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Abstract

Topological phylogenetic trees can be assigned edge weights in several natural ways, highlighting 

different aspects of the tree. Here the rooted triple and quartet metrizations are introduced, and 

applied to formulate novel methods of inferring large trees from rooted triple and quartet data. 

These methods lead to new statistically consistent procedures for inference of a species tree from 

gene trees under the multispecies coalescent model.
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1 INTRODUCTION

The inference of a species trees, which shows the evolutionary relationships between a 

collection of taxa, from gene trees, which depict the joining of ancestral lineages for genes 

sampled from individuals of those taxa, is made difficult by the fact that gene tree topologies 

often differ from each other. One biological explanation for such gene tree incongruity is 

incomplete lineage sorting (ILS). In ILS, gene lineages may not share a common ancestor in 

the most recent ancestral population in which it is possible for them to do so. This allows the 

lineages to merge with those from more distantly-related species before they do so with 

closer ones. The formation of gene trees within species trees taking into account ILS is 

described by the multispecies coalescent model (MSC). Though many inference methods 

have been proposed to recover a species tree from a collection of gene trees under the MSC, 

both computational requirements and performance in simulation vary enough that no single 

approach has yet become clearly preferred.

In [21] and [20], Liu and coworkers proposed particularly interesting and fast methods for 

this inference problem, using as data collections of unrooted and rooted gene trees, 

respectively. These methods, called STAR and NJst, proceed by first discarding any metric 

information on the gene trees, and then remetrizing them in a way that reflects only their 

topological structure. For instance, in the second of these works, the metrization of an 

unrooted gene tree is to simply make all edges have length 1. A table of intertaxon distances 

is then constructed for each gene tree, the mean distance table across the gene trees is 
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computed, and this mean table is used to infer a species tree by a standard distance approach 

such as Neighbor Joining. In other words, average consensus [8], [18] is applied to the 

remetrized gene trees. Although far from intuitively clear, the statistical consistency of these 

methods has been established [2], [3]. Moreover, the strong performance of the methods on 

simulated data has been shown both in the original works, and by the implementation of NJst 

in the software ASTRID [34].

Although not discussed in [21] or [20], but as explained below, the two remetrizations of 

gene trees these works use can be understood by viewing them as related to the notions of 

clades and splits on trees. That is, the intertaxon distances on a remetrized gene tree provides 

a numerical summary of the tree built on these specific combinatorial notions. Since clades 

and splits are only two of the combinatorial tools useful for describing topological trees, 

natural questions are 1) what other combinatorial notions lead to metrizations that usefully 

capture topological information about trees?, and 2) how can these metrizations be used for 

tree inference? The goal of this note is to investigate these questions for the notions of 

displayed rooted triples (induced rooted 3-leaf trees) and quartets (induced unrooted 4-leaf 

trees).

The rooted triple and quartet metrizations developed here have an important feature: 

Intertaxon distances can be computed from a list of rooted triples or quartets displayed on a 

tree — without knowing the tree itself. This allows them to be used in new supertree 

methods, which take a collection of rooted triples or quartets, compute a pairwise distance 

table from them, and then construct a large tree which fits this distance table. If the input 

rooted triples or quartets are the full set of those displayed on a large tree, this recovers the 

tree. Even if some of the triples or quartets are erroneous or missing, approximations to the 

intertaxon distances on the tree are still obtained, and a tree can be quickly inferred by any 

of the well-known distance-based methods for tree building or selection that are robust to 

error. We call these methods Quartet Distance Supertree (QDS) and Rooted Triple Distance 

Supertree (RTDS).

This approach extends to give new statistically consistent methods of species tree inference 

from samples of topological gene trees drawn from the MSC model, adding to those few 

already known [2], [3], [13]. The key additional ingredient for this inference is the fact that 

under the MSC the most frequent rooted triple or quartet topology across a collection of 

independent genes reflects that of the species tree. From a collection of gene trees, one can 

tabulate frequencies of the displayed quartets on four taxa, choosing the most frequent as the 

inferred species quartet on those taxa. Then QDS can be used for statistically consistent 

inference of the full species tree. We refer to this method, and its analog using rooted triples, 

as Quartet Distance Consensus (QDC) and Rooted Triple Distance Consensus (RTDC).

While QDC for species tree inference should certainly not be expected to have the speed of 

NJst, due to its need to consider quartets individually, it offers another advantage. 

Specifically, it remains statistically consistent even when some gene trees have some taxa 

missing. Although the quartet-based scheme implemented in the software ASTRAL-III 

should also be less vulnerable to problems with missing taxa on gene trees, QDC may in 

some circumstances offer advantages over it as well. In particular, a theoretical complexity 
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analysis indicates that while QDC’s running time has higher exponent on the number of taxa 

than does ASTRAL-III’s, it has lower exponent on the number of gene trees. Thus for a 

moderate number of taxa but a large number of gene trees, an efficient implementation may 

offer superior runtimes.

Although the focus of this paper is on the development of the quartet and rooted triple 

metrizations, using simulated datasets previously used to evaluate ASTRID and ASTRAL-

III we provide some evidence on the performance of QDC in comparison to NJst and 

ASTRAL-III. Determining whether this behavior is typical, however, requires further work. 

An efficient software implementation and large-scale simulation studies of performance are 

necessary for a more complete assessment. Regardless of the ultimate performance of these 

algorithms, though, the distances on which they are built may find other uses in phylogenetic 

theory and practice.

Basic definitions are given in Section 2. The clade and split metrizations are presented in 

detail in Section 3. The main theoretical contributions of this note are the two new 

metrizations associated to rooted triples and quartets developed in Sections 4 and 5. The 

applicability of this theory to supertree inference from rooted triple and quartets and to 

species tree inference from gene trees is then developed in Sections 6 and 7, where 

simulation results are also given. Section 8 concludes with a few general comments.

2 NOTATION AND TERMINOLOGY

Throughout this work X denotes a finite set of N taxa. Upper case letters A, B,... denote 

subsets of X, and lower case letters a, b,... elements of X.

A split of X is a bipartition X = A ⊔ B of the taxa into non-empty subsets, and is denoted A|

B = B|A. A clade of X is a non-empty subset A ⊆ X of the taxa. A resolved rooted triple of 
X is a subset of three elements of X, partitioned into a pair a, b and a singleton c, and 

denoted ab|c = ba|c. To allow for multifurcations on trees, we will also have need for an 

unresolved rooted triple abc. A resolved quartet of X is a subset of four elements of X, 

partitioned into two pairs a, b and c, d, and denoted ab|cd = ba|cd = ··· = cd|ab. An 

unresolved quartet is abcd.

Suppose the taxa X bijectively label the leaves of a rooted tree Tr, or of an unrooted tree T, 

with the root of degree at least 2 and all other internal nodes of degree at least 3. Then Tr 

and T are said to be phylogenetic trees on X. All edges on a rooted tree Tr are directed away 

from the root, so, for instance, the root is ancestral to all leaves. Edges on an unrooted tree T 
are undirected. A phylogenetic tree is binary if the minimal degree conditions on the nodes 

are met, and is otherwise said to be polytomous.

A tree Tr displays the clade A if the most recent common ancestor (MRCA) on Tr of the taxa 

in A has as its descendants in X precisely the set A. Thus clades displayed on a rooted tree 

correspond to its nodes, and if the tree is binary, it displays exactly 2N − 1 clades, including 

all singleton clades and the clade X. We say Tr displays the rooted triple ab|c if the MRCA 

of a and b is a proper descendent of the MRCA of a, b, and c. In the case of a rooted 

polytomous tree, we say the unresolved rooted triple abc is displayed if the MRCAs of the 
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three pairs a, b; a, c; and b, c coincide. If N ≥ 3, a rooted tree on X thus displays 
N
3  rooted 

triples, one for each choice of three taxa.

Similarly, for an unrooted tree T on taxa X, we say T displays the split A|B if the bipartition 

is obtained by removing an edge of T and partitioning X according to connected components 

of the resulting graph. If N ≥ 2, a binary tree displays 2N − 3 splits. We say T displays the 
quartet ab|cd if on the induced 4-leaf tree relating a, b, c, and d the split {a, b}|{c, d} is 

displayed. A tree displays the unresolved quartet abcd if the induced tree relating them is a 

star tree. If N ≥ 4 a tree thus displays 
N
4  quartets, one for each subset of four taxa.

Suppose positive weights are somehow assigned to the edges of Tr or T, so the tree is now a 

metric tree. Any such edge weighting scheme W induces a metric dW on X, using the sum of 

edge weights along paths between pairs of taxa. As is well known, however, a metric d on X 
need not arise from such a weighting. If d = dW for some W on T or Tr, then we say d is a 

tree metric on T or Tr with weighting W′.

3 SPLIT AND CLADE METRIZATIONS OF TREES

For completeness and perspective on what is to follow, we present two topological 

metrizations of trees that have been used in other works.

Given an unrooted topological tree T on X, we may assign weights w(e) = 1 to all edges e. 

The resulting tree metric on X is just the usual graph-theoretic distance along T. However, 

by the correspondence between displayed splits and edges on the tree, the distance between 

taxa x and y can also be described as the number of splits A|B, displayed on T that separate 
x, y, in the sense that x ∈ A. y ∈ B. For this reason, we denote the weighting scheme with all 

weights 1 by Sp, and say it gives the split metrization of T. This is essentially the 

metrization used in [20] for the NJst algorithm for species tree inference, which was 

renamed U-STAR/NJ in [3] since the same distance approach generalizes to U-STAR/M for 

any distance method M of tree construction or selection. The ASTRID software [34] is an 

implementation of these U-STAR methods.

For a rooted topological tree Tr on X, assign numbers to the internal nodes of the tree as 

follows: To the root assign N, to its children that are internal nodes assign N − 1, to their 

children that are internal nodes assign N − 2, and so on, decreasing by 1 for each parent-to-

child step. Assign 0 to all leaves. Then assign edge weights w(e) as the positive difference of 

the numbers on the endpoints of e. Thus all internal edges are weighted 1, but terminal edges 

are weighted with possibly different numbers between 2 and N. All leaf-to-root distances are 

N, so the tree is ultrametric. We denote this weighting scheme by Cl, say it gives the clade 
metrization of Tr, and denote the induced metric on X by dCl. The name is justified by the 

observation in [2] that for x, y ∈ X,

dCl(x, y) = 2(1 + N − |Cx, y|)
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where Cx,y is the set of clades displayed on Tr that contain both x and y. This follows 

directly by the correspondence between nodes on the path between the tree root and 

MRCA(x, y) to displayed clades containing x and y. This clade metrization was introduced 

in [21] for the STAR algorithm for species tree inference.

Remark 1.

As shown in [2], there are generalizations of the clade metrization which can be used for 

consistent inference of species trees from gene trees following the plan of [21]. These 

generalizations, which allow for the weight of an edge to depend on the number of edges 

between it and the root, are not used in this paper.

Remark 2.

One might propose an alternative clade metrization, Cl′ defined by assigning unit weights to 

all edges in a rooted tree. Then the intertaxon distance dCl′(x, y) is the number of clades 

displayed on the tree that contain one of x, y but not both. However, dCl′ lacks the 

ultrametricity of dCl. It can also be obtained by restricting the split distance on the larger 

unrooted tree obtained by attaching to the root a single edge leading to an extra taxon.

4 ROOTED TRIPLE METRIZATION OF A ROOTED TREE

With Tr a rooted phylogenetic tree on X, we may assign edge weights to Tr as follows: First 

number each node of the tree, including leaves, with the number of taxa descended from it. 

Leaves are numbered 1, as they are considered their own descendants, and the root is 

numbered N, the total number of taxa. Then assign weights w(e) as the positive difference of 

the numbers on the endpoints of e. That is, for any edge e = (u, v) directed away from the 

root with u the parent of v, the edge weight is

wRT (e) = ∣ descendants(u) − descendants(v) ∣ ,

the decrease in number of descendants across e. We refer to this as the rooted triple 
metrization, a name justified by Theorem 1 below, and denote the weighting scheme RT. It 

results in an ultrametric tree, with the root at distance N − 1 from every leaf, and more 

generally every internal node u at distance |descendants(u)| − 1 from its leaf descendants.

Example 3.

With the rooted triple metrization, a rooted caterpillar tree

(…(((a1, a2), a3), a4), …, aN)

will have all internal edges of weight 1. The pendant edges, listed from the cherry toward the 

root, will have weights 1, 1, 2, 3, 4,...,N − 1.

Example 4.

With the rooted triple metrization, a balanced tree
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(…((a1, a2), (a3, a4)), …, ((aN − 3, aN − 2), (aN − 1, aN))…)

on N = 2k taxa will have pendant edges of weight 1, and as one moves toward the root, 

internal edges of weight 2, 4, 8,...,2k − 1.

Theorem 1.

Suppose a rooted phylogenetic tree Tr is given the rooted triple metrization. Then the 
resulting tree metric dRT satisfies, for all x, y ∈ X, x ≠ y,

dRT (x, y) = 2 Rx, y + 2,

where Rx, y is the set of rooted triples displayed on T of the form xz|y, yz|x, or xyz.

More informally, for a binary tree T the distance dRT(x, y) is, up to a simple transformation, 

the number of rooted triples displayed on T in which x, y are separated. This remains true 

for trees with polytomies as long as unresolved triples are viewed as separating all taxa in 

them.

Proof. Let v = MRCA(x, y), and k be the number of leaf descendants of v (i.e., k is the size 

of the smallest displayed clade containing x, y). Since dRT(x, y) is the sum of edge weights 

on the path between x and y, we find that

dRT (x, y = dRT (x, v) + dRT (v, y)
= (k − 1) + (k − 1) = 2k − 2

The number of rooted triples of the forms xz|y, yz|x, or xyz is the number of taxa z 
descended from v, excluding x and y. Thus

Rx, y = k − 2.

Eliminating k from these two equations yields the claim. □

Remark 5.

Combining Theorem 1 with the fact that one can determine a rooted ultrametric tree from 

intertaxon distances on it gives an alternative proof of the well-known result that the 

collection of rooted triples displayed on a tree determines the rooted tree topology.

5 QUARTET METRIZATION OF A UNROOTED TREE

Let T be an unrooted binary tree on X. Each internal edge of T determines a partition of X 
into 4 non-empty blocks, X1, X2, X3, X4 where the split associated to the edge is X1 ⋃ X2|

X3 ⋃ X4, and the splits associated to the 4 adjacent edges all have an Xi as one split set. We 

refer to this partition as the quartet partition associated to an internal edge, and denote it by 

X1, X2|X3, X4. Assign an internal edge e with quartet partition X1, X2|X3, X4 the weight
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wQ(e) = X1 X2 + X3 X4 .

For a pendant edge to leaf x, the non-leaf endpoint determines a tripartition of the taxa, {x}, 

X1, X2. Assign to such an edge e the weight

wQ(e) = X1 X2 .

This weighting scheme can be extended to polytomous trees as follows: Suppose an edge e = 

{u, v} is incident to mu other edges ei at u, and mv other edges ej at v. Note that for a leaf v 
we allow mv = 0. Now let X1, X2,...Xmu, X1, X2, …, Xmv be the partition of X with Xi 

(respectively Xj) the set of taxa connected to e by a path through ei (respectively ej). Then 

assign to e the edge weight

wQ(e) = ∑
1 ≤ i < i′ ≤ mu

Xi Xi′ + ∑
1 ≤ j < j′ ≤ mv

Xj Xj′ .

Interpreting an empty sum as 0, this agrees with the definition above for binary trees.

We refer to this as the quartet metrization, due to Theorem 2 below, and denote the 

weighting scheme Q. Trees with the quartet metrization are usually not ultrametric, as 

examples show.

Example 6.

An unrooted caterpillar tree

(…(((a1, a2), a3), a4), …, aN)

will have internal edges inducing quartet partitions X1, X2|X3, X4 with sets of size

X1 = k − 1, X2 = 1, X3 = 1, X4 = N − k − 1,

for k = 2, 3,...N − 2. Under the quartet metrization, the internal edge weights will thus all be 

N − 2. The pendant edges to taxa a1, a2, aN − 1, aN, will also have weights N − 2. Pendant 

edges to taxa ak, for k = 3,...N − 2, will have weights (k − 1)(N − k). A 16-taxon illustration 

is shown in Figure 1.

Example 7.

An unrooted balanced tree

(…((a1, a2), (a3, a4)), …, ((aN − 3, aN − 2), (aN − 1, aN))…)
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on N = 2k taxa will have pendant edges of weight N − 2. With ℓ ∈ 1, 2,...,k − 1 denoting the 

minimal number of edges needed to connect a given internal edge to a leaf, the central 

internal edge, for which ℓ = k − 1, has weight 2k−2·2k−2 + 2k−2·2k−2 = 22k−3, while other 

internal edges, with 1 ≤ ℓ ≤ k − 2, are of weight

(2l − 1)(2l − 1) + (2l)(2k − 2l + 1) = 2k + l − 7 ⋅ 22l − 2 .

A 16-taxon illustration is shown in Figure 1.

Theorem 2.

Suppose an unrooted phylogenetic tree T has been given the quartet metrization. Then the 
resulting tree metric dQ satisfies for all x, y ∈ X, x ≠ y,

dQ(x, y) = 2 Qx, y + 2N − 4 (1)

where Qx, y is the set of quartets displayed on T of the form xz|yw or xyzw.

More informally, for a binary T the distance dQ(x, y) is, up to a simple transformation, the 

number of quartets displayed on T in which x, y are separated. This remains true for trees 

with polytomies as long as unresolved quartets are viewed as separating all their taxa.

Although Theorem 2 can be deduced from Theorem 1 by summing its formula over all 

placements of the root on pendant edges of T, a more direct argument is given here.

Proof. Fix taxa x ≠ y, and let P denote the path in T between them. Any node v ≠ x, y on P 

determines a partition of the taxa X = Av ⊔ Bv ⊔ Cv
1⋯ ⊔ Cv

k − 2 as follows: If v has degree k, 

deleting v and its incident edges partitions X into k non-empty subsets according to the 

connected components of the resulting graph. Let Av denote the partition set containing x, 

Bv the one containing y, and Cv
i  the k − 2 remaining ones. Thus Cv = ∪ Cv

i  contains all those 

taxa z for which a path from z to x or y joins P at v.

Now any quartet xu|yz or xyuz that is displayed on the tree T determines a node v on P at 

which the path from u to y joins P. Suppose v has degree k = k(v). Then the number of 

quartets of these forms that are displayed on T and determine the same node v in this way is

∑
1 ≤ i ≤ k

Cvi ∑
i < j ≤ k

Cv
j + Bv − 1

= ∑
1 ≤ i ≤ k

Cvi ∑
i < j ≤ k

Cv
j + Bv − Cv .

Thus
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Qx, y

= ∑
v on p
v ≠ x, y

∑
1 ≤ i ≤ k(v)

Cv
i ∑

i < j ≤ k(v)
Cv

j + Bv − Cv

= ∑
v on p
v ≠ x, y

∑
1 ≤ i ≤ k(v)

Cv
i ∑

i < j ≤ k(v)
Cv

j + Bv − N + 2 .

(2)

Interchanging the roles of x and y we also find

Qx, y

= ∑
w on P
w ≠ x, y

∑
1 ≤ i ≤ k(w)

Cw
i ∑

i < j ≤ k(w)
Cw

j + Aw − N + 2 . (3)

Adding equations (2) and (3) and expressing the sums over v, w as a single sum over edges e 
= (w, v) in P shows

2 Qx, y = ∑
e ∈ P

wQ(e) − 2N + 4 = dQ(x, y) − 2N + 4,

which yields the claim. □

Remark 8.

Proposition 9 of [5] shows that |Qx, y| + 1 for x ≠ y yields a tree metric on T, which is 

equivalent to the right hand side of equation (1) defining a tree metric on T. However, edge 

weights associated to the tree metric are not investigated in that paper. Moreover, 

applications of the result to tree inference, such as those discussed in Sections 6 and 7 of this 

work, seem not to have been pursued in intervening years.

Remark 9.

Combining Theorem 2 with the fact that one can determine an unrooted metric tree from its 

intertaxon distances gives an alternative proof of the well-known result that the collection of 

quartets displayed on a tree determines the unrooted tree topology.

Remark 10.

As a heuristic, the ASTRAL-II software [23] introduced a similarity on taxa that counts 

quartets not separating two taxa on a gene tree. By Theorem 2 this is essentially equivalent 

to the quartet metrization for that gene tree. While ASTRAL-II’s goal is species tree 

inference, it uses this similarity quite differently from the quartet metrization’s use in the 

statistically consistent approach to inference presented in Section 7 below.
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6 QUARTET DISTANCE SUPERTREE

Theorems 1 and 2 lead to new supertree methods for finding a tree from certain collections 

of rooted triples or quartets. We present this fully for quartets, indicating the small 

modifications for rooted triples in a remark.

Suppose we are given a collection Q of unweighted quartets on a set of taxa X. We take the 

viewpoint that most of the given quartets show the correct phylogenetic relationship between 

the taxa, though some are in error. Ideally Q contains exactly one quartet for each subset of 4 

taxa.

We choose a distance-based method M of tree building or selection that when applied to a 

tree metric on an unrooted tree T returns T, even if T is not ultrametric. We further require 

that its output topology is robust to small errors in the input distances at a tree metric. 

Possible choices for M include NJ and BioNJ (but not UPGMA) for tree building [17], [30], 

and Balanced Minimum Evolution for tree selection. In practice, a heuristic implementation 

known to perform well, such as FastME [14], may be chosen.

Algorithm 1.

(QDS/M) Quartet Distance Supertree with distance method M

Input: A collection Q of quartets on taxa in X

1. For each pair x, y ∈ X of taxa, x ≠ y, count the number q(x, y) of quartets in Q
separating x, y, and define the distance dQ(x, y) = 2q(x, y) + 2N − 4.

2. Use the distance method M to build or select an unrooted tree from dQ.

Remark 11.

The name ”Quartet Distance Supertree” has been chosen to emphasize its key uses of 1) 

displayed quartets on the input trees and 2) a distance method for constructing the supertree. 

Unfortunately, the term “quartet distance” is often used to refer to a distance between two 

trees (based on the two trees’ displayed quartets) and not the intertaxon distance (based on a 

collection of quartets). Since supertree methods based on finding a median tree under such 

an intertree distance have been explored (e.g., [29] for a rooted-triple example), there is 

some potential confusion with the name chosen here. Nonetheless, the name has not been 

used before, and provides an accurate brief description.

Remark 12.

If Q contains either no quartets for some sets of 4 taxa, or multiple quartets on them, one 

might view this as additional error, and modify the algorithm slightly. For instance, one 

might use all quartets on a given set of 4 taxa by weighting them by their relative frequency. 

Omitted 4-taxon subsets might be left out of counting when determining intertaxon 

distances, or treated as the 3 possible quartets on those taxa, each weighted by 1/3, in 

counting. However, these are simply hueristic adjustments. Developing any theoretical 
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justification for them would require some model of the way in which the quartets were 

produced or omitted.

Remark 13.

For Rooted Triple Distance Supertree with M, one instead counts the number r(x, y) of 

rooted triples in a set ℛ that separate x, y, and defines dRT = 2r(x, y) + 2. The method M can 

now be chosen to assume ultrametricity (e.g., UPGMA), since dRT  approximates the 

ultrametric tree metric dRT. If so, then a rooted tree will be returned.

Although we refer to the method of Algorithm 1 as Quartet Distance Supertree (QDS), and 

the variant for Rooted Triples as Rooted Triple Distance Supertree (RTDS), for a complete 

specification it is necessary to also indicate the distance method M used for tree construction 

or selection. If none of the quartets in Q are erroneous or omitted, QDS recovers the correct 

tree. However, how much error, and of what form, can occur in Q with the desired tree still 

accurately recovered may depend on the particular distance method M used. Since 

theoretical guarantees on toleration of error by distance methods tend to be much weaker 

than results seen in simulation studies, performance of QDS/M needs to be judged through 

simulation.

Assuming QDS is applied to a list of 
N
4  quartets, one for each 4-taxon subset of a N taxa, 

the running time to produce the quartet distance matrix will be O(N4), since considering 

each quartet in turn, one can increment counts for the 4 pairs of taxa that quartet separates. If 

Neighbor Joining, with time O(N3), is then used to build a tree, the total complexity remains 

O(N4), which is the best one can achieve for any method that had the same input. While this 

may be too slow for some large applications, some scheme by which subsets of the quartets 

are sampled randomly to estimate quartet distances might still give a reasonable 

approximation to the distance.

The following simulations, performed in R using the ape package [26], give a first indiction 

of the performance of QDS. Using the two extreme topologies of caterpillar and balanced 

trees on 16 taxa, the set of all displayed quartets was formed. Error was then introduced into 

the quartets in one of two ways. In the first scenario, for choices of probability 0 < p ≤ .5 of 

quartet error, each quartet was modified with probability p to one of the two resolved 

alternatives on the same taxa (with equal probability). In the second scenario, for choices of 

probability 0 < p ≤ .9, the quartet was removed from the set. For each of these modified 

quartet sets, QDS/NJ was used to construct a tree. In the second scenario, omitted quartets 

were simply left out of the counting that determines intertaxon distances. The Robinson-

Foulds distance was then computed between the inferred QDS/NJ tree and the original tree. 

This was repeated 100 times, with results summarized in the plots of Figure 2. Similar 

results (not shown) were obtained using the FastME heuristic for balanced minimum 

evolution in place of NJ.

These results show that even with about a quarter of the quartets incorrect, on average the 

correct tree was recovered to within an RF distance of 2 (i.e, all but 1 of the 13 nontrivial 
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splits were recovered correctly) for the caterpillar tree. And even with about half of the 

caterpillar’s quartets omitted, results were similarly accurate. The balanced tree topology 

was even more robustly recovered than the caterpillar tree, allowing quite large amounts of 

quartet error under both scenarios.

Of course one should interpret these results cautiously, as empirical quartet error may not 

have the simple form of the simulation. In empirical settings it is unlikely that all quartets 

would be equally likely to be incorrect or omitted, or that in the case of an incorrect quartet 

that both alternatives would be equally likely. Nonetheless, these simulations strongly 

indicate the need for more realistic simulation studies to investigate performance.

Remark 14.

A potential drawback of QDS for general tree inference from quartets is that its theoretical 

basis assumes one has a quartet in Q for every subset of 4 taxa, and no weights can be 

supplied expressing relative confidence in those quartets. This differs from the maximum 

quartet consistency framework in which one seeks to maximize an objective function 

expressing the total weights of quartets displayed on the tree. While the above simulations 

suggest uniformly missing quartets may be of less concern, confidence weighting seems to 

be desirable, at least with quartets inferred by Maximum Likelihood, as discussed in [28]. 

However, in some applications, and especially for species tree inference from gene trees as 

described in the next section, these aspects of QDS may not be a great disadvantage.

Remark 15.

It is possible that new distance methods could be developed that are more finally tuned to 

QDS than those existing now. Since the distance dQ approximates distances on an unknown 

tree T endowed with the quartet metrization, a tree building or selection method that takes 

that specific metrization into account may improve performance. Current distance methods 

are general, making no assumption about a tree’s edge lengths as related to its topology.

7 SPECIES TREE INFERENCE BY QUARTET DISTANCE CONSENSUS

We next show how QDS and RTDS can be applied to the problem of inferring a species tree 

from a collection of gene trees. This provides new consensus methods that are statistically 

consistent under the multispecies coalescent model, beyond those surveyed in [13]. For 

simplicity, we focus on the application of QDS.

For inference from multilocus sequence data, this can be used in a two-step procedure in 

which gene trees are first inferred from gene sequences, and then these inferred gene trees 

are treated as data for inference of a species tree. As is common for such two-stage schemes, 

the second stage of this method is provably statistically consistent, in the sense that if the 

gene trees were sampled without error under the multispecies coalescent model, then as the 

number of gene trees increases the probability of inferring the correct species tree 

approaches 1. In practice, however, there may be some inference error in the gene trees, as 

well as violations of the coalescent model, such as horizontal gene transfer.
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For the algorithm, we assume we already have in hand a collection of binary trees on X, but 

allow some missing taxa on each tree. However, for good performance it is desirable that 

each 4-taxon subset appears on many of the gene trees.

Algorithm 2.

(QDC/M) Quartet Distance Consensus with distance method M

(Input: A collection of binary trees on subsets of taxa X

1. For each subset of four taxa x, y, z, w ∈ X, determine the dominant (i.e., most 

frequent) quartet xy|zw, xz|yw, or xw|yz displayed on the input trees. In the case 

of a tie, choose from the most frequent uniformly at random.

2. With Q the set of dominant quartets, apply QDS with M.

Straightforward modifications lead to a formulation of Rooted Triple Distance Consensus 

(RTDC).

While QDC is similar to the clade-distance based STAR of [21], and split-distance based 

NJst (a.k.a. U-STAR/NJ) of [20], both of those average distances across gene trees, while 

QDC/M instead chooses the dominant quartets across gene trees to define a distance. Note 

that Rooted Triple Consensus of [15] similarly choses the dominant rooted triple for rooted 

species tree inference, and inference of a population tree by the BUCKy software [19] 

proceeds through choosing dominant quartets, though neither utilizes a distance.

Next we establish statistical consistency of QDC for species tree inference under the 

multispecies coalescent model. This model has parameters specified by a rooted metric 

species tree σr, as described, for instance, in [1], and gives a probability distribution on 

binary metric gene trees. After marginalization over branch lengths and root location, one 

obtains a distribution on unrooted binary topological gene trees T. The structure of the 

model is such that one may view the generation of gene trees on subsets of taxa Y as either 

generating gene trees under the multispecies coalescent on the induced species tree σY
r  on 

that subset, or generating gene trees T on the full species tree σr and then passing to the 

induced gene trees TY on the subset of taxa. We take the second approach, as it is more 

convenient for our argument.

By a taxon deletion model for X we mean a random variable taking as its values subsets Y 
of X. Given any tree T on X, we apply the deletion model to T by passing to the induced tree 

TY on Y. In this formulation, the deletion model is independent of the tree it is applied to. 

We call a deletion model quartet informative if for each 4-taxon subset F of X the event F ⊂ 
Y has positive probability.

The statistical consistency of QDC/M is then established by the following.

Theorem 3.

Let σr denote a rooted binary metric species tree, with positive branch lengths, and fix any 
quartet-informative taxon deletion model. Consider a sample Sn of n gene trees obtained by 
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first independently drawing gene trees on X from the multispecies coalescent model on σr 

and then applying the deletion model independently to each tree. Let M denote any tree 
building or selection algorithm that given pairwise distances fitting a (not necessarily 
ultrametric) tree will return that tree. Then with the unrooted topological species tree and σn
the unrooted topological tree inferred by QDC/M from the sample Sn,

lim
n ∞

ℙ σn = σ = 1 .

Proof. Consider a subset {a, b, c, d} of 4 taxa in X. Let Sn′ ⊆ Sn be those trees in the sample 

on which the 4 appear. Because the taxon deletion model is quartet informative, with 

probability 1 we have Sn′ ∞ as n → ∞. Moreover, if ab|cd is displayed on σr, the quartet 

on the four displayed on any tree in Sn′  is a trinomial random variable [1] with parameters 

satisfying

pab ∣ cd > pac ∣ bd = pad ∣ bc .

(While the precise values of these probabilities depend on branch lengths in σr, only the 

inequality and equality shown are needed for our argument.) Then with

c(n) = cab ∣ cd(n), cac ∣ bd(n), cad ∣ bc(n)

denoting the vector of counts of the quartets displayed in Sn′  we have that as n ∞, c(n))/ Sn′
converges in probability to (pab|cd, pac|bd, pad|bc). This implies

ℙ(cab ∣ cd > cac ∣ bd, cad ∣ bc) 1 .

That is, with probability approaching 1 the dominant quartet displayed on the gene trees 

matches that displayed on the species tree.

Since there are a finite number of subsets of 4 taxa, this implies that as n → ∞ the 

probability approaches 1 that for all sets of 4 taxa the dominant gene tree quartet is 

displayed on the species tree σ. But if all the dominant quartets are those displayed on the 

species tree σ, then the algorithm computes the quartet distance on σ, so it returns σn = σ. □

The ability to deal with missing taxa is potentially an advantage of species tree inference by 

QDC over the U-STAR approach. Although simulations [34] have shown good performance 

of U-STAR with taxa missing from gene trees uniformly at random, it is unclear how 

relevant that pattern of missing-ness is to empirical data. The consistency of U-STAR under 

a uniform deletion model is investigated in [25], but the proof given there is flawed (with a 

correction in preparation [24]). However, in the case of non-uniform patterns of missing taxa 

statistical consistency seems unlikely. Indeed, it is relatively easy to construct small 

examples with non-uniform missing taxa where the U-STAR distance does not exactly fit 
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any tree, though a formal proof of inconsistency would have to establish that whatever 

distance method of tree construction is used cannot overcome this.

To analyze the running time of QDC, suppose QDC is applied to a list of n gene trees, all on 

a set of N taxa. As stated in [34], one can compute the matrix of pairwise split distances for 

a gene tree in time O(N2). From this, for any 4 distinct taxa one can use the 4-point condition 

to determine which quartet is displayed, in constant time. Determining all displayed quartets 

on a single gene tree can thus be done in time O(N4), and counting all quartets on all n gene 

trees in time O(N4n). Once this is done, the dominant quartet for each set of 4 taxa separates 

4 pairs of taxa, and so contributes to 4 pairwise quartet distances. Considering each quartet, 

then, we obtain the pairwise distance matrix in additional time O(N4). Using, say, NJ for tree 

construction requires time O(N3), so the total time complexity of QDC/NJ is O(N4n).

This theoretical time complexity of QDC compares poorly with O(N2n + N3) for NJst stated 

in [34]. The comparison to the quartet-based ASTRAL-III, however, is more interesting: In 

[35], it is stated that ASTRAL-III has time complexity O((Nn)2.726) for input of binary gene 

trees. Thus ASTRAL-III may have better runtimes when N >> n (more taxa than gene trees), 

but QDC may be faster for n >> N (more gene trees than taxa). Since QDC has currently 

only been programmed in R, in a form unlikely to optimize runtime, a better implementation 

of QDC is needed for a fair practical speed comparison to ASTRAL-III.

An R implementation of QDC/NJ, using the ape package [26], on a data set of 1000 gene 

trees on 30 taxa took approximately 30 minutes to run on a desktop Macintosh with a 

3.2GHz processor. (Of this time, over 28 minutes was spent simply tallying the displayed 

quartets on all the gene trees.) Although this compares poorly to approximately 22 seconds 

for ASTRAL-III and approximately 3 seconds for USTAR/NJ implemented in R, it still 

places it well within feasibility for data analysis. Indeed, the computational time to infer a 

large number of gene trees to serve as input will dwarf QDC’s runtime. Moreover, recoding 

the algorithm is likely to give substantial speed improvement.

Simulations.

For a first look at the possible performance of QDC for species tree inference, it was applied 

to Avian simulated data sets of [7], which were also analyzed in [34]. These data sets are 

simulated on a fixed species tree of 48 taxa, drawn from a study of avian species. Samples of 

1000 gene trees were simulated under the multispecies coalescent model on the species tree 

(scaling factor 1), and on rescalings of it by .5 (more incomplete lineage sorting) and 2 (less 

ILS). 20 replicate data sets were produced for each scaling factor. In addition to these 

samples of gene trees from the coalescent, sequences of length 500bp were simulated on 

each gene tree, and an estimated species tree inferred from them, which introduces inference 

error. More details on branch lengths, population sizes, and mutation rates can be found in 

the original publication.

For our simulation study, in order to reduce computational time, we reduced the number of 

taxa to 30, by deleting 18 taxa to obtain the species tree shown in Figure 3. By restricting 

sampled gene trees on 48 taxa to the 30 chosen ones, we obtain a valid sample of gene trees 

from the coalescent on the restricted species tree. However, by restricting the estimated gene 
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trees in the same way, we may not have obtained the same estimated gene tree topologies 

that would have been obtained from the 30 simulated sequences. Nonetheless, for a first look 

at performance, we expect the difference to be minor.

Data sets with missing taxa from some gene trees were also derived from these. Two subsets 

of the taxa, chosen as shown in Figure 3 were designated. For deletion probabilities p = 0, 

0.05, 0.1, gene trees were chosen to have a group deleted with probability 2p, with the 

particular group deleted equally likely. Thus the expected proportions of gene trees missing 

no taxa was 1 − 2p, and missing each group was p, with no trees missing both. This pattern 

of missing taxa was chosen to roughly mimic what might occur in empirical data sets. In 

particular, if the source of missing taxa on some gene trees is the biological process of gene 

loss, it is likely to affect closely related taxa, and if it is due to uncollected data, it might be 

more likely in outgroups that were not the primary focus of data collection. While our 

specific model of missing data is quite crude, it is perhaps more relevant than uniform-at-

random deletion of individual taxa, such as was used in the simulations of [34].

As with restricting to the 30 taxa from 48, further deletion of taxa from estimated gene trees 

may mean they do not agree topologically with estimated gene trees from the smaller set of 

sequences, but differences are likely to be minor.

On these simulated data sets, we compare the performance of 5 methods based on 

topological features of gene trees: QDC with both balanced FastME and NJ for tree 

construction, U-STAR with balanced FastME and NJ, and ASTRAL-III. QDC was 

implemented in R (code available on request), as was U-STAR, while the more complex 

ASTRAL-III software was used directly.

Results are shown in Figure 4 using a gene tree sample under the MSC model, and in Figure 

5 using estimated gene trees. Note that the vertical scales on all plots differ between the two 

figures, as species tree inference is more reliable using the sampled gene trees.

In both figures one sees that QDC performs as well or better with NJ than with FastME in all 

conditions. When there are no missing taxa (top row of each figure), QDC/NJ, the U-STAR 

methods, and ASTRAL-III perform quite similarly. Given the extra computational time 

QDC and ASTRAL-III require, however, these simulations show that when no taxa are 

missing there is no reason to prefer QDC/NJ or ASTRAL-III to U-STAR.

When gene trees have missing taxa, however, the conclusion is quite different. At either 

level of missing taxa investigated (second and third rows of figures), the U-STAR methods 

are the poorest performing, as is in line with our earlier comments. Indeed, the plots suggest 

a lack of statistical consistency of U-STAR under these conditions. ASTRAL-III’s and 

QDC’s performance, however, do not show any pronounced changes across these missing 

taxon simulations, so they are clearly to be preferred to U-STAR. Presumably, the robustness 

of both QDC and ASTRAL-III to missing taxa arises from their common approach of basing 

inference on quartets, so that if some 4-taxon sets are not on all trees, one still gets a good 

estimate of their relationship from the remaining trees. Between ASTRAL-III and QDC/NJ 

there is little difference in performance, with no clear pattern as to which was more accurate.
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While the simulations done here are by no means sufficient to draw final conclusions on the 

performance of QDC relative to other methods, they do indicate its potential.

Remark 16.

The algorithm presented and used in the simulations above implicitly assumes the species 

tree is binary, so that for every choice of four taxa there will be a single most probable 

quartet. For non-binary species trees, one may instead have all three quartets equiprobable 

(but not have a two-way tie for most probable). Using Theorem 2 one could modify the 

algorithm to allow for non-binary species trees, making some choice of cutoff for judging 

“near equality” in quartet frequencies.

Remark 17.

We further note that averaging the quartet distances, or rooted triple distances, across gene 

trees as is done in STAR and U-STAR would not lead to consistency under the coalescent 

model. In fact, an example is already given by [2] in which an inconsequential variant of the 

rooted triple metrization averaged across gene trees is shown to exactly fit an incorrect 

species tree for infinite sample size. A similar example for the quartet metrization is as 

follows: Consider the rooted caterpillar species tree (((((a, b):x, c):y, d):z, e):w, f) with x, z, 
w = ∞, y = 0. Then under the multispecies coalescent model the gene trees (((((a, b), c), d), 

e), f), (((((a, b), d), c), e), f), and ((((a, b), (c, d)), e), f) each have probability 1/3, and all 

others have probability 0. Unrooting these gene trees and applying the quartet metrization, 

with alphabetical ordering of taxa we obtain the three distance matrices

0 8 14 18 20 20
0 14 18 20 20

0 16 18 18
0 14 14

0 8
0

,

0 8 18 14 20 20
0 18 14 20 20

0 16 14 14
0 18 18

0 8
0

,

0 8 18 18 18 18
0 18 18 18 18

0 8 18 18
0 18 18

0 8
0

.

Weighting the matrices by 1/3 and summing yields

0 8 50/3 50/3 58/3 58/3
0 50/3 50/3 58/3 58/3

0 40/3 50/3 50/3
0 50/3 50/3

0 8
0

,

which exactly agrees with distances on the unrooted tree
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((a:4, b:4):17/3, (c:20/3, d:20/3):1/3, (e:4, f :4):17/3 .

This tree does not have the same unrooted topology as the species tree.

To construct an example with a binary species tree with no zero or infinite edge lengths, we 

perturb the above one slightly. If the distances on the original species tree are chosen so x, z, 
w are very large and y is very small but positive, the average of the gene tree quartet 

metrizations will change only slightly. Thus it cannot fit the topology of the species tree.

8 DISCUSSION

To place QDS in the context of other quartet supertree methods, note that the most common 

framework in current quartet methods of inferring trees — maximum quartet consistency — 

is to minimize an objective function measuring conflict between the given quartets and the 

tree. Alternative quartet-based tree construction approaches are given in [9], [22]. (Note that 

although our metrizations can be viewed as based in an instance of the “isolation weighting” 

of [9], in that work there is no concept of a true tree that one seeks to infer.)

While the optimization problem for maximum quaretet consistency should be addressed by a 

search over all possible trees, in practice heuristic searches are usually necessary. The 

number of taxa or the search space may be limited in order to achieve acceptable 

performance and runtimes [4], [6], [23], [27], [31], [32], [33], [35]. As reasonable as this 

broad framework is, however, it is important to remember that the objective functions used 

are not ones deduced from theory. In fact, no such theory is even possible without an explicit 

model of error in the quartets, and it does not appear any attempt has been made to justify 

current approaches in such a way. Instead, simulations which incorporate inference error in 

the quartets are used for evaluation and comparison of methods.

A rather different notion of fitting a tree to quartets underlies QDS/M, whether the distance 

method M is a tree building algorithm or optimization of a distance-based objective 

function. By constructing a distance from the quartets, the selection of a “best” tree to fit the 

quartets is transferred to selecting one that fits the distance. Unfortunately no current theory 

can guide us as to whether this is better or worse than previous approaches. Extensive 

simulation studies are needed to judge the practical effectiveness of the new methods 

proposed here. Moreover, since the quartet error involved in different applications may have 

different features, simulations studies must reflect this and be targeted at specific 

applications. For instance, the effectiveness of QDC for species tree inference from full N-

taxon gene trees inferred by Maximum Likelihood (ML) may be different from that of 

inference by QDS of a single gene tree from quartet trees inferred by ML.

Quartet methods have played a role in recent progress in phylogenetics in using algebraic 

methods for tree inference from sequence data, in work by [10], [11], [12] and [16], and the 

ideas presented here may be useful for those applications. Using these methods one can infer 

a quartet tree very quickly under very general models. However, technical issues complicate 

inference of larger trees directly. If QDS works well with the quartet trees these methods 
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produce, then the significant advantages they offer, in speed and the generality of the 

underlying substitution model, may be broadened to include quick inference of larger trees 

as well.

For the specific problem of inference of species trees from gene trees, rooted triple and 

quartet approaches have been taken before by [15], [19] and [35], with this last work 

presenting the highly-developed ASTRAL-III software. While the simulations of [34] 

suggested ASTRAL-III’s accuracy is only comparable to U-STAR, the modified analysis 

presented here using the same simulated data suggests that its performance is significantly 

more robust to missing taxa on gene trees than is U-STAR. Indeed, this feature of quartet 

approaches should, we believe, be more appreciated as a justification for their development. 

Nonetheless, in the limited simulations presented here, QDC/NJ appears to have similar 

performance to ASTRAL-III whether or not taxa are missing. Moreover, complexity 

analysis suggests that when the number of genes far exceeds the number of taxa, an efficient 

implementation of QDC might achieve shorter runtimes than ASTRAL-III.

Inference of species trees under the multispecies coalescent model is made possible by our 

growing ability to assemble large data sets, comprised of many genetic loci, each with its 

own particular genealogical history. While Bayesian methods are conceptually attractive and 

have been implemented to address the simultaneous inference of gene trees and species 

trees, with current methodology there is little hope of them giving acceptable runtimes for 

data sets with many taxa and loci. The QDC method proposed here takes an alternative 

approach, through summarizing inferred gene trees by their displayed quartets. Compared to 

methods able to handle similar sized datasets, it may especially offer some gain in accuracy 

in the face of missing taxa. It is based in the new QDS method of tree inference from 

quartets, which itself is worthy of investigation as an alternative to methods based on the 

standard optimization formulation of maximum quartet consistency. While further testing of 

performance of these algorithms is needed, both in simulation and on empirical datasets, 

they offer hope for improving phylogenetic inference, and thus for helping address the many 

biological questions for which that is a key ingredient.
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Fig. 1. 
16-taxon caterpillar and balanced trees, with edge lengths given by the quartet metrization
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Fig. 2. 
Performance of QDS/NJ in simulation under under two scenarios, erroneous quartets (top) 

and omitted quartets (bottom), as described in the text. Circles (○) denote the 16-taxon 

caterpillar tree and pluses (+) the 16-taxon balanced tree. The horizontal axes on the top plot 

gives the probability that a true quartet is replaced with an alternative on the same taxa in 

forming the quartet set. On the bottom plot, that axis gives the probability a quartet is 

omitted from the quartet set. Inference error is measured by the normalized Robinson-Foulds 

(nRF) distance between the correct and inferred tree. The vertical axes show the mean nRF 
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distance over 100 replicates. Note that two resolved 16 taxon trees differing by one NNI 

have nRF distance 2/2(16 − 3) ≈ 0.077.
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Fig. 3. 
The 30-taxon species tree used for simulations. For trials involving missing taxa, a deletion 

probability p was chosen, and a group of taxa deleted with probability 2p from each gene 

tree. The deleted group was the taxa shown in red (anapl, galga, melga, tinma, strca) or blue 

(mernu, picpu, bucrh, apavi, lepdi, colst, halal, halle, catau, tytal), with equal probability. 

Thus the the expected proportion of gene trees on all taxa is 1 − 2p, on the the black and 

blue taxa is p, and on the black and red is p.
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Fig. 4. 
Simulation results based on 20 replicates for each simulation condition, using gene trees 

sampled from the multispecies coalescent model (lacking estimation error). From left to 

right, “st scale” is the species tree scaling factor of .5,1, or 2, indicating decreasing amounts 

of ILS. From top to bottom,“del prob” controls the probability of missing taxa on gene trees, 

with values 0, .05, or .1 indicating increasing numbers of gene trees with missing taxa. On 

individual plots, increasing numbers of gene trees, 100, 200, 400, 600, 800, and 1000, were 

analyzed for species tree inference. The mean over the replicates of the normalized 
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Robinson-Foulds (nRF) distance from the species tree is used to measure accuracy. For 30 

taxa, 2 trees differing by a single NNI move have nRF = 2/2(30 − 3) ≈ 0.037.
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Fig. 5. 
Simulation results based on 20 replicates for each simulation condition, using gene trees 

estimated from sequences simulated on gene trees sampled from the multispecies coalescent 

model. From left to right, “st scale” is the species tree scaling factor of .5, 1, or 2, indicating 

decreasing amounts of ILS. From top to bottom,“del prob” controls the probability of 

missing taxa on gene trees, with values 0, .05, or .1 indicating increasing numbers of gene 

trees with missing taxa. On individual plots, increasing numbers of gene trees, 100, 200, 

400, 600, 800, and 1000, were analyzed for species tree inference. The mean over the 

replicates of the normalized Robinson-Foulds (nRF) distance from the species tree is used to 
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measure accuracy. For 30 taxa, 2 trees differing by a single NNI move have nRF = 2/2(30 − 

3) ≈ 0.037.
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