
G protein–coupled receptor Gpr115 (Adgrf4) is required for
enamel mineralization mediated by ameloblasts
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Dental enamel, the hardest tissue in the human body, is
derived from dental epithelial cell ameloblast-secreted enamel
matrices. Enamel mineralization occurs in a strictly synchron-
ized manner along with ameloblast maturation in association
with ion transport and pH balance, and any disruption of these
processes results in enamel hypomineralization. G protein–
coupled receptors (GPCRs) function as transducers of external
signals by activating associated G proteins and regulate cellular
physiology. Tissue-specific GPCRs play important roles in organ
development, although their activities in tooth development
remain poorly understood. The present results show that the
adhesion GPCR Gpr115 (Adgrf4) is highly and preferentially
expressed in mature ameloblasts and plays a crucial role during
enamel mineralization. To investigate the in vivo function of
Gpr115, knockout (Gpr115-KO) mice were created and found
to develop hypomineralized enamel, with a larger acidic area
because of the dysregulation of ion composition. Transcrip-
tomic analysis also revealed that deletion of Gpr115 disrupted
pH homeostasis and ion transport processes in enamel forma-
tion. In addition, in vitro analyses using the dental epithelial
cell line cervical loop–derived dental epithelial (CLDE) cell
demonstrated that Gpr115 is indispensable for the expression
of carbonic anhydrase 6 (Car6), which has a critical role in enamel
mineralization. Furthermore, an acidic condition induced Car6
expression under the regulation of Gpr115 in CLDE cells. Thus,
we concluded thatGpr115 plays an important role in enamelmin-
eralization via regulation of Car6 expression in ameloblasts. The
present findings indicate a novel function of Gpr115 in ectoder-
mal organ development and clarify the molecular mechanism of
enamel formation.

Dental enamel is comprised of greater than 97% hydroxyapa-
tite and those crystals have a 1000 times greater volume as
comparedwith that in bone or dentin, making enamel the hard-
est tissue in the human body (1). Dental enamel originates from
dental epithelium, and tooth development is initiated by a se-
quential interaction of dental epithelium and mesenchyme (2).
Dental epithelial stem cells invaginate into mesenchyme and
form enamel organ, which is composed by mainly four distinct
structures, inner enamel epithelium (IEE), outer enamel epithe-
lium, stratum intermedium, and stellate reticulum. Amelo-
blasts, differentiated from IEE, are one of the most important
cell types for enamel formation and their development is di-
vided into four stages: proliferation, secretory, transition, and
maturation. IEE cells, precursors of ameloblasts, exhibit high
proliferation and migration activities to increase tooth germ
size during the proliferation stage (3). Following the prolifera-
tion stage, IEE cells exit the cell cycle and differentiate into
ameloblasts, then in the secretory stage, ameloblasts secrete
enamel matrix proteins such as ameloblastin (AMBN), amelo-
genin, and enamelin to form an enamel scaffold (4–6). Enamel
mineralization occurs subsequent to enamel matrix degrada-
tion by the activities of various proteases, such as matrix metal-
loproteinase-20 and kallikrein-related peptidase 4 secreted by
ameloblasts in the transition stage (1, 7). Degraded enamelmat-
rices are then absorbed by ameloblasts in the maturation stage,
and mineral ion deposition takes place at the expense of scaf-
fold enamelmatrices.
Ameloblasts in the maturation stage have essential roles in

ion transport for importing enamel components as well as
exchange of various ions for pH regulation (8–10). In thematu-
ration phase, ameloblasts express ion transporters or exchangers
of Ca21, whereasHPO4

22 promotes calciumphosphatase precip-
itation (8). A major biosynthesis formula for hydroxyapatite
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(Ca10(PO4)6(OH)2), synthesized from octacalcium phosphate
(Ca8H2(PO4)6·5H2O), has been hypothesized (11) and is shown
in the following:

Ca8H2 PO4ð Þ6 � 5H2O1 2Ca21 �Ca10 PO4ð Þ6 OHð Þ2
1 4H11 3H2O

This reaction occurs under a weak alkaline condition and
during expansion of hydroxyapatite crystals, when protons will
be released, as shown above. pH balance is strictly regulated by
ameloblasts during enamel formation. A major function of the
proton buffering system in ameloblasts is excretion of bicar-
bonates (7, 8). Ameloblasts transport bicarbonate ions through
acid–base regulators, such as carbonic anhydrases (Car family),
and anion exchanger 2 and bicarbonate exchangers (the solute
carrier Slc4 and Slc26 families), which neutralizes protons
released by mineral formation (8, 10). An effect of the amelo-
blast buffering system is to change enamel pH from 6.1 to 7.4
during the mineralization process (12). However, when that
modulation of pH is disturbed, enamel fails to fully mineralize
(11).
G protein–coupled receptors (GPCRs) consist of five main

families in mammals, with more than 600 individual members
known in humans (13). Tissue-specific GPCRs have essential
roles in various types of organ development (14, 15), although
few studies have focused on GPCRs in tooth development. In
our previous study, a mouse tooth germ cDNA library was
screened using DNA microarrays to identify genes preferen-
tially expressed in tooth germs, including Gpr115 (also known
as adhesion G protein–coupled receptors subfamily F4,Adgrf4)
(16). In addition, we have reported the biological roles of previ-
ously uncharacterized genes in tooth development (17–19).
Furthermore, the functions that are characteristically expressed
in tooth and affect tooth differentiation have been elucidated
(20–24). In the present study, we focused onGpr115 as a candi-
date key factor for tooth development. Gpr115 is a member of
adhesion class GPCRs, the second largest GPCR subfamily,
with more than 30 members (13). Although various functional
contexts of adhesion class GPCRs in the immune system, neu-
rogenesis, bone development, and cancer progression have
been reported (13, 25), no findings regarding the biological
function ofGpr115 have been presented previously.
The present results indicate that Gpr115 has an important

role in tooth development. The Gpr115-KO mice were created
to analyze its function in tooth development, and they showed
enamel hypoplasia and disrupted pH buffering in enamel mat-
rices. Additionally, Gpr115 was found to be essential for
expression of carbonic anhydrase 6 (Car6) in ameloblasts.
Results of in vitro experiments with the mouse dental epithelial
cell line CLDE revealed that both Gpr115 and Car6 are essen-
tial for mineralization activity. Furthermore, we analyzed the
gene expression of CLDE cells and found that the expression of
Car6 was up-regulated under an acidic condition via Gpr115
expression. Together, Gpr115 was shown to function as a regu-
lator of Car6 expression to buffer protons produced by hy-
droxyapatite growth during enamelmineralization.

Results

Gpr115 was highly expressed during tooth development and
localized in developing ameloblasts

Initially, the expression of Gpr115 during tooth development
was analyzed. Both Northern blotting (Fig. 1A) and RT-qPCR
(Fig. 1B) results of postnatal day (P) 1 mice showed a high level
of Gpr115 expression in teeth. Furthermore, RT-PCR analysis
of P1, P3, P7, and P12 mouse molars (Fig. 1C) showed that
Gpr115 expression was increased sequentially during tooth de-
velopment. In P3 molars, Gpr115 expression was observed in
both dental epithelium and mesenchyme, although higher in
dental epithelium (Fig. 1D). In situ hybridization in P1 mouse
molars to detect the transcript of Gpr115 in tooth germ sec-
tions (Fig. 1E) revealed that Gpr115 was localized in amelo-
blasts and odontoblasts. Further immunostaining of P7 molars
and P15 incisors also showed Gpr115 specifically expressed in
ameloblasts and odontoblasts (Fig. 1, F andG).

Gpr115-KO mice showed hypomineralization, dysregulation
of element composition, larger acidic area in enamel

Next, Gpr115 knockout (Gpr115-KO) mice were created to
determine the in vivo function ofGpr115 during tooth develop-
ment (Fig. 2A). The loxP sites in floxed alleles were recombined
by mating with CMV-Cre mice to delete exon 4 of Gpr115
from the entire body. TheGpr115-KOmouse genotype was an-
alyzed using genomic PCR (Fig. 2B), with deletion of Gpr115
mRNA validated by RT-qPCR analysis of P7 WT and Gpr115-
KO molars (Fig. 2C). Deletion of exon 4 caused a frameshift
mutation and resulted in a short GPR115 protein (Fig. 2, D and
E). As a result, immunostaining analysis using an anti-GPR115
C terminus antibody did not detect the GPR115 protein in
ameloblasts or odontoblasts of P7Gpr115-KOmolars (Fig. 2F).
Gpr115-KO mice were viable and fertile, although the

enamel surface of mandibular incisors at the age of 8 weeks had
a chalky white color, a characteristic of enamel hypoplasia (Fig.
3A, b and d). Maxillary incisors extracted from Gpr115-KO
mice showed a smaller yellow-colored area, indicating that the
tooth abnormality existed in the enamel surface (Fig. 3Af).
However, histological analysis of P7 molars and P15 incisors of
Gpr115-KO mice did not reveal apparent ameloblast-related
morphological differences (Fig. 3, B andC).We then performed
micro-CT analyses of whole mandibles obtained from 8-week-
old WT and Gpr115-KO mice (Fig. 4), and 3D images recon-
structed from micro-CT scanning showed decreased incisor
enamel length in the Gpr115-KO mandibles (Fig. 4Ad). The
volume of enamel in incisors ofGpr115-KOwas;17% less and
15% less in molars as compared with those in WT mice (Fig.
4B). We also determined the mineral density of enamel at dif-
ferent levels of incisor development (Fig. 4C): protected late
maturation enamel (position 1), early maturation of enamel
(position 2), and transition to maturation of enamel (position
3). At the level of early maturation of enamel (position 2), which
is the section in the center of the first molar, the density of
enamel in Gpr115-KO mice incisor was significantly lower as
compared with the WT samples (Fig. 4D). These results indi-
cate that deletion ofGpr115 results in hypomineralized enamel
formation.

Role of Gpr115 (Adgrf4) in tooth development

J. Biol. Chem. (2020) 295(45) 15328–15341 15329



The detailed structure of incisor enamel was further analyzed
using scanning EM (SEM) (Fig. 5A). In an incisor section of
Gpr115-KOmice, lingual enamel shows a porous structure and
a part of enamel rod, a crystal unit of enamel hydroxyapatite
was not formed (Fig. 5Ad). In WT incisor lingual enamel, the
outer enamel surface layer exists adjacent to the aprismatic
enamel layer (Fig. 5Ae). Although in the Gpr115-KO incisor
lingual enamel, the outer enamel surface was absent (Fig. 5Af),
SEM–energy-dispersive X-ray spectroscopy (EDX) analysis
of Gpr115-KO enamel showed an abnormal composition of

elements, including decreased carbon, increased oxygen, and
phosphate and calcium (Fig. 5B). A pH indicator staining
method was used to determine enamel acidity in incisors from
8-week-old WT and Gpr115-KO mice (Fig. 5C). Using colori-
metric indicators, it was shown that the secretory areas of
enamel had an acidic condition, whereas maturated enamel
had an alkalic condition (26). Bromphenol red staining shows a
pH value of ;6.5–7.0 as light purple, whereas a value close to
7.5 has no staining (26). The longer area of maturated enamel
inGpr115-KO incisors was stained a red purple color than that

Figure 1. Gpr115 expression in developing tooth germ. A, Gpr115mRNA expression in different tissues obtained from P1mice were analyzed by Northern
blotting. Gapdh and 18S were used as internal controls. B, Gpr115 mRNA expression in different tissues obtained from P1 mice was analyzed by RT-qPCR.
Gpr115 expression was normalized to that of Gapdh (n = 3). Mean values are shown as bars. Error bars represent S.D. C, RT-PCR analysis of Gpr115, Ambn, and
Dspp expressions in P1, P3, P7, and P12 mouse molars. Gapdh was used as an internal control. Three independent experiments were performed. D, RT-PCR
analysis ofGpr115, Ambn, andDspp expressions in P3mousemolar epithelium andmesenchyme.Gapdhwas used as an internal control.DE, dental epithelium;
DM, dental mesenchyme. E, In situ hybridization of Gpr115 in P1 mouse molars. AS, antisense probe; S, sense probe. Purple, Gpr115. Scale bars, 100mM. F, a, im-
munofluorescence of GPR115 in P7 molar. b, enlargement of a. G, immunofluorescence of GPR115 in P15 incisor. First column, secretory stage; second column,
transition stage; third column, maturation stage. Green, GPR115; blue, DAPI. am, ameloblast; si, stratum intermedium; od, odontoblast; pa, papillary layer.
Dashed lines indicate ameloblast border. Scale bars, 100mM.
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of WT, indicating an acidic condition (Fig. 5C, left panel). Fur-
thermore, both bromphenol red and resazurin staining showed
that the acidic area of incisor enamel in Gpr115-KO was larger
than that in WT mice (Fig. 5C). These results suggested that
ion transport related to enamel formation may be disturbed in
Gpr115-KOmice.

Deletion of Gpr115 did not alter the expression of major
enamel matrix proteins or proteases

Gpr115-KO mice showed a hypomineralization type of
enamel hypoplasia (1). To identify the molecular mechanism
of abnormal enamel formation in thosemice, RNA-Seq analysis
was performedwith P7molars fromWT andGpr115-KOmice.
Complete absence of exon 4 in the Gpr115-KO samples was
confirmed by visualization of RNA-Seq coverage data (Fig.
6A). Additionally, differential expression analyses of WT
and Gpr115-KO samples revealed that the expressions of
enamel matrix genes Ambn, Enam, and Amtn and protease

genes Mmp-20, Klk4, and alkaline phosphatase (Alpl) were
not affected by deletion of Gpr115 (Fig. 6B). RT-qPCR
results also demonstrated unaltered mRNA expression of those
genes (Fig. 6C), whereas immunostaining analysis revealed that
protein expression of AMBNwas not suppressed in P7Gpr115-
KO molars (Fig. 6D). These results indicated that the enamel
matrix protein and protease expressions were not affected by
deletion ofGpr115.

Deletion of Gpr115 down-regulated expression of carbonic
anhydrase 6 in ameloblasts

Gene ontology (GO) enrichment analysis of differentially
expressed genes in P7 WT and Gpr115-KO molars was per-
formed using RNA-Seq data to categorize genes in which
expression was affected by deletion of Gpr115 (Fig. 7A). The
GO terms for ion homeostasis and transport are highly
enriched, indicating that Gpr115 is essential for regulation of
ion homeostasis and transport during ameloblast development.

Figure 2. Generation of Gpr115-KO mice. A, schematic diagram of WT allele of Gpr115 gene, targeting vector, floxed allele after homologous recombina-
tion, and KO allele after Cre recombination. The 59 and 39 arms were designed for homologous recombination. The neomycin-resistance gene was driven by
the human b-actin promoter. FRT sites were removed by Flp recombination in the floxed allele. Gpr115 exon (Ex) 4 was deleted by CMV promoter–driven Cre
recombination. Arrows indicate primer used for genotyping. Arrow indicates transcription start site. Purple arrowheads indicate primer used for RT-qPCR
for detecting cDNA of exon 4. Blue arrowheads and lines indicate primers used for genotyping and PCR products, respectively. B, genomic PCR of Gpr1151/1

(WT), Gpr1151/2 (heterozygous), and Gpr1152/2 (KO). The PCR product of the KO allele was smaller than that of the WT allele. C, mRNA expression ofGpr115 in
WT and Gpr115-KO P7 molars. Gpr115 expression was normalized to that of Gapdh (n = 3). Mean values are shown as bars. Error bars represent S.D. ***, p ,
0.001; two-tailed t test. Three independent experiments were performed. D, the first 60 amino acid (aa) sequences of the WT and Gpr115-KO products are
shown. In Gpr115-KO mice, the frameshift caused an early termination codon, resulting in a short protein consisting of 54 aa. Asterisk indicates termination
codon. E, domain structure of GPR115 predicted by PROSITE. Scale bar, 100 aa. Asterisk indicates termination codon. Arrow indicates location of anti-GPR115
antibody immunogen peptide. F, immunofluorescence of Gpr115 in WT and Gpr115-KO P7 molars. Green, Gpr115; blue, DAPI. am, ameloblast; si, stratum inter-
medium; od, odontoblast. Dashed lines indicate ameloblast border and odontoblast order. Scale bars, 50 mM. Blue arrows indicate primer used for genotyping.
Black arrow indicates transcription start site.
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Scatter plot analysis of RNA-Seq data showed a high level of
expression of the ion exchanger carbonic anhydrase 6 (Car6) in
WT mice as compared with Gpr115-KO molars (Fig. 7B). The
gene expressions of ion transporters and carbonic anhydrase
family members, which have been reported to play important
roles in tooth development (8), were examined. We evaluated
ion transporters and carbonic anhydrases gene expression level
in our WT and Gpr115-KO dataset. Heat map analysis indi-
cated that expressions of major ion transporter genes (Fig. 7C)
and carbonic anhydrases (Fig. 7D) expressed in ameloblasts
were not altered, except for that of Car6. RT-qPCR results of
P7WT andGpr115-KOmolars also revealed depletion of Car6
expression in Gpr115-KO (Fig. 7E). Immunostaining of CAR6
in P7 WT and Gpr115-KO molars was subsequently done to
examine the protein expression of Car6 (Fig. 7F). In WT
molars, Car6 expression was noted in ameloblasts and odonto-
blasts inWTmice (Fig. 7F, a and c), whereas its expression was
suppressed in Gpr115-KO molars (Fig. 7F, b and d), suggesting
thatGpr115 is essential for expression ofCar6 in vivo.
Next, CLDE, a mouse-derived dental epithelial cell line, was

used to analyze the effect of Gpr115 on Car6 expression (Fig.
8A). Gpr115-knockdown CLDE cells using siRNA of Gpr115
down-regulated the expression of Car6 (Fig. 8A) at 72 h after
transfection, indicating that Gpr115 regulates Car6 expression
during tooth development. However, knockdown of Car6
expression in CLDE cells using siRNA of Car6 did not have
effects onGpr115 expression (Fig. 8B). The effect of Gpr115 on
mineralization activity in dental epithelial cells was also exam-
ined using Alizarin Red staining (Fig. 8, C and D). Using CLDE
cells cultured in mineralization conditioned medium for 2 or
4 weeks, mineralization activity was significantly inhibited in
Gpr115-knockdown CLDE cells as well as Car6-knockdown
CLDE cells (Fig. 8D), suggesting that both Gpr115 and Car6
are essential for enamel mineralization. Furthermore, whether
overexpression of Car6 rescues loss of mineralization activity
caused by depletion of Gpr115 or Car6 in CLDE cells was also
examined (Fig. 8, E and F). As expected, Car6 overexpression
promoted mineralization activity in Gpr115-knockdown as well
asCar6-knockdownCLDE cells (Fig. 8F).

pH decline induced expression of Car6 via Gpr115 in dental
epithelial cell line

Carbonic anhydrases catalyze the interconversion between
carbon dioxide and water and bicarbonate. During enamel for-
mation, hydroxyapatite crystals produce protons and induce
crystal size growth (7). These hydroxyapatite crystals could be
unstable under pH 5.5 (12). For this reason, pH cycling during
enamel formation is modulated between 6.1 and 7.4 by the pro-
ton buffering system. The bicarbonate buffer system has im-
portant role to neutralize protons produced from enamel, thus
carbonic anhydrases contribute to enamel formation (8, 10).
We examined the effects of pH changes on gene expression in
dental epithelium using differentially pH-adjusted culture me-
dium for CLDE cells (Fig. 9A). RT-qPCR results revealed that
pH decline induced expressions of Gpr115 and Car6 in CLDE
cells, suggesting that an acidic condition promotes their expres-
sion in ameloblasts. Furthermore, the effect of Gpr115

Figure 3. Chalky white colored incisors from Gpr115-KO mice. A, photo-
graphic analyses of 8-week-old WT and Gpr115-KO incisors. Second column
shows enlargement of first column. Third column, maxillary incisors. B, H&E
staining of molars from P7 WT (upper panel) and Gpr115-KO (lower panel)
mice. Second column, enlargement of data shown in first column.Dashed lines
indicate enlarged area. C, H&E staining of P15 WT (upper panel) and Gpr115-
KO (lower panel) incisors. First column, secretory stage. Second column, transi-
tion stage. Third column, maturation stage. am, ameloblast; si, stratum inter-
medium; od, odontoblast; e, enamel; d, dentin; pa, papillary layer. Scale bars,
100mM.
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knockdown to Car6 mRNA induction under high (pH 7.8) or
low (pH 5.8) pH condition was examined in CLDE cells (Fig.
9B). The level of Car6 expression was similar inGpr115 knock-
down and control cells cultured in pH 7.8media, because of the
low expression level of Car6 in CLDE cells at that pH. Car6
expression level is suppressed in Gpr115 knockdown cells cul-
tured with pH5.8 media compared with control. These results
suggested that an acidic condition promotes expression of
Car6 via induction ofGpr115 expression.

Discussion

The present study examined the role of Gpr115 in tooth de-
velopment. Its expression was noted in ameloblasts and odon-
toblasts (Fig. 1, E and F) and shown to contribute to the enamel
mineralization process via regulation of Car6 expression. In
molars obtained from Gpr115-KO mice, Car6 expression was
suppressed in ameloblasts (Fig. 7), indicating that pH homeo-
stasis was disturbed. Furthermore, incisors in those mice had a
chalky white appearance, a typical phenotype demonstrating
hypomaturation of enamel hypoplasia. The color change in the
enamel surface corresponded to SEM results showing that the
outer enamel surface was deficient inGpr115-KO incisors (Fig.
5A). The outer enamel surface is formed at the end of enamel

formation and greater amounts of inorganic ions, such as ferri-
tin ion, are contained in the outer layer to help resisting various
stimuli in the oral cavity (27). The abnormality of ion composi-
tion observed in Gpr115-KO enamel (Fig. 5B) suggests that
ion transport in ameloblasts was disturbed by Gpr115 dele-
tion. Additionally, we observed a porous dentin structure in
Gpr115-KO incisors using SEM analysis (data not shown).
Thus, Gpr115 may also have a role in dentin development
processes.
Car6 expression was also found to be suppressed in Gpr115-

KO molars (Fig. 7, E and F) as well as Gpr115-knockdown
CLDE cells (Fig. 8A). Car6 is expressed in mature ameloblasts,
and catalyzes the interconversion between protons and bicar-
bonate ions into carbon dioxide and water, and functions as an
acid–base regulator. Because of low Car6 expression level in
Gpr115-KO mice, ameloblasts do not neutralize protons pro-
duced during the process of enamel crystal formation. Our
findings indicated that enamel mineralization was disturbed
under an acidic condition, which resulted in a lack of outer
enamel surface and lower mineral density in formed enamel.
We examined the effects of Gpr115 and Car6 onmineralization
activity of CLDE cells using Alizarin Red staining (Fig. 8, C–F).
Both Gpr115-knockdown and Car6-knockdown CLDE cells
showed lower levels of mineralization activity than the mock

Figure 4. Defective enamel mineralization in Gpr115-KO mice. A, micro-CT analyses of 8-week-old WT and Gpr115-KO mandibles. First column (a and b),
3D reconstructed image of mandible. Second column (c and d), 3D reconstructed image of molars and incisor enamel. c and d correspond to a and b, respec-
tively. Blue, molar enamel; yellow, incisor enamel. Arrows indicate position used for measurement of enamel mineral density in C. B, total volumes of enamel in
8-week-old WT and Gpr115-KO molars and incisors (n = 4). Number above bar graph indicates ratio of volume (KO/WT). Mean values are shown as bars. Error
bars represent S.D. **, p , 0.01; two-tailed t test. C, cross sections of micro-CT analysis images of WT and Gpr115-KO incisors. Position 1, late maturation of
enamel; position 2, early maturation of enamel; position 3, transition stage of enamel. Dashed lines indicate enamel area. Arrowheads indicate differences in
enamel density between cross sections of incisors from WT and Gpr115-KO mice. D, quantification of enamel and dentin mineral density. Cross sections in C
indicate positions of measurement (n = 4). Mean values are shown as bars. Error bars represent S.D. *, p, 0.05; two-tailed t test.
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control cells (Fig. 8, C and D). Interestingly, overexpression of
Car6 partially rescued mineralization activity in both of those
knockdown cell lines (Fig. 8, E and F). These results indicate

that suppression of Car6 expression may be the main cause of
inhibition of mineralization in CLDE cells.
Previous reports have noted expressions of several carbonic

anhydrases in ameloblasts and carbonic anhydrase family

Figure 5. Dysregulation of ion composition and pH in Gpr115-KO
enamel. A, scanning EM images of sections from 8-week-old WT and Gpr115-
KO incisors. a and b, incisor sections are shown. Dashed boxes are areas
shown in c–f. Scale bars, 1 mm. re, resin; e, enamel; d, dentin. c and d, high
magnification of lingual enamel. e and f, high magnification of enamel sur-
face.Dashed lines indicate border of aprismatic enamel and outer enamel sur-
face. re, resin; pe, prismatic enamel; ape, aprismatic enamel; oes, outer
enamel surface. Scale bars, 100 nm. B, ion composition in WT and Gpr115-KO
enamel determined by SEM-EDX analysis (n = 6). Mean values are shown as
bars. Error bars represent S.D. **, p , 0.01; ***, p ,0.001; two-tailed t test. C,
staining of 8-week-old WT and Gpr115-KO incisors to indicate pH. Left col-
umn, bromphenol red and resazurin staining of WT and Gpr115-KO incisors.
Right column, quantified data showing stained incisor length by pH indica-
tors (n = 6). Upper right, bromphenol red staining, lower right, resazurin stain-
ing. Mean values are shown as bars. Error bars represent S.D. *, p, 0.05; two-
tailed t test.

Figure 6. Unaltered expressions of enamel matrix proteins and pro-
teases in Gpr115-KO teeth. A, visualization of RNA-Seq coverage data for
Gpr115 locus from P7 WT and Gpr115-KO molars. y axis represents mapped
reads. Arrowhead indicates deleted Gpr115 exon 4 (Ex4). B, heat map of
enamel matrix protein and protease expressions generated from RNA-Seq
analysis of P7WT and Gpr115-KOmolars. C, mRNA expressions of enamel ma-
trix proteins and proteases were validated by RT-qPCR in P7 WT and Gpr115-
KO molars (n = 3). Error bars represent S.D.; n.s., p . 0.05; two-tailed t test.
Three independent experiments were performed. D, immunofluorescence of
AMBN in molars from WT and Gpr115-KO P7 mice. Green, AMBN; blue, DAPI.
am, ameloblast; od, odontoblast. Scale bars, 100mM.
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members have been suggested to play a role in enamelminerali-
zation (28–31). Interestingly, in the present study, deletion of
Gpr115 did not alter in the expression of carbonic anhydrase
family in molars, except for Car6 (Fig. 7D). Car6 is a secretory
type of carbonic anhydrase and may have different roles as

compared with other carbonic anhydrases in enamel forma-
tion, as well as a different gene regulation mechanism. The
homeodomain transcription factor Dlx3 has been shown to
bind to the Car6 and Car2 promoter regions to regulate Car6
but not Car2 expression, in developing rat incisor enamel

Figure 7. Deletion of Gpr115 suppressed expression of Car6 during tooth development. A, GO analysis of different expressions in P7 WT and Gpr115-KO
molars. B, scatter plot analysis obtained by RNA-Seq showing genes differently expressed in P7WT and Gpr115-KOmolars. Highlighted plot, Car6. Red and blue
plots, up- and down-regulated genes, respectively. C, heat map of ion transporters expressed in P7 WT and Gpr115-KOmolars generated from RNA-Seq analy-
sis. D, heat map of carbonic anhydrase family expressed in P7 WT and Gpr115-KO molars generated from RNA-Seq analysis. E, mRNA expressions of Car2 and
Car6were validated by RT-qPCR in P7WT and Gpr115-KOmolars (n = 3). Error bars represent S.D.; ns, p.0.05, **, p,0.01; two-tailed t test. Three independent
experiments were performed. F, CAR6 immunofluorescence in WT and Gpr115-KO P7 molars. c and d, enlargement of a and b. Green, CAR6; blue, DAPI. am,
ameloblast; si, stratum intermedium; od, odontoblast. Scale bars, 100mM.
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organs (31). Furthermore, those authors reported that epithelial
cell–specific K14-promoter–dependent conditional knockout
of Dlx3 resulted in a hypomaturation type of enamel hypoplasia,
similar to that seen in the presentGpr115-KOmice. These find-
ings indicate an indispensable role for Car6 in enamel matura-
tion. We attempted to examine the relationship between Car6
transcription and Gpr115 by knockdown of Dlx3 in CLDE cells,
although that knockdown did not have a significant effect on
Car6 expression in this cell line (data not shown). Additional
analysis will be needed to reveal the molecular mechanism
related to transcriptional regulation of Car6.
During the maturation stage of enamel development, pH

changes occur, termed pH cycling. In this step, ameloblasts
transform their morphology from ruffle-ended to smooth-

ended (7, 10). These ameloblast phases correspond to the pH of
enamel, although the detailedmechanism has yet to be clarified
(7). In the present study, the affection of different pH on CLDE
cell experiment showed that expressions of Gpr115 and Car6
were induced under an acidic condition (Fig. 9), indicating that
ameloblasts may respond to protons released by enamel miner-
alization and induce Gpr115 and Car6 expression to buffer
those protons. Proton-sensing GPCRs are activated by released
protons and essential for pH homeostasis (32, 33). The proton-
sensing GPCRGpr68 is expressed in ameloblasts and the papil-
lary layer of rat incisors, and Gpr68-KO mice were shown to
have a hypomaturation type of enamel hypoplasia (34). It is
possible that the regulatory mechanism of Gpr115 is related
to proton-sensing GPCRs that sense the pH of enamel amelo-

Figure 8. Gpr115 knockdown suppressed cellular mineralization activity of dental epithelial cell line CLDE. A, mRNA expression of Gpr115 and Car6
determined in control mock without siRNA (mock), negative control siRNA (siNeg), and siGpr115-transfected CLDE cells (n = 3). Error bars represent S.D.; *, p,
0.05; two-tailed t test as compared with mock sample. Three independent experiments were performed. B, mRNA expressions of Gpr115 and Car6 determined
in control mock without siRNA (mock), negative control siRNA (siNeg), and siCar6-transfected CLDE cells (n = 3). Error bars represent S.D.; *, p, 0.05; two-tailed
t test as compared with mock sample. Three independent experiments were performed. C, mineralization activity assessed by Alizarin Red staining in control
without siRNA (mock), and siNeg-, siGpr115-, and siCar6-transfected CLDE cells after 2 and 4 weeks of culture. D, Alizarin Red staining was performed by dis-
solvingwith 1% SDS and absorbance at 450 nmwasmeasured at 2 (left panel) and 4 weeks (right panel) (n = 3). Mean values are shown as bars. Error bars repre-
sent S.D.; *, p , 0.05; **, p , 0.01; two-tailed t test. Three independent experiments were performed. E, mineralization activity was assessed by Alizarin
Red staining in mock as well as siNeg-, siGpr115-, and siCar6-transfected CLDE cells with pCMV6- or Car6-overexpression after 4 weeks of culture. F, Alizarin
Red stainingwas performed by dissolving with 1% SDS, then absorbance at 450 nmwas determined after 4 weeks (n = 4). Mean values are shown as bars. Error
bars represent S.D.; *, p, 0.05, **, p, 0.01 as comparedwithmockwith pCMV6-overexpressed CLDE cells; two-tailed t test. ##, p,0.01; ###, p,0.001 as com-
pared with siGpr115 or siCar6 with Car6-overexpressed CLDE cells; two-tailed t test. Four independent experiments were performed.
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blasts. Additional investigations to determine how ameloblasts
detect protons in regard to tooth development are necessary. In
the present study, the effects of pH decline on mineralization
activity in CLDE cells was tested. However, mineralization did
not occur at pH 5.8, as it was inhibited by that acidic condition
(data not shown). Therefore it will be essential to establish an
effective in vitro culture system to demonstrate how amelo-
blasts modulate pH during the enamel formation process.
Although Gpr115 is preferentially expressed in developing

skin, its loss in mice did not result in an overt phenotype in skin
(35). In agreement with that report, the present Gpr115-KO
mice were generated under a fetal condition and also demon-
strated no obvious phenotype in skin. Another report suggested
that expression ofGpr115 occurs in the most apical layer of the
epidermis (36). Different from enamel, epidermal tissue has a
dynamic metabolic turnover, which may explain why the pres-
ent Gpr115-KO mice develop normally in ectodermal tissues
except in dental enamel. Prömel and colleagues (13, 35) sug-
gested a biological redundancy of Gpr115 with Gpr111 (also
known as adhesion G protein–coupled receptors subfamily F2,
Adgrf2) that occurs in tandem with Gpr115. The expression of
Gpr111 during tooth development was not examined in the

present experiments, although this might explain why deletion
of Gpr115 did not result in complete inhibition of enamel
mineralization.
In summary, the present results identified a novel mecha-

nism for regulation of pH by Gpr115 during tooth develop-
ment. Both in vivo and in vitro evidence suggests thatGpr115 is
expressed in ameloblasts during thematuration stage and indu-
ces Car6 expression. As a result, ameloblasts gain a capacity to
buffer pH for enamel mineralization. Taken together, these
findings establish the essential role ofGpr115 in tooth develop-
ment and are the first to present detailed characterization of its
biological function. These novel insights also provide impor-
tant information regarding the activities of GPCRs in ectoder-
mal organogenesis.

Experimental procedures

Generation of Gpr115-KO mice

TheGpr115 targeting vector was designed by KOMPReposi-
tory Collection (CSD45717, Adgrf4tm1a(KOMP)Wtsi) and injected
into embryonic stem cells with the targeting strategy shown in
Fig. 2A. Briefly, 5329 base pairs (bp) of the 59 arm and 3374 bp

Figure 9. pH decline induced Car6 expression via Gpr115 in CLDE cells. A, mRNA expressions of Gpr115 and Car6 in CLDE cells cultured in media with dif-
ferent pH levels (n = 3). Mean values are shown as bars. Error bars represent S.D.; *, p, 0.05; **, p, 0.01; ***, p, 0.001; two-tailed t test. Three independent
experiments were performed. B, mRNA expressions of Gpr115 and Car6were determined in control mock without siRNA, and siNeg- and siGpr115-transfected
CLDE cells cultured in media with different pH levels (n = 3). Mean values are shown as bars. Error bars represent S.D.; ns, p. 0.05; *, p, 0.05; **, p, 0.01; ***,
p, 0.001 as compared with mock in pH 7.8 medium; two-tailed t test; #, p, 0.05; ###, p, 0.001 as compared with mock in pH 5.8 medium; two-tailed t test.
Three independent experiments were performed.
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of the 39 arm were recombined into theGpr115 locus, and loxP
sites were recombined with exon 4 of Gpr115. For Cre-loxP
recombination, CMV promoter–driven Cre mice were mated
with Gpr115-floxed mice to generate Gpr115-null mice. Dele-
tion of exon 4 results in a termination codon in seven different
amino acids. Three generated mouse lines showed a similar
tooth phenotype. The Gpr115-KO mouse line was maintained
by crossmating with FVB/N mice. The animal protocol used in
the present study was approved by the NIDCR Animal Care
andUse Committee (protocol number ASP16-796). All animals
were housed in a facility approved by the American Association
for the Accreditation of Laboratory Animal Care.

Cell culture and transfection

The mouse cervical loop–derived dental epithelial cell line
CLDE was maintained in keratinocyte serum-free medium sup-
plemented with EGF and BPE (Invitrogen) at 37°C with 5% CO2,
as described previously (37). In a pH stimulation assay, 1 M HCl
solution was added into culture medium to adjust pH. For RT-
qPCR and mineralization assay examinations, CLDE cells were
cultured until 80% confluency and transfected with Trilencer-27
Universal scrambled negative control siRNA duplex (OriGene,
siNeg), Adgrf4Mouse siRNA Oligo Duplex (OriGene, siGpr115),
and Car6 Mouse siRNA Oligo Duplex (OriGene, siCar6) using
Lipofectamine® RNAiMax Reagent (Invitrogen), following the
manufacturer’s protocol. For experiments with Car6 overexpres-
sion, a pCMV6-Entry Mammalian Expression Vector (OriGene,
pCMV6) and mouse Car6 expression plasmid (OriGene, Car6)
were transfected into CLDE cells using Lipofectamine® LTXwith
Plus Reagent (Invitrogen), following themanufacturer’s protocol.

Northern blotting

Total RNAwas extracted from P1 rat tissues using TRIzol re-
agent (Invitrogen), and 20 mg of RNA was separated by electro-
phoresis and transferred to a Nytran membrane (Schleicher &
Schuell), as described previously (19). cDNA was labeled with
[a-32P]dCTP using Ready-To-Go DNA labeling beads (Amer-
sham Biosciences). The membranes were incubated with la-
beled probes at 68°C in QuikHyb (Stratagene) and exposed to
autoradiography film (Kodak).

RT-PCR and real-time PCR

Total RNA frommouse tooth germs as well as CLDE cells was
isolated using an RNeasy Mini Kit (Qiagen), according to the
manufacturer’s protocol. cDNA was synthesized from 500 ng of
total RNA using SuperScriptTM VILOTM Master Mix (Invitro-
gen). Real-time PCRwas performed using SYBRTM SelectMaster
Mix (Invitrogen) with a Step One PlusTM Real-Time PCR System
(Thermo Fisher Scientific). RelativemRNA expression was deter-
mined with GAPDH used as the internal control. The primer
sequence used in this study were shown in Table 1.

Histological analysis, in situ hybridization, and
immunofluorescence staining analysis

In situ hybridization was performed with frozen sections of
P1 mouse heads, as described previously (38). Digoxigenin-11

UTP-labeled single-strand RNA probes for Gpr115 sense and
antisense strands were prepared using a digoxigenin RNA
labeling kit (Roche Diagnostics). H-E and immunofluorescence
staining were performed using paraffin-embedded tissues dis-
sected and processed as described previously (21). For immu-
nostaining, antigen retrieval was performed with citrate buffer
(Sigma) and the sections underwent Power Block (BioGenex)
application for 20 min prior to incubation with the primary
antibody. The primary antibodies of GPR115 (Novus Biologi-
cals, 1:200), CAR6 (US Biological, 1:100), and AMBN (Santa
Cruz Biotechnology, 1:200) were used to detect proteins. Pri-
mary antibodies were detected using an Alexa Fluor 488
conjugated antibody (Invitrogen, 1:400). Nuclear staining
was performed with DAPI (Sigma). Images were captured
using FLUOVIEW FV10i confocal microscopy (Olympus).

Domain analysis of GPR115

The predicted protein sequence of GPR115 was obtained
from NCBI GenBank (http://www.ncbi.nlm.nih.gov/genbank/)
and analyzed using PROSITE (39).

micro-CT analysis

Heads from 8-week-old mice were dissected and fixed with
4% paraformaldehyde in PBS. Scanning was performed using a
SCANCO mCT50 device, as described previously (17). 3D
reconstruction and enamel and dentin volume quantification
were conducted using AnalyzePro (AnalyzeDirect).

SEM and SEM-EDX analysis

Incisors of 8-week-old mice were extracted and embedded
using an EMbed 812 Kit (Electron Microscopy Science), then
sectioned in the middle frontal area. Sectioned layers were
etched with 0.1% nitric acid three times for 10 s each and with
10% sodium hypochlorite for 15 s. After etching, 5 nm sputter
coating with gold-palladium was performed. The samples were
scanned using aMiniscope®TM3000 (Hitachi).

pH indicator staining

Bromphenol red staining and resazurin were used to indicate
pH levels of enamel, as described previously (26, 31, 40–42).
Bromphenol red at 100 mg was dissolved in 45 ml of distilled
water containing 0.1% ethanol. Resazurin at 100 mg was dis-
solved in 45 ml of distilled water. Mandibular incisors were dis-
sected from mouse mandibles, then after removal of soft tissue
were dipped into staining solution for 1 min and washed with
100% ethanol and water. Images were acquired using a Leica
S8AP0 microscope (Leica). The length of the stained portion of
the incisor was calculated as percentage of total incisor length.

RNA-Seq

To construct each cDNA library, total RNA in P7 first molars
from littermate WT and Gpr115-KO mice was extracted using
TRIzol reagent (Invitrogen). cDNA libraries were produced
using a Nextera XT library kit (Illumina), and samples were run
on a HiSeq1500 (Illumina) configured for 150 3 150 pair-end
reads. Differential gene expression analysis was performed with
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DESeq2 (43). For GO analysis, online platform for GO Enrich-
ment Analysis provided by the Gene Ontology Consortium
(http://geneontology.org) was used (44, 45).

Mineralization assay

CLDE cells were cultured in 12-well plates, then after trans-
fection of siRNAs were cultured in DMEM/F12 (Invitrogen)
with 2.5 mM of calcium chloride (MP Biomedicals), 10 mM of
b-glycerophosphate (Sigma), 50 mM of L-ascorbic acid (Sigma),
and 10 mM of calcitriol (TCI Chemicals) for 2 or 4 weeks. After
washing with PBS, cells were fixed with 4% paraformaldehyde
in PBS for 5min. For Alizarin Red staining, cells were rinsed
with water and stained with freshly made 1% Alizarin Red S so-
lution (Sigma) for 10min, as described previously (46). Staining
was stopped using 400ml of 1% SDS for 15 min and absorbance
of the 450 nm wavelength was measured using a TriStar2 LB
942 (Berthold).

Statistics

A two-tailed Student’s t test was applied for statistical analy-
sis of two independent variables. P values ,0.05 were consid-
ered to indicate statistical significance. GraphPad Prism 8 was
used for all statistical analyses.

Data availability

The RNA-Seq data presented in this paper have all been de-
posited with the NCBI GEO GSE155641. All remaining data
are contained within the article.
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