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Short tandemly repeated DNA sequences, termed microsa-
tellites, are abundant in the human genome. These microsatel-
lites exhibit length instability and susceptibility to DNA
double-strand breaks (DSBs) due to their tendency to form sta-
ble non-B DNA structures. Replication-dependent microsatel-
lite DSBs are linked to genome instability signatures in human
developmental diseases and cancers. To probe the causes
and consequences of microsatellite DSBs, we designed
a dual-fluorescence reporter system to detect DSBs at ex-
panded (CTG/CAG)n and polypurine/polypyrimidine (Pu/Py)
mirror repeat structures alongside the c-myc replication origin
integrated at a single ectopic chromosomal site. Restriction
cleavage near the (CTG/CAG)100 microsatellite leads to homol-
ogy-directed single-strand annealing between flanking AluY
elements and reporter gene deletion that can be detected by
flow cytometry. However, in the absence of restriction cleav-
age, endogenous and exogenous replication stressors induce
DSBs at the (CTG/CAG)100 and Pu/Py microsatellites. DSBs
map to a narrow region at the downstream edge of the
(CTG)100 lagging-strand template. (CTG/CAG)n chromosome
fragility is repeat length–dependent, whereas instability at the
(Pu/Py) microsatellites depends on replication polarity. Strik-
ingly, restriction-generated DSBs and replication-dependent
DSBs are not repaired by the same mechanism. Knockdown of
DNA damage response proteins increases (Rad18, polymerase
(Pol) h, Pol k) or decreases (Mus81) the sensitivity of the
(CTG/CAG)100 microsatellites to replication stress. Replica-
tion stress and DSBs at the ectopic (CTG/CAG)100 microsatel-
lite lead to break-induced replication and high-frequency
mutagenesis at a flanking thymidine kinase gene. Our results
show that non-B structure–prone microsatellites are susceptible
to replication-dependent DSBs that cause genome instability.

Approximately 3% of the human genome comprisesmicrosa-
tellites or short sequence repeats of 1–9 base pairs (1, 2). The
structure of these ubiquitous microsatellites is dynamic and
susceptible to expansions, contractions, and DNA double-
strand breaks (DSBs) (2–5). The tendency of repetitive DNAs
to form a variety of non-B DNA structures (hairpin, slipped

strand, G quadruplex (G4), and triplex H-DNA) has been
linked to interference with DNA replication and repair and to
DSBs (6–10).
In humans, a growing cohort of neurodegenerative diseases

has been attributed to DNA instability at microsatellite DNA
noncanonical structures (3, 4, 7, 11–18). Thus, replication fork
barriers are believed to provoke fork stalling and template
switching (FoSTeS) and microhomology-mediated break-in-
duced replication (MMBIR) (19–26). The induction of gross
chromosomal rearrangements (GCRs) due to FoSTeS/MMBIR
has been implicated in the etiology of several developmental
disorders, including blepharophimosis syndrome (MIM no.
110100) (23), CHARGE syndrome (MIM no. 214800) (27), and
Pelizaeus–Merzbacher disease (MIM no. 312080) (28).
In yeast, microsatellite DNAs promote chromosome break-

age (29–35). In this model system, break-induced replication
(BIR) has been shown to generate large-scale repeat expan-
sions and mutations at a distance, as seen in human tumors
(36–38). BIR is also a consequence of replication stress in
human cells (39–44). Indeed in humans, replication-depend-
ent single-ended DSBs (seDSBs) leading to BIR have been pro-
posed to be responsible for copy number variation, several
forms of GCR (19, 43, 45), oncogenesis (12–14, 42, 46–49),
and multiple developmental disorders (27, 28, 47, 50–53).
Here, we focus on replication-dependent DSBs that occur at

two types of microsatellite elements, an expanded (CTG/
CAG)100 trinucleotide repeat from the 39-UTR of the human
DMPK locus and the 88-bp asymmetric polypurine/polypyri-
midine (Pu/Py)88 mirror repeat from the PKD1 IVS21 locus.
Much work has concentrated on (CTG/CAG) expansions in
the DMPK gene, inasmuch as expansions of this microsatellite
beyond ;40 repeats promote further enlargement of the tract
and genetic anticipation leading to myotonic dystrophy type 1
(DM1, chr19q13.32, MIM no. 160900) (for a recent review, see
Ref. 54). Previous work showed that expanded (CTG/CAG)
tracts can form hairpin structures in vivo (55, 56), and several
reports have also shown that (CTG/CAG)n microsatellite
repeats contribute to DNADSBs in bacterial, yeast, and human
model systems (29, 33, 57, 58).
The PKD1 (Pu/Py)88 asymmetric mirror repeats have the

potential to form triplex H-DNA and G quadruplex DNA. In
vitro, DNA triplex structures are visible in this sequence by
atomic force microscopy (59). Mutations in the PKD1 gene are
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associated with at least 85% of the cases of autosomal dominant
polycystic kidney disease (ADPKD) (chr16p13.3, MIM no.
173900). In more than 100 unrelated patients with ADPKD,
mutations were at least twice as frequent in the exons flanking
the PKD1 (Pu/Py)88 microsatellite as in 59 exons 1–8 (60). Sur-
prisingly, the (Pu/Py)88 microsatellite is not detectable as a hot-
spot formutation in blood samples of ADPKD patients (61, 62).
We have shown that the PKD1 IVS21 mirror repeat also

causes orientation-dependent fork stalling during replication
in vitro and in vivo. When integrated alongside the c-myc repli-
cator at an ectopic chromosomal site in the HeLa genome, the
(Pu/Py)88 tract elicited a polar replication fork barrier. When
the repeat was in the fork-stalling orientation, the binding of
replication checkpoint proteins Rad9, RPA, and ATR near the
repeat and the sensitivity of cells to Chk1 inhibition suggested
that the DNA damage response is activated by replication fork
stalling at this microsatellite (63).
In the present work, we describe a novel system to analyze

replication-dependent DNA double-strand breaks in human
cells, using fluorescent marker protein genes flanking the
(CTG/CAG)100 or (Pu/Py)88 microsatellites. We find that the
expanded (CTG/CAG)100 tract is sensitive to breakage follow-
ing exposure to multiple forms of replication stress. Under
nonperturbed conditions as well as after treatment with low-
dose hydroxyurea (HU), DSBs occur in a narrow region near
the downstream end of the (CTG/CAG) repeats. Moreover,
these breaks are not repaired by the same mechanism as a
restriction enzyme–generated DSB. Replication-dependent
DSBs at the ectopic (CTG/CAG)100 microsatellite result in BIR
and a greatly elevated frequency of mutagenesis of the neigh-
boring thymidine kinase gene. The (Pu/Py)88 microsatellite is
also sensitive to DSBs under unperturbed conditions and is
highly vulnerable to DSBs when the purine-rich strand is the
lagging-strand template for replication in cells treated with a
G4-stabilizing drug.
Our results show that diverse forms of replication stress

cause DSBs at microsatellite repeats prone to forming non-B
DNA structures. The frequency of DSBs depends on the struc-
ture-selective Mus81 endonuclease and translesion polymer-
ases. Invasion of the sister chromatid by the broken DNA
results in complex rearrangements and a high rate of base sub-
stitutions during break-induced replication.

Results

A dual-fluorescence reporter system for analysis of DNA DSBs
in vivo

Double-strand breaks are the most dangerous of DNA
lesions because of the potential for error-prone repair, gross
chromosomal rearrangement, and loss of heterozygosity. To
identify factors affecting microsatellite DSBs and repair, we
developed a system in which a DSB between two chromosomal
reporter genes could be detected by microscopy or flow cytom-
etry (Fig. 1). In this system, (CTG/CAG)100 or (Pu/Py)88 micro-
satellites were individually integrated at a single-copy FLP
recombinase target (FRT) site at chromosome 18p11.22 in
HeLa cells (64), bordered by the c-myc replication origin core
(55, 65, 66), an I-Sce1 site, and two fluorescent protein marker

genes (dTomato, eGFP) flanked by three identical AluYa5 ele-
ments (Fig. 1A) (67). Control cell lines were also constructed
that contain the same starting construct except that the dual-
fluorescence (DF)/myc cell line is missing the microsatellite
sequences (Fig. 1B), and the DF cell line is additionally missing
the c-myc origin core (Fig. 1C). The (CTG/CAG)23 and (CTG/
CAG)100 sequences are pure (CTG/CAG) repeats (55). The
sequence of the PKD1 (Pu/Py)88 microsatellite is shown in Fig.
1D. The cell lines are named to indicate the DNA sequence of
the lagging-strand template when replicated from the c-myc or-
igin (55, 63).
The DF/myc(CTG)100 cell line (hereafter referred to as

(CTG)100) expresses both the dTomato and eGFP reporter
genes and fluoresces yellow (Fig. 1E). Transfection of an I-Sce1
expression vector results in double-strand DNA cleavage 25 bp
downstream of the (CTG/CAG)100 microsatellite. This leads to
intrachromosomal homology-directed recombination (single-
strand annealing) between the second and third Alu elements
(67), which eliminates the eGFP reporter. The half-lives of
eGFP and dTomato reporter proteins are;24 h (68, 69); there-
fore, I-Sce1 digestion resulted in cells that appear red after
allowing 4–8 days for turnover of the reporter proteins present
before digestion (Fig. 1F).

Replication-dependent DSBs are not repaired in the same
way as I-Sce1 DSBs

To quantitate these observations over the entire cell popula-
tion, (CTG)100 cells were analyzed by flow cytometry. The
(CTG)100 cells initially expressed both dTomato (red) and
eGFP proteins and appeared in the upper right quadrant (yel-
low, double-positive) (Fig. 2, A and B). A small percentage of
cells (,2%) had spontaneously lost either the green reporter
(upper left quadrant, red cells), the red reporter (lower right
quadrant, green cells), or both reporters (lower left quadrant,
double-negative cells). When these cells were transfected with
the I-Sce1 expression vector, more than 40% of the cells lost the
green reporter (generating red cells) or both reporters (result-
ing in double-negative cells) by 4 days after treatment (Fig. 2C).
The loss of the eGFP reporter gene is the result of intrachromo-
somal single-strand annealing between the second and third
Alu elements, whereas the double-negative cells result from
single-strand annealing between the first and third Alu ele-
ments (67).
In striking contrast, approximately half of the (CTG)100 cells

exposed to low-dose hydroxyurea (0.2 mM) for 96 h had lost the
dTomato marker after 4 days of recovery (Fig. 2D). This HU
treatment quickly arrests replication forks in S phase and induces
a low level of the phosphorylated replication stress proteins
gH2AX and pChk1345 (Fig. S1), consistent with previous reports
that gH2AXmarks stalled forks before DSBs are detectable (70).
DSBs were also induced in (CTG)100 cells by treatment with

a low dose of the replication inhibitor aphidicolin (Fig. S2), or
by using H2O2 as a source of ROS and replication stress (Fig.
S3). In contrast, (CTG)23 cells did not exhibit these effects.
We conclude that replication stress–dependent DSBs occur
between the Tomato and eGFP marker genes near the ectopic
(CTG)100 site. Based on the difference in flow cytometry patterns

Replication-dependent microsatellite DSBs cause BIR

J. Biol. Chem. (2020) 295(45) 15378–15397 15379

https://www.jbc.org/cgi/content/full/RA120.013495/DC1
https://www.jbc.org/cgi/content/full/RA120.013495/DC1
https://www.jbc.org/cgi/content/full/RA120.013495/DC1
https://www.jbc.org/cgi/content/full/RA120.013495/DC1


between cells treated with I-Sce1 andHU, we conclude that repli-
cation-dependent DSBs in the ectopic (CTG)100 locus are not
repaired in the sameway as “clean” restriction enzyme–generated
DSBs and that replication-dependent DSBs caused by the (CTG/
CAG)100 repeat are refractory to the most common repair
pathways of homology-directed repair and nonhomologous
end joining.

(CTG/CAG)n repeat length–dependent DSBs
To confirm that the HU-induced DSBs were dependent on

the (CTG/CAG)100 repeat, several control cell clones were con-
structed and tested with HU, namely DF cells missing the c-
myc origin and the (CTG/CAG)100 repeat (Fig. 3, A and B), DF/
myc cells missing only the (CTG/CAG)100 repeat (Fig. 3, C and
D), and DF/myc cells containing a shorter (CTG/CAG)23 repeat

Figure 1. Maps of the ectopically integrated DF cell line constructs. A, DF/myc/(non-B DNA) cells contain the 2.4-kb c-myc core replication origin and indi-
vidual microsatellites prone to forming non-B DNA. (CTG)23 and (CTG)100 are 23 repeats or 100 repeats of the CTG trinucleotide, respectively, in the lagging-
strand template when replicated from the c-myc origin. (Pu)88 and (Py)88 refer to the 88-bp PKD1microsatellite with the purine-rich strand or pyrimidine-rich
strand, respectively, in the lagging-strand template when replicated from the c-myc origin. dTomato and eGFP genes are flanked by three identical AluYa5
repeats. B, DF/myc cells contain the same construct as in A but are missing the microsatellite sequences. C, DF cells contain the same construct as in A but are
missing the ectopic c-myc origin and the microsatellite sequences. Hyg, hygromycin phosphotransferase (Hygr) gene; Neo, neomycin phosphotransferase
(Neor) gene; TK, HSV thymidine kinase gene; FRT, S. cerevisiae FLP recombinase target, allowing site-directed integration. D, the PKD1microsatellite sequence,
showing two regions of mirror repeat symmetry; E, DF/myc(CTG)100 cells untreated; F, DF/myc(CTG)100 cells treated with I-Sce1.
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Figure 2. I-Sce1 DSBs are repaired by homologous recombination, but replication-dependent DSBs are refractory to homology-directed repair. A,
key to flow cytometry results; B, untreated DF/myc(CTG)100 cells; C, DF/myc(CTG)100 cells transfected with an I-Sce1 expression plasmid; D, DF/myc(CTG)100
cells treated with low-dose hydroxyurea (0.2 mM HU). Similar results were observed after treatment of DF/myc(CTG)100 cells with aphidicolin (Fig. S2) or hydro-
gen peroxide (Fig. S3).

Figure 3. Chromosome fragility due to (CTG)100 repeats and replication stress. A, DF cells, untreated; B, DF cells treated with HU (0.2 mM hydroxyurea); C,
DF/myc cells, untreated; D, DF/myc cells treated with HU; E, DF/myc(CTG)23 cells, untreated; F, DF/myc(CTG)23 cells treated with HU; G, DF/myc(CTG)100 cells
treated with HU (48 h) and allowed to recover (H–J) for 4–10 days.
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(Fig. 3, E and F). None of the control cell populations showed a
significant difference in HU-induced DSBs (p . 0.999). Thus,
the ectopic site displays replication-dependent DSBs contin-
gent on the length of the (CTG/CAG)nmicrosatellite.
In previous work in which the position of the I-Sce1 site was

changed, we showed that homology-directed repair that
removes either the ectopic dTomato gene or the eGFP gene is
not inherently deleterious to cells (67). Therefore, the loss of
the dTomato gene raised the possibility that the replication-de-
pendent DSBs that were resistant to recombination and deleted
all or part of chromosome 18 containing the dTomato gene
were also inimical to cell survival. To test this hypothesis, cells
were allowed to recover for 4, 8, or 10 days following HU treat-
ment (Fig. 3, G–I). The abundance of green cells in the culture
suggests that an acentric fragment of chromosome 18 including
the dTomato reporter gene may have been lost due to DSBs at
the (CTG/CAG)100 microsatellite (see “Discussion”). The pro-
gressive loss of the green cells from the population (lower right
quadrant) during the 4–10-day time course suggests that unre-
paired replication-dependent DSBs had a lethal effect on these
cells.

DNA DSBs are localized downstream of the (CTG/CAG)100
microsatellite

To determine the location of the replication-dependent
DSBs, DNA was isolated from (CTG)100 cells treated with HU
or I-Sce1 and subjected to linear amplification ligation–medi-
ated PCR (lamPCR) (71, 72). The lamPCR primer was comple-
mentary to the single-copy eGFP gene (Fig. 4A) and designed to
hybridize to the lagging-strand template DNA and leading-
strand nascent DNA relative to the c-myc origin.
The I-Sce1 site 25 bp 39 to the (CTG/CAG)100 microsatellite

and;500 bp from the lamPCR primer was used as a landmark.
As expected, when I-Sce1 was expressed in (CTG)100 cells, a
major lamPCR band of;500 bp was observed (Fig. 4B). Lower-
molecular weight bands (;200–350 bp) were also observed in
the undigested (Fig. 4B, lane 1) and I-Sce1–digested (Fig. 4B,
lane 2) reactions, which we attribute to multiple leading-strand
initiations near the c-myc origin (73, 74) that are not dependent
on exogenous replication stress.
A discrete band of approximately the same size as the I-

Sce1–generated lamPCR band could also be seen in a longer ex-
posure of the PCR products from untreated cells (Fig. 4B9, lane
1). We propose that this band is due to DSBs close to the 39 end
of the (CTG/CAG)100 repeat and the I-Sce1 site that are gener-
ated during endogenous replication stress. The breadth of this
band suggests that DSBs resulting during unperturbed growth
are primarily the result of nuclease cleavage within a limited
region near a stalled fork and not due to random torsional
breakage throughout the (CTG/CAG)100microsatellite.
When (CTG)100 cells were treated with HU, a band of ;500

bp again appeared (Fig. 4C), suggesting that DSBs induced by
HU treatment occur at or near the sites of DSBs due to endoge-
nous replication stress and I-Sce1 cleavage. HU treatment also
suppressed the 200–350 bp bands caused by nascent strand
DNA annealing to the leftward-facing lamPCR primer. We
conclude that endogenous replication stress, HU-induced fork

stress, and I-Sce1 cleavage all produce DSBs at or near the 39
end of the (CTG/CAG)100 microsatellite at the ectopic site in
(CTG)100 cells.

Mus81 knockdown decreases (CTG/CAG)100 DSBs during
replication stress

We have shown that (CTG/CAG)n repeats form hairpin
structures in vivo that cause replication fork stalling (55, 56,
75). Inasmuch as the Mus81 nuclease has been strongly impli-
cated in the cleavage of stalled replication forks (76–84), we
wished to test whether knockdown of Mus81 (Fig. 4D) would
affect the (CTG/CAG)100 DSBs. In this experiment, roughly
18% of (CTG)100 cells had suffered DSBs during unperturbed
clonal growth (Fig. 4E). HU treatment of these cells signifi-
cantly increased the percentage of green (DSB) cells in the pop-
ulation to greater than 40–50% (Fig. 4F and Fig. S4, p = 0.018).
Consistent with the cleavage of stalled forks by Mus81, knock-
down of the nuclease reproducibly resulted in a significant
decrease in the percentage of cells with endogenous DSBs (cf.
Fig. 4 (E and G) and Fig. S4, p = 0.049). Additionally, Mus81
knockdown dramatically decreased the percentage of DSBs
induced by HU treatment from;50% to 25% of cells (cf. Fig. 4
(F andH), p = 0.003). Whereas these results are consistent with
reports thatMus81 is a structure-selective nuclease that cleaves
stalled replication forks (84–88), and our results show that
Mus81 is involved in dTomato marker loss, we note that our
experiments have not shown that it is specifically the nuclease
activity ofMus81 that is responsible for the DSBs.

G quadruplex formation induces DSBs at the PKD1
polypurine/polypyrimidine microsatellite

The polycystic kidney disease type 1 (PKD1) locus harbors a
polypurine-polypyrimidine (Pu/Py)88 tract of 88 base pairs in
intron 21 (89), which is capable of forming intramolecular
DNA triplex (H-DNA) and G quadruplex structures (90, 91).
These structures have been strongly implicated in replication
fork stalling and collapse (8, 92–94). Replication of the polypur-
ine strand is blocked by non-B structure formation in vitro, and
the PKD1 (Pu/Py)88 tract selectively inhibits replication when
the polypurine strand is the lagging-strand template in vivo
(63). To determine whether G quadruplex formation would
sensitize this microsatellite to DSBs, we integrated the PKD1
(Pu/Py)88 repeat at the ectopic chromosomal site, in either the
(Pu)88 or (Py)88 lagging-strand orientation when replicated
from the c-myc origin (Fig. 5A).
The starting culture of DF/myc/(Pu)88 cells (referred to as

(Pu)88 cells) showed a significantly higher percentage of cells
than the (Py)88 cells in the lower right (green) quadrant, result-
ing from DSBs occurring in the absence of exogenous stress
(Fig. 5B and Fig. S6, p = 0.0001). Treatment of the (Pu)88 cells
with HU did not significantly increase the percentage of green
cells (Fig. 5C, p = 0.354); however, treatment of (Pu)88 cells with
the G quadruplex–stabilizing drug telomestatin (TMS) (95, 96)
markedly increased chromosome fragility at the ectopic site
(Fig. 5D, p = 0.0045), and this effect was enhanced by co-admin-
istration of HU (Fig. 5E and Fig. S6, p = 0.024). These data sug-
gest that replication fork slowing acts synergistically when G
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quadruplex formation is induced by the exogenous ligand.
However, it remains to be seen whether endogenous levels of
replication stress promote G4 versus H-DNA formation in the
(Pu)88 repeat in vivo.
We showed previously that the PKD1 microsatellite in the

(Pu)88 lagging-strand orientation blocked replication fork pro-
gress in vivo from the c-myc origin and elicited a constitutive

DNA damage response, which was not observed when the ec-
topic site repeat was in the (Py)88 orientation (63). To test the
effect of replication polarity on the stability of the PKD1micro-
satellite, we also analyzed the stability of the ectopic site when
(Py)88 was in the lagging-strand orientation. As shown in Fig.
5F, a significantly smaller percentage of DF/myc/(Py)88 cells
(referred to as (Py)88 cells) than (Pu)88 cells were initially green

Figure 4. PCRmapping of I-Sce1 and replication-dependent DSBs in DF/myc(CTG)100 cells. A, diagram of the ectopic (CTG)100 insert showing the primer
used for lamPCR (see “Experimental procedures”). Cells were transfected with an I-Sce1 expression plasmid or empty vector and incubated for 24 h before
DNA isolation. Alternatively, cells were treated with 0.2mM HU for 48 h. Genomic DNAwas isolated and subjected to two rounds of lamPCR using the 59-biotin-
ylated lamPCR primer indicated. The biotinylated PCR products were captured on streptavidin-tagged magnetic beads and ligated to a 59-phosphate, 39-
dideoxy adapter oligonucleotide (Circligase). Nested primers were used for exponential PCR amplification of the ligated template followed by gel electropho-
resis. B, DF/myc(CTG)100 cells were treated with I-Sce1, and DSBs were mapped by lamPCR; B9, darker exposure of B showing endogenous DSB; C, DF/myc
(CTG)100 cells were treated with HU, and DSBs were mapped by lamPCR. Arrows, bands indicating DSBs. Asterisks, putative extension products on unbroken
leading-strand nascent DNA. These bands are not reproducible. D, DF/myc(CTG)100 cells were treated with nontargeting siControl siRNA or siRNA targeting
Mus81 and analyzed by Western blotting. Flow cytometry was performed on cells treated with siControl (E), siControl plus HU (F), Mus81 siRNA (G), or Mus81
siRNA plus HU (H). Although the starting (CTG)100 culture had an increased percentage of green cells (cf. Fig. 3), the effects of HU treatment and the rescue by
Mus81 knockdownwere reproducible in three independent experiments (Fig. S4).
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in the absence of exogenous replication stress (cf. Fig. 5 (B and
F) and Fig. S6, p = 0.0001). This result suggests that the ectopic
(Pu/Py)88 tract is more sensitive to endogenous DSBs when the
purine-rich strand is replicated as the lagging-strand template
(i.e. in the fork-stalling orientation for replication). Neverthe-
less, compared with the effects of TMS on (Pu)88 cells, TMS
had a reduced but statistically significant effect on the percent-
age of green (Py)88 cells in the absence (Fig. 5H, p = 0.006) or
presence (Fig. 5I, p = 0.004) of HU, which is likely due to the
presence of the NHE III1 G4 prone sequence in the c-myc repli-
cation origin core (97–99). In contrast, HU treatment did not
have a significant effect on the flow cytometry profile of (Py)88
cells in the absence (Fig. 5G and Fig. S6, p = 0.355) or presence
of TMS (Fig. 5I and Fig. S6, p = 0.483).

Indirect induction of (CTG/CAG)100 DSBs

TMS is a highly selective intramolecular G quadruplex ligand
(95, 96, 100), which inhibits telomerase and causes telomere
shortening in vivo (101). The results of TMS treatment of
(Pu)88 and (Py)88 cells imply that DSBs occur preferentially
when G4 prone sequences are present on lagging-strand tem-

plates and that G quadruplex formation contributes to fork
stalling and replication-dependent DSBs.
Therefore, it was surprising that treatment of (CTG)100 cells

with TMS resulted in DSBs between the dTomato and eGFP re-
porter genes (Fig. 6, A and B). The effect of HU on these cells
was not additive to the effect of TMS (Fig. 6C), in contrast to
the dramatic effect of HU on (CTG)100 cells in the absence of
TMS (Fig. 2). These results suggest that the induction of DSBs
by TMS or HU at the ectopic (CTG/CAG)100 microsatellite
may both be related to replication fork stalling. To confirm that
the TMS effect in (CTG)100 cells was due to the (CTG/CAG)100
repeat, we treated DF/myc cells with TMS and observed a sig-
nificantly decreased appearance of green cells (Fig. 6 (D–F), p =
0.011).
The effect of TMS on DF/myc control cells was not statisti-

cally significantly different from its effect on (Py)88 cells (p =
0.149), suggesting that as in (Py)88 cells, the residual effect of
TMS on the DF/myc control cells may be due to the NHE III1 G
quadruplex–forming sequence in the 2.4 kb c-myc replication
origin DNA (94, 98–100, 102, 103).
To test the possibility that TMS induces unexpected struc-

tural changes in the (CTG/CAG) microsatellite, we used CD to

Figure 5. The PKD1 microsatellite is broken after replication stress and G-quadruplex formation, dependent on replication polarity. A, diagram of
the ectopic (Pu/Py)88 inserts; B, DF/myc(Pu)88 control cells; C, DF/myc(Pu)88 cells treated with HU; D, DF/myc(Pu)88 cells treated with TMS; E, DF/myc(Pu)88 cells
treated with TMS and HU; F, DF/myc(Py)88 control cells; G, DF/myc(Py)88 cells treated with HU; H, DF/myc(Py)88 cells treated with TMS; I, DF/myc(Py)88 cells
treated with TMS and HU.
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monitor the effect of TMS on CTG and CAG oligonucleotides
(Fig. 6G). As anticipated, TMS caused a dramatic shift in the
CD spectrum of a 22-mer oligonucleotide derived from the c-
myc G quadruplex–forming promoter sequence (100, 102,
103). However, TMS had no discernible effect on the CD spec-
tra of a scrambled DNA negative control, or (CTG)12 or
(CAG)12 oligonucleotides, although the (CTG)12 and (CAG)12
sequences are known to form hairpins in vitro (104). This is
consistent with the lack of stabilization of dsDNA by telomesta-
tin or similar G4 ligands (105, 106). We conclude that TMS
does not have a direct effect on (CTG/CAG) DNA structure in
vitro and, therefore, that the effects of TMS on (CTG/CAG)
stability in vivo are more likely to be an indirect result of activa-
tion of the DNA stress response (see “Discussion”), consistent
with the observation that TMS leads to phosphorylation of the
DNA damage response proteins Chk1, Chk2, and H2AX (107)
(Fig. S5).
The ectopic (Pu)88 repeat is not sensitive to HU, whereas the

ectopic (CTG)100 microsatellite is sensitive to multiple forms of
replication stress, suggesting that the (Pu)88 G4 structure is re-
sponsible for DSBs. Nevertheless, the effects of TMS on

(CTG)100 cells raise the possibility that TMS may contribute to
DSBs at the ectopic G4 sequences in (Pu/Py)88 cells both in
trans through the DNA damage response and directly by bind-
ing to G quadruplex–prone DNA.

Translesion DNA synthesis enzymes stabilize (CTG/CAG)100
against replication stress

Rad18 is important for translesion synthesis (TLS) in yeast
and human cells (108, 109), where Rad18 monoubiquitination
of proliferating cell nuclear antigen (PCNA) can recruit TLS
DNA polymerases h, k, i, l, z, and Rev1 to sites of replication
fork stalling at non-B DNA structures (110–116). Because
(CTG/CAG) sequences have been shown to form hairpin struc-
tures in vivo (55, 117), we wished to determine whether knock-
down of Rad18 or the TLS polymerases Pol h or Pol k would
sensitize the (CTG/CAG)100microsatellite to replication stress.
Compared with cells transfected with control siRNA (Fig. 7,

A, F, and K), combined control siRNA and HU treatment led to
(CTG/CAG)100 DSBs in 35–50% of cells (Fig. 7 (B, G, and L)
and Fig. S7, p = 53 1026). Depletion of Rad18 (Fig. 7C) led to a
reproducible increase in the percentage of cells with DSBs

Figure 6. TMS indirectly induces (CTG/CAG)100 DSBs. A, DF/myc(CTG)100 cells, untreated; B, DF/myc(CTG)100 cells treated with TMS; C, DF/myc(CTG)100 cells
treated with TMS and HU; D, DF/myc cells, untreated; E, DF/myc cells treated with TMS; F, DF/myc cells treated with TMS and HU;G, CD spectra of the indicated
DNAs with or without TMS. Note the overlap of the (CTG)100 versus (CTG)1001 TMS spectra, (CAG)100 versus (CAG)1001 TMS spectra, and scrambled DNA versus
scrambled DNA1 TMS spectra.
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(green cells) (cf. Fig. 7 (A and D) and Fig. S7, p = 0.046), and
Rad18 knockdown substantially increased the percentage of
cells with DSBs when combined with HU treatment (cf. Fig. 7
(B and E) and Fig. S7, p = 0.037). Considered together, these
results suggest that Rad18/TLS stabilizes the (CTG/CAG)100
microsatellite against the fork-slowing effects of endogenous
and exogenous replication stress.
TLS polymerases have been implicated in the bypass of DNA

hairpin structures (e.g. by Escherichia coli Pol V synthesis across
abasic DNA sites (118) and Saccharomyces cerevisiae Pol
z/Rev1 primer extension by DNA template switching at hair-
pins (119)). In the current experiments, depletion of Pol h (cf.
Fig. 7 (F and I) and Fig. S7) resulted in a statistically significant
increase in green cells when compared with siControl (p =
0.041), whereas knockdown of Rev1 did not (not shown).
In addition, the effect of HU treatment was amplified by

siRNA depletion of Rad18 (Fig. 7 (B and E) and Fig. S7, p =
0.022) or Pol h (Fig. 7 (G and J) and Fig. S7, p = 0.042), whereas
Rev1 knockdown did not increase the effect of HU treatment
(not shown). These results suggest that Pol h is one of the TLS
polymerases involved in the restart of (CTG)100 stalled forks.
In contrast to the effects of knockdown of Rad18 or Pol h,

depletion of Pol k in the absence of HU treatment dramatically
increased the fraction of cells containing DSBs (cf. Fig. 7 (K and
N) and Fig. S7, p = 0.0007). Taken together, themodest effect of
Rad18 knockdown versus the strong effect of Pol k knockdown

suggests that Pol k may also have a fork restart function inde-
pendent of Rad18 (120–122). Surprisingly, HU treatment did
not augment the effect of Pol k knockdown (Fig. 7O and Fig. S7,
p = 0.185) These results indicate that Rad18, Pol h, and Pol k
are involved in resolving non-B DNA (123). In the presence of
HU, Pol kmay interact with the stalled fork in a nonproductive
manner; thus, when replication is inhibited by HU, fewer struc-
tures that lead to DSBs are formedwhen Pol k is depleted.

Replication stress causes (CTG/CAG) BIR

Non-B DNA structure–prone repeats can induce mutagene-
sis at a distance in mammalian cells (9). These mutational
events are thought to result from replication fork stalling at
microsatellite repeats, fork breakage, and subsequent error-
prone repair in a process termed repeat-induced mutagenesis
(RIM) or BIR (9, 37, 124).
Our results have shown that the expanded (CTG/CAG)

microsatellite stalls replication forks and induces replication-
dependent DSBs. To test for RIM/BIR induced by the (CTG/
CAG)100 microsatellite, we integrated a modified reporter plas-
mid, (CTG)100eGFP/TK, at the ectopic site such that the eGFP,
FRT, and TK sequences become fused during FLP-mediated
integration (Fig. 8A). We postulated that if BIR occurs follow-
ing a hydroxyurea-induced, replication-dependent double-
strand break at the (CTG/CAG)100 sequence, invasion of the

Figure 7. Translesion synthesis pathways affect (CTG/CAG)100 stability. DF/myc(CTG)100 cells were subjected to the following treatments: nontargeting
control siRNA (A, F, and K), nontargeting siRNA and HU (B, G, and L); Rad18 siRNA (C and D); Rad18 siRNA plus HU (E); Pol h siRNA (H and I), Pol h siRNA plus HU
(J), Pol k siRNA (M andN), Pol k siRNA plus HU (O), andWestern blotting (C, H, andM).
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broken end into the sister chromatid would result in mutagene-
sis of the neighboringTK gene;1 kb downstream (Fig. 8B).
Untreated DF/myc(CTG/CAG)100eGFP/TK cells produced

ganciclovir (GCV)-resistant clones at a frequency of approxi-
mately three per 105 cells (Fig. 8C). These data are comparable
with the frequency of GCV-resistant clones stemming from
DSBs at an ectopic (CGG/CCG)153 repeat in a clonal popula-
tion of murine erythroid leukemia cells (124). As in the case of
the (CGG/CCG)153 murine erythroid leukemia cells, GCV re-

sistance likely arose by endogenous replication stress and BIR
during extended clonal outgrowth of the dual-fluorescence cell
line.
When DF/myc(CTG/CAG)100eGFP/TK cells were treated

with 0.2 mM HU followed by GCV selection, the frequency of
GCV-resistant colonies rose to ;7–8 colonies/105 cells (Fig.
8C, p = 43 1025). Thus, acute treatment with HU produced a
similar number of GCR-resistant cells as extended (.1-year)
clonal outgrowth.

Figure 8. Repeat-inducedmutagenesis. A, the DF/myc(CTG)100eGFP/TK ectopic site construct designed to detect BIR/RIM; B, model of repeat-inducedmuta-
genesis of the thymidine kinase gene triggered by a replication-dependent DSB at the ectopic (CTG/CAG)100 repeat; C, GCV

R colonies arising from BIR/RIM of
the TK gene. Error bars, S.D. (n = 3 experiments).
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To confirm that the appearance of GCV-resistant cells is
the result of BIR, we knocked down PolD3, which is neces-
sary for BIR in yeast (40) and human cells (44, 124), or
knocked down BRCA2, which mitigates DSBs under condi-
tions of replication stress and promotes Rad51-dependent
BIR in human cells (44, 125) (Fig. 8C). When DF/myc(CTG/
CAG)100eGFP/TK cells were exposed to shRNA, knock-
down of PolD3 (Fig. 8C, p = 0.015) or BRCA2 (Fig. 8C, p =
0.002) significantly decreased the frequency of GCV-resist-
ant cells following HU treatment to the background levels of
TK mutants accumulated during prolonged clonal out-
growth, supporting the view that DSBs at the (CTG/CAG)
repeat lead to break-induced replication.
We previously used inverse PCR (iPCR) to show that replica-

tion stress leads to breakage at an ectopic (CTG/CAG)102
repeat in myc(CTG/CAG)102 cells (126), as well as DSBs at en-
dogenous microsatellites across the genome (126). The (CTG/
CAG)102 construct differed from the construct in DF/myc
(CTG/CAG)100eGFP/TK cells in that there was no eGFP/TK
fusion or GCV selection for cells undergoing BIR. DNA
sequence analysis of iPCR products with nonallelic breakpoint
junctions initiated within the ectopic site also showed that the
broken site underwent nonrandom chromosomal transloca-
tions similar to genome rearrangements attributed to BIR in tu-
mor cells (126).
Although there was no GCV selection for BIR in the myc

(CTG/CAG)102 cells, we reanalyzed the iPCR DNA-sequencing
data to focus on the distribution of mutations upstream and
downstream of the ectopic repeat that had been repaired by
homology-mediated templating of the sister chromatid (Fig.
9). The great majority (.95%) of mutations were single base
substitutions. As predicted by BIR models, base substitu-
tions were dramatically greater downstream of the (CTG/
CAG)102 repeat than upstream (Fig. 9), consistent with the
rightward replication of the repeat from the c-myc origin
and with lamPCR mapping of the DSB at the downstream
edge of the (CTG/CAG)100 repeat. Subtracting the fre-
quency of nucleotide substitutions (PCR and sequencing
errors, in vivo mutations) upstream of the repeat as back-
ground, the average frequency of nucleotide substitution
downstream of the (CTG/CAG)102 repeat was ;1.5 3 1027

substitutions per bp. This value is at least 2–3 orders of mag-
nitude greater than recent estimates of the natural mutation
frequency in humans (40, 127, 128).
Within the (CTG)102 repeat, we observed expansions, con-

tractions, inversions, and base substitutions. Interestingly,
there was a strong third base periodicity of nucleotide substitu-
tions at dG residues in the (CTG)102 template, which peaked
dramatically near the center of the microsatellite (Fig. 9B).
These data are consistent with the observation that dG:dC base
pairs are preferential targets for single-base substitution muta-
tions in tumor cells (129) and that a loop at the center of a sin-
gle large (CTG)102 hairpin is a hotspot for mutagenesis during
the process of BIR. Considered together, our data indicate that
DSBs at (CTG/CAG) repeats lead to highly mutagenic break-
induced replication.

Discussion

(CTG/CAG) microsatellite DSBs detected by flow cytometry

Microsatellite repeats prone to forming non-B DNA struc-
tures undergo expansion, contraction, and double-strand
breakage in a variety of yeast and mammalian cell systems (7,
29, 36, 124, 130–135). Here, we used a dual-fluorescence re-
porter gene system to analyze DSBs in human cells. We show
that DNA double-strand breaks occur at a relatively high fre-
quency in an ectopic (CTG/CAG)100 microsatellite expanded
beyond the WT range of repeats found in the human DMPK
gene. These DSBs occur in unstressed cells and were dramati-
cally increased in cells treated with four qualitatively different
replication stressors (hydroxyurea (126, 136, 137), aphidicolin
(56), hydrogen peroxide (138), and telomestatin (107, 111)), in
agreement with the view that endogenous and exogenous repli-
cation stress leads to DNA DSBs. The low background level of
DSBs at the ectopic site (CTG/CAG)23 repeat suggests that
expanded (CTG/CAG)100 tracts promote replication-depend-
ent breakage.
Replication-dependent DSBs at repeated sequences have

been attributed to the propensity of these repeats to form non-
canonical DNA structures (8, 35, 48, 139, 140). Consistent with
this view, it has been shown that (CTG/CAG) repeats form
hairpin structures in vivo (55, 56, 141). It is intriguing, there-
fore, that the cellular repair machinery treats a restriction
enzyme–generated DSB differently than a replication-depend-
ent DSB. We speculate that localized Mus81-dependent cleav-
age near the downstream edge of the (CTG/CAG)100 repeat is
due to a noncanonical DNA structure that is refractory to repli-
cation and repair. Similar conclusions regarding the breakage
and repair of structured ends have been obtained with an
AT-rich repeat derived from the FRA16D common fragile
site (30, 142).
The abundance of green cells (;50%) after different forms of

replication stress is consistent with models in which both ends
of a replication-dependent DSB persist in the population (143);
based on the abundance of dTomato2 eGFP1 cells, we propose
that the eGFP side of theDSB is replicated by a leftwardmoving
replication fork (Figs. 8B and 10) (76) that produces two DSBs
that are functionally single-ended.
Among other possibilities, the subsequent instability of the

green cells may be due to the structure of the non-B DNA end
per se, inhibition of the major pathways of repair (homologous
recombination and nonhomologous end joining) with the
downstream end, a nontelomeric structure of the downstream
eGFP DSB end, and loss of DNA from the acentric upstream
side of the DSB.
In contrast to the results presented here for the PKD1micro-

satellite, Wenger et al. (144) reported the inability to detect
fragile sites by cytogenetic G banding in blood cell cultures
from congenital DM1 patients containing repeats as large as
(CTG/CAG)1000 after treatment with replication stressors
including 0.2 mM aphidicolin. Aside from differences in cell
type,Wenger et al. (144) treated cells with bromodeoxyuridine,
59-deoxy-5-fluorouridine, or aphidicolin for 24 h immediately
before chromosome spreading, whereas the present experi-
ments treated cells for 4 days prior to 4–10-day recovery in
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drug-free medium and flow cytometry. It is possible therefore
that in the present experiments, DSBs occur during prolonged
replication stress or during replication restart following drug
treatment.
We observed as well that treatment of cells with telomestatin

induced DSBs at the (CTG/CAG)100 ectopic site in vivo. Telo-
mestatin is a known replication stressor of intramolecular G

quadruplex–prone sequences, especially telomeres (101, 107,
145–147); however, no change in (CTG/CAG) oligonucleotide
structure due to TMS could be detected in vitro by CD. These
results suggest that telomestatin action at telomeres or other G
quadruplex–prone sequences (107) can affect (CTG/CAG) sta-
bility in trans. We propose that G quadruplex formation else-
where in the genome causes a diffusible state of replication

Figure 9. High frequency of base substitutions due to BIR. A, base substitution analysis at the ectopic site following sister chromatid templated BIR. DNA
was isolated from myc(CTG/CAG)102 cells treated with 0.2 mM aphidicolin, digested with MseI, and intramolecularly circularized. The circularized DNA was
amplified by inverse PCR and analyzed by high-throughput sequencing. Nonallelic recombination junctions have been published previously (126). B, interpre-
tativemap of BIR at the ectopic site. C, quantitation of base substitutions at C, T, and G residues within the (CTG) repeat.
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stress in the cell that promotes fork slowing and non-B struc-
ture formation at the ectopic (CTG/CAG)100 repeat.

DSBs at the structure-prone (Pu/Py)88 microsatellite

During DNA replication, the lagging-strand template is
expected to be more susceptible to structure formation than
the leading-strand template, due to its relatively prolonged sin-
gle-strandedness (6, 35). Consistent with this model, replica-
tion of the PKD1 intron 21 (Pu)88 sequence as the lagging-
strand template leads to replisome stalling; recruitment of
RPA, Rad9, and ATR to the stalled fork; and induction of a
DNAdamage response (63).
In the current work, the (Pu/Py)88 repeat displayed replica-

tion polarity–dependent instability in the absence of exogenous
stress. Administration of the G quadruplex–binding ligand
telomestatin strongly enhanced the sensitivity of the (Pu/Py)88
tract to DSBs in the same replication polarity–dependent man-
ner, which we attribute to the stabilization of G quadruplex
DNA structures in the lagging-strand template. However, the

(Pu/Py)88 tract also has the ability to form triplex H-DNA
structures in the absence of telomestatin (63, 89, 90, 148).
Therefore, whereas the present results indicate that induced G
quadruplex formation can stall replication forks and cause
DSBs, the sensitivity of the lagging-strand (Pu)88 tract to DSBs
in unperturbed cells could also be the result of H-DNA forma-
tion. This possibility is currently under investigation.
In contrast to the DSB sensitivity of the ectopic PKD1 IVS21

(Pu/Py)88 tract, PCR analysis of 57 patients with autosomal
dominant polycystic kidney disease (ADPKD1) showed no hot-
spot for mutation in the PKD1 gene, although mutations were
2–3 times more frequent in the exons surrounding IVS21 than
in exons 1–8 (60). Similarly, in samples from 15 tuberous scle-
rosis (TSC) patients in which deletions in the upstream TSC2
gene extended into PKD1, multiplex ligation-dependent probe
amplification did not show clustering of breakpoints near the
IVS21 (Pu/Py)88 tract (62). One explanation for these observa-
tions may be a strong selection against PKD1 DSBs, which
includes origin choice (149–152) to avoid lagging-strand repli-
cation of the PKD1 (Pu)88 sequence.

Figure 10. Proposed model for loss of the dTomato marker gene after replication stress. A, ideogram of chromosome 18 showing the FRT site at
18p11.22. B, integrated (CTG)100 construct. C, enlarged (not to scale) diagram of converging replication forks and the Mus81 cleavage substrate. D, proposed
pathway for loss of the dTomatomarker gene and generation of eGFP1 (green) cells.
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Translesion polymerases mediate (CTG/CAG) stability

The TLS polymerases comprise a group of functionally
divergent enzymes that can bypass non-B DNA and template
lesions that stall replicative polymerases (123). Rad18-de-
pendent ubiquitination of the PCNA scaffold allows TLS poly-
merase exchange and access to the unreplicated lesion (111,
115, 153–155). Multiple TLS polymerases can bind to ubi-
quitinated PCNA (123); thus, in the absence of one TLS poly-
merase, alternative postreplication repair pathways can be
employed (115, 123). In the dual-fluorescence assay, siRNA
knockdown of Rad18 or Pol h caused a marked increase in
ectopic instability when combined with HU treatment. In
contrast, depletion of Pol k led to a large increase in DSBs
in otherwise unstressed cells but minimized the effect of
HU treatment. We suggest that Rad18 and Pol h assist in the
replication of the (CTG/CAG)100 repeat, particularly during
HU-induced fork slowing, whereas depletion of Pol k in the
presence of HU decreases the formation of a subset of diffi-
cult-to-replicate structures. Intriguingly, translesion synthesis
has also been implicated in break-induced replication (156,
157). Our results are consistent with reports that Pol h and
Pol k are involved in the replication of common fragile sites
(158) and that knockdown of these polymerases enhances
DSBs in HeLa cells transfected with plasmids containing
c-mycG4-prone DNA (111).

(CTG/CAG)100 break-induced replication

Early replicating fragile sites (ERFSs) are detected as DNA
breaks in the absence of exogenous replication stress but are
increased on release from hydroxyurea treatment or ATR inhi-
bition (159). Tubbs et al. (143) recently showed that a subset
of ERFSs close to replication origins containing poly(dA:dT)
tracts are highly sensitive to DSBs in lymphocyte cultures
treated with HU. The 2:1 ratio of DNA ends on opposite sides
of the DNA breaks suggested that both arms of the replication
fork are broken into DSBs, in contrast to the single-ended DSB
model of RIM and BIR (40, 160–163).
The ectopic (CTG/CAG)100 repeat resembles an ERFS in its

proximity to an origin (143), its early replication (164), and its
sensitivity to several forms of replication stress (159). However,
breakage at the (CTG)100 may differ from the model for ERFS
DSBs on both arms of a fork based on RIM/BIR mutagenesis at
the flanking TK sequence upon HU treatment (i.e. the 39 end of
a replication-dependent DSB generated by (CTG)100 fork col-
lapse can invade and mutagenize the TK gene of an intact sister
chromatid).
In the dual-fluorescence system, the frequency of GCVR col-

onies is comparable with recently reported values for BIR initi-
ated by (CGG/CCG)153 repeats in murine cells (124) and may
reflect the rate of error-prone DNA synthesis during break-
induced replication. However, additional factors (efficiency of
mismatch repair, incidence of sister chromatid (versus nonal-
lelic) invasion, efficiency of synthesis on the sister chromatid
template, frequency of template switching) may also affect the
observed frequency of mutagenesis.
A variety of replication stressors, including HU, induced

breaks between the dTomato and eGFP reporter genes at the

ectopic site. HU also induced a (CTG/CAG)100 DSB localized
to the edge of the repeat downstream of the c-myc replication
origin. The induction of GCV-resistant clones byHU treatment
and the decrease in TK mutant clones following knockdown of
PolD3 or BRCA2 suggest that HU causes BIR in this system.
Considered with the strong preferential occurrence of muta-
tions downstream of the ectopic repeat in (CTG/CAG)102 cells,
these data are consistent with a model in which replication
stress at the (CTG/CAG) microsatellite leads to DSBs in forks
originating at the c-myc origin, resulting in BIR and mutagene-
sis of the downstreamTK gene.
We propose that Mus81 cleavage of the stalled rightward

moving fork results in a covalently open or closed hairpin end
(165) of the dTomato chromosome fragment (Fig. 10). Alterna-
tively, Mus81 cleavage may occur as the leftward moving fork
stalls at a hairpin structure or template-switched/chicken-foot
reversed fork structure. The abundance of green cells after HU
treatment implies that the eGFP gene downstream of the
(CTG/CAG)100 repeat DSB is replicated by a leftward moving
replication fork and is preserved in cells that have lost the dTo-
mato gene (76).
We speculate that the non-B DNA structure of the dTomato

end blocks repair and yields two DSBs that are functionally sin-
gle-ended. The unligated DSB also leads to loss of the acentric
dTomato chromosome fragment.
A small fraction of eGFP ends may undergo BIR and gener-

ate GCVS cells that are green (mutant dTomato) or yellow,
whereas the majority of green cells die, inasmuch as a single
unresolved DSB can cause apoptosis (166, 167). BIR of the
dTomato end gives cells that are GCVR (TK mutant) and red
(eGFPmutant) or yellow.
Recently,Mayle et al. (76) showed that knockout ofMus81 in

yeast could increase BIR mutagenesis. In this system, a mutant
form of the FLP recombinase was used to generate a long-lived
DNA nick that could be converted to a seDSB when traversed
by a replication fork. The authors concluded that Mus81 cleav-
age of the BIR D-loop normally reduced BIR mutagenesis. In
contrast, the present results suggest that earlier cleavage by
Mus81 at stalled forks may also increase DSBs. Further experi-
ments are under way to analyze the structures of the right and
left DSB ends and test the effects of enzymes involved in BIR in
processing DSBs in this system.

Experimental procedures

Cell culture

HeLa/406 acceptor cells contain a single FRT site (65). Cell
lines were derived by co-transfecting HeLa/406 cells with dual-
fluorescence donor plasmids and the FLP recombinase expres-
sion vector pOG44 (168). Cells were maintained on Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine
serum, 1% penicillin/streptomycin, and 5% CO2 at 37 °C. GCV-
resistant cell growth in control (no HU)- or HU-treated cells
was assayed in 96-well plates using resazurin (Biotium, catalog
no. 30025) according to the manufacturer’s directions (169) af-
ter 14 days of GCV selection, as described (124).
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Hydroxyurea, aphidicolin, and telomestatin treatment assays

Cells were treated at a final hydroxyurea concentration of 0.2
mM, aphidicolin at a final concentration of 0.2 mM, and TMS at
a final concentration of 0.5 mM. The reagents were added to the
medium 24 h after plating the cells and maintained until the
start of recovery (2–4 days). Cells were treated with 200 mM

H2O2 for 15 min. Treatment and recovery of cells was in Dul-
becco’s modified Eagle’s medium supplemented with 10% fetal
bovine serum, 1% penicillin/streptomycin, 5% CO2 at 37 °C.

I-Sce1 transfection

DF2/myc/(CTG/CAG)100 cells were transfected with Lipo-
fectamine 2000 (Invitrogen, catalog no. 11668-019) and 2 mg of
I-Sce1 plasmid (Addgene no. 26477) in a 6-well plate, 24 h post-
plating. During transfection, medium without antibiotic was
used. 8 days after transfection, cells were harvested for analysis
by flow cytometry.

siRNA/shRNA treatment

The siRNAs used to knock down translesion synthesis poly-
merases were generously provided by Yanzhe Gao (University
of North Carolina). Cells were transfected with Lipofectamine
2000 (Invitrogen 11668-019) and 100 nM (final concentration)
of siRNA in a 6-well plate, 24 h postplating. Control experi-
ments were performed using AllStars negative control siRNA
(Qiagen, catalog no. 1027281). Cells were allowed to recover 48
h post-transfection for 4 days and then analyzed by flow cytom-
etry. PolD3 was knocked down in the presence of doxycycline
(1.25 mg/ml) in cells stably transfected with a SMARTvector
Inducible Lentiviral PolD3 shRNA (V3SH11252-226758280,
Dharmacon/Horizon).

Western blotting

Whole cell lysates from treated or untreated cells were
prepared. After SDS-PAGE, membranes were probed using a
1:1000 dilution of antibodies against pChk1 (Cell Signaling,
catalog no. 2341), BRCA2 antibody (Calbiochem, catalog no.
3146957; 1:1000), or PolD3 (Invitrogen, catalog no. PA536951;
1:500). Primary antibodies against Pol, Pol k (1:2000 dilution),
Rad18, or Rev1 (1:5000 dilution) were generously provided by
Yanzhe Gao (University of North Carolina).

Flow cytometry

Cell were trypsinized and centrifuged at 300 3 g for 3 min.
Medium was aspirated, and cells were washed with cold PBS.
After a final wash with PBS, cells were analyzed using a
C-Flow® Plus Accuri cytometer. All of the results that com-
pare the effect of treatments on a single cell line within a
figure were obtained contemporaneously from sister subcul-
tures split from the same cell population.

Statistical analysis

Student’s two-tailed t test was used to analyze the statistical
significance of the experimental results versus the correspond-
ing paired controls using the “percent green cells” shown in
Figs. 4 and 10 and Figs. S1–S7 and generate p values (GraphPad

Prism 8). A value of p , 0.05 was taken to indicate statistical
significance.
Unpaired Student’s two-tailed t tests were used to compare

(Pu)88 versus (Py)88 cells (Fig. 5) and (CTG)100 versus DF/myc
cells treated with TMS with or without HU (Fig. 6), as these
cells were derived from separate clonal outgrowths using differ-
ent integrant constructs.

DRAQ-7 flow cytometry

After treatment of cells with replication stress–inducing
agent followed by recovery, cells were centrifuged at 500 3 g
for 3 min. Medium was aspirated, and cells were washed with
cold PBS and spun down at 500 3 g for 3 min. Cells were per-
meabilized with 70% ethanol at220 °C for 20 min or overnight.
Cells were centrifuged and washed and resuspended in 1 ml of
PBS with RNase A (0.75 mg/ml final concentration) and incu-
bated at 37 °C for 20 min. Finally, DRAQ7 dye (170) (Abcam,
catalog no. ab109202) was added at a final concentration of 7.5
mM. Cells were incubated in the dark for 25 min and analyzed
using a CFlow® Plus Accuri cytometer.

CD

CD spectra were collected using a Jasco J-815 CD spectropo-
larimeter (Jasco Inc., Easton, MD). Spectra were recorded from
320 to 220 nm with a bandwidth of 1.0 nm, scan rate of 50 nm/
min, and time constant of 1 s. All DNA samples were dissolved
in 10 mM Tris, 1 mM EDTA, pH 7.4, and diluted in water to a
working concentration of 10 mM. Telomestatin was added to
DNA samples at a final concentration of 50mM. The CD spectra
represent the average of four scans taken at 25 °C and baseline-
corrected for buffer. The oligonucleotides used for CD were
as follows: c-myc G4, 59-TGA GGG TGG GGA GGG TGG
GTAA, (CTG)12, and (CAG)12.

Ligation-mediated lamPCR

LamPCR was performed based on previously described condi-
tions with the following modifications (71, 72). Genomic DNA
was isolated from untransfected DF2/myc/(CTG/CAG)100 cells,
24 h after transfectionwith the I-Sce1 expression plasmid, or after
4 days of 0.2 mM HU treatment. Linear amplification was per-
formed using 5 mg of DNA and the downstream biotinylated
primer 39 F0-biot ((biotin)59-GTCAGCTTGCCGTAGGTGG-
39) for 50 cycles. A second aliquot (0.5 ml) of HotStarTaq was
added, and amplification was performed for an additional 50
cycles.
The linear amplification products were captured on strep-

tavidin beads, washed, and ligated overnight to the adapter
oligonucleotide (59-pATCGACAACAACTCTCCTCCTCC-
GTGCGddC-39) (71). The beads were washed, and the ligated
products were amplified with the adapter reverse complement
primer (59-CGCACGGAGGAGGAGAGTTGTTGTCGAT-39)
and the nested downstream primer 39F1 (59-GCTGAACTT-
GTGGCCGTTTA-39). Products were electrophoresed on 1.5%
agarose gels.
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