, but also the failure to take into account unexpected users.

Beyond the user experience, design decisions are made in support of corporate decisions. Thus

social equality in digital society often contradicts the aims of market products, showing the

asymmetrical power embedded on digital platforms that are part of the capitalist economy (Pas-

quale, 2015) and the way in which corporate decision-making reinforces ageism by deprioritizing

people with limited digital skills or motivation, among whom older people are commonly found.

The capitalist approach to digital platforms is a ‘source of invisibilities that support inequalities

and ultimately injustices’ (Schäfer and Van Es, 2017). The analyzed mechanisms thus reinforce

ageism on digital platforms based on stereotyped views of older people that see all of them as less

avid users who are not interested in technologies. By doing so, corporations tend to deprioritize,

disregard, or directly exclude older people through their design and development processes.

A general principle to tackle discrimination should consider giving the user control of their

personal data, that is, control on how the data provided to digital platforms can be used, which

implies a movement toward more transparent algorithms. In addition, intelligent algorithms should

compensate for the underrepresentation of collectives in less favorable conditions (Stocchetti,

2018: 23). It is therefore necessary to design algorithms that are capable of setting up bias-free

Rosales and Fernández-Ardèvol 1081



training data sets (Pedreschi et al., 2009). Or to take into account the granularity of the data

(Bolukbasi et al., 2016), create more inclusive algorithms and use statistical models capable of

incorporating the cultural and social digital media practices of broader population segments. In this

sense, we join Dressel et al. (1997) in suggesting that research should adapt to the context of

overlooked groups, which the older population has become, and avoid imposing the frameworks of

market and economically and politically dominant groups.
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Fernández-Ardèvol M and Ivan L (2013) Older people and mobile communication in two European

contexts. Romanian Journal of Communication and Public Relations 15(3): 83–101. Available at:

http://journalofcommunication.ro/index.php/journalofcommunication/article/view/196 (accessed 1

February 2015).

Ferreira D, Dey AK, and Kostakos V (2011) Understanding human-smartphone concerns: A study of battery

life. In: Proceedings of the International conference on pervasive computing, San Francisco, June 2011,

pp. 19–33. Berlin: Springer-Verlag.

Fingerprint Cards AB (n.d.) Fingerprints biometric solutions for smartphones & tablets. Available at: https://

www.fingerprints.com/solutions/smartphones-tablets/ (accessed 19 December 2018).

Gafni R and Nagar I (2016) CAPTCHA: Impact on user experience of users with learning disabilities.

Interdisciplinary Journal of e-Skills and Lifelong Learning 12: 207–223.

Garattini C and Prendergast D (2015) Critical reflections on ageing and technology in the twenty-first century.

In: Prendergast D and Garattini C (eds) Aging and the Digital Life Course. Life Course, Culture and

Aging: Global transformations. New York: Berghahn Books, pp. 1–15.
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