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ABSTRACT

Objective: Our objective is to create a source of synthetic electronic health records that is readily available;

suited to industrial, innovation, research, and educational uses; and free of legal, privacy, security, and intellec-

tual property restrictions.

Materials and Methods: We developed Synthea, an open-source software package that simulates the lifespans

of synthetic patients, modeling the 10 most frequent reasons for primary care encounters and the 10 chronic

conditions with the highest morbidity in the United States.

Results: Synthea adheres to a previously developed conceptual framework, scales via open-source deployment

on the Internet, and may be extended with additional disease and treatment modules developed by its user

community. One million synthetic patient records are now freely available online, encoded in standard formats

(eg, Health Level-7 [HL7] Fast Healthcare Interoperability Resources [FHIR] and Consolidated-Clinical Document

Architecture), and accessible through an HL7 FHIR application program interface.

Discussion: Health care lags other industries in information technology, data exchange, and interoperability.

The lack of freely distributable health records has long hindered innovation in health care. Approaches and

tools are available to inexpensively generate synthetic health records at scale without accidental disclosure risk,

lowering current barriers to entry for promising early-stage developments. By engaging a growing community

of users, the synthetic data generated will become increasingly comprehensive, detailed, and realistic over

time.

Conclusion: Synthetic patients can be simulated with models of disease progression and corresponding

standards of care to produce risk-free realistic synthetic health care records at scale.
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BACKGROUND AND SIGNIFICANCE

Health care lags other industries in information technology, data ex-

change, and interoperability. To close these gaps, developers require

access to large repositories of high-quality health datasets for a

range of secondary uses that have no clinical or medical implica-

tions, including software development, testing, and clinical train-

ing.1–4 However, access to real electronic health record (EHR) data
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is hindered by legal, privacy, security, and intellectual property

restrictions. Where real datasets are unavailable, developers have

frequently turned to anonymized health records even where there is

no need for real data. Anonymized EHRs are bought and sold by a

range of government,5,6 commercial corporate, insurance,7 and clin-

ical groups.7–10 The use of real patient records, even those that have

been anonymized, comes with issues of privacy, confidentiality, and

consent. For instance, there is an especially high risk of harm from

public disclosure and identification of individuals resulting from

the release or use of anonymized health records, and multiple

examples of re-identification of these records have already been

observed and publicized.5,11–15 Backlash from these breaches

reduces the number of anonymized datasets available for research

and development both directly and indirectly, by ad hoc and per-

functory legal remedies that place unrealistic burdens on users to

safeguard data.16–18 As a result, a minefield of legal concerns and

policy frameworks effectively prevents research and learning.19 To

circumvent these challenges, an international research collabora-

tion involving the MITRE Corporation and the HIKER Group

(spanning Massey University, New Zealand; the University of

Montana, USA; and Macquarie University, Australia) has devel-

oped an approach, method, and open-source system for generating

realistic synthetic EHRs (RS-EHRs).

Synthetic data generation
A variety of synthetic data generation (SDG) methods have been de-

veloped across a wide range of domains, and these approaches de-

scribed in the literature exhibit a number of limitations.20

First, the collective knowledge of SDG methods has not been

well synthesized. Within the health care domain, many approaches

to SDG are focused on investigation of pathophysiology, such as

synthesis of gene expression21 or neuronal structure data.22 Some

SDG projects within health care are either too specific or too general

in scope to produce RS-EHRs across a useful range of patient types

and clinical conditions.23,24 The most promising published attempts

to generate high-quality RS-EHRs are limited in their reliance on

real patient records, scope, or quality.24–27 Buczak et al. developed

the Synthetic Electronic Medical Records Generator (EMERGE) as

a methodology for creating EHRs. Choi et al.27 proposed the medi-

cal Generative Adversarial Network (medGAN) to generate realistic

synthetic EHRs. While EMERGE and medGAN claim to address

privacy concerns through synthesized census-related patient demo-

graphic data, real patient records were used in the methods. In some

cases, the methods are quite close to anonymization; for example,

EMERGE derived the care patterns for populating the synthetic pa-

tient record from a real EHR. Thus, any synthetic records developed

using the EMERGE methodology are potentially susceptible to re-

identification, as are other methods that rely on anonymization.25

MedGAN is quite promising in its use of a real EHR only to check

whether or not the generated EHRs are realistic.

Second, there are few systematic methods for assessing the qual-

ity and realism of synthetic health record data. Specifically, valida-

tion of claims of success and methodologies in SDG is often

superficial and limited to overall structural appearance or general

statistical comparison, or focused on the speed and number of

records created; meanwhile, few studies attempt to assess the valid-

ity of the generated data.20 The only complete realism validation

method for SDG documented at present was developed by one of

the authors, and includes relevant examples drawn from the domain

of midwifery.20

Third, the majority of SDG approaches reported in the literature

are not described in sufficient detail to replicate the experiments

reported, preventing future projects from advancing these efforts.20

Thorough documentation enables repeatability and reusability.28,29

Synthetic data derived from methods without complete documenta-

tion cannot be validated, reducing the utility of such methods for the

wider scientific community.30–32 A well-documented but incorrect

method is therefore preferable to any other method where the docu-

mentation itself is incomplete.33 Nonetheless, multiple researchers

have reported that the documentation of SDG methods is almost al-

ways incomplete, insufficient in detail, and replete with omis-

sions.20,32

There are systems that generate synthetic EHRs that have not

been described in peer-reviewed literature. Kartoun24 presents pre-

generated datasets of synthetic EHR with an insufficient explanation

of how the datasets were generated. These datasets exhibit several

inconsistencies between health problems, age, and gender (eg, a ran-

domly sampled male patient reportedly became pregnant and expe-

rienced spontaneous abortion at the age of 66 years). MDClone26

builds synthetic data based on analysis of existing cohorts, anonym-

izes the data, and produces statistically similar populations without

reusing any of the original data points. This approach is limited in

that it is not open source, not freely available, and requires access to

real patient data as an input. Additionally, there is PatientGen, pro-

prietary software developed by the Michigan Health Information

Network, which generates statistically based synthetic patients

based upon regional demographics, prevalent health incidents, and

health states. PatientGen34 tests health information systems without

exposing patients to potential data privacy risks. PatientGen is cur-

rently not open source and not freely available.

This paper introduces Synthea, an approach, method, and system

for RS-EHR generation that advances previous works in several

ways. First, our approach guarantees fully synthetic output by

accepting only publicly available information and health statistics as

inputs. Second, our method generates data based on models of clini-

cal workflow and disease progression that can be easily inspected,

modified, and refined, facilitating transparency and continuous im-

provement. Third, our method includes a temporal model that cov-

ers a patient’s entire lifetime instead of focusing on one health

problem or disease. Fourth, our method achieves scalability by facil-

itating collaboration among experts from a range of clinical and

technical backgrounds.

Conceptual framework for synthetic EHR generation
The framework for the synthetic data generation process utilized by

Synthea is based on the use of PADARSER, the Publicly Available

Data Approach to the Realistic Synthetic EHR.35 The PADARSER

framework, unlike EMERGE25 and medGAN,27 assumes that access

to the real EHR is impossible or undesirable, relying instead on pub-

licly available datasets to populate the synthetic EHR. Figure 1

presents the PADARSER framework.

PADARSER: (1) emphasizes the use of publicly available health

statistics, (2) assumes that access to the real EHR is impossible, (3)

makes use of clinical guidelines or protocols in the form of care

maps, and (4) employs methods that guarantee inherent realistic

properties in the resulting synthetic EHR, making them sufficient

enough to replace real records for secondary uses that require realis-

tic but not real EHRs. Privacy preservation is the central aspect of

PADARSER, hence public data gathered from aggregate health inci-

dent statistics, clinical practice guidelines (CPGs), and medical
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coding dictionaries are extrapolated and injected into the generation

process and applied to the synthetic patient. Care maps are devel-

oped from clinician input and CPGs, and a temporal model for each

patient is configured using state-transition machines, as demon-

strated by both content modelling for synthetic E-Health records20

and Synthea. Realism is improved with regionally prevalent aggre-

gate data sets, clinician input, and CPGs. The resulting RS-EHR has

sufficient properties of realism to replace the need for the real EHR

in many secondary uses, especially at the aggregated population

level, while avoiding hazards associated with the re-identification of

anonymized records.

Synthea uses the PADARSER framework in a top-down ap-

proach that generates a skeletal synthetic EHR with coded entries in

the Health Level-7 (HL7) Fast Healthcare Interoperability Resour-

ces (FHIR) standard format for the entire lifetime of the synthetic

patient. Meanwhile, the GRiSER (Generating the Realistic Synthetic

EHR) method20,35 takes a bottom-up approach by generating ro-

bustly detailed synthetic EHR entries for health problems associated

with midwifery using the content modelling for synthetic E-Health

records web-based application.20 Eventually, ongoing work from

the top-down and bottom-up approaches will converge into a com-

plete and comprehensive RS-EHR generation system.

OBJECTIVES

In support of PULSE@MassChallenge, a no-equity global digital

health startup incubator designed to connect entrepreneurs with in-

dustry, academia, and resources,36 MITRE agreed to provide syn-

thetic health care records for residents of a virtual Commonwealth of

Massachusetts in a health information exchange. The data and ex-

change would be open and available to all participants, eliminating

the issues and risks related to using real or deidentified data. To ac-

complish this goal, the team created an open-source synthetic health

simulation, Synthea, that generates patients, simulates their entire

life, and outputs their EHRs. Those records were then made publicly

available for industry, innovators, research, and education free of le-

gal, privacy, security, financial, and intellectual property restrictions.

When the project started, the focus was limited to the progression of

type 2 diabetes and related treatments. As we progressed, we quickly

expanded the scope to include cardiovascular disease and other com-

mon ailments. The goal of the software is to produce increasingly re-

alistic data that are suitable for innovation, development, education,

and other nonclinical secondary uses where access to real data is not

mandatory and realistic synthetic data will suffice. Therefore, it is im-

portant to note the limitation of synthetic data in the realm of clinical

research – where synthetic data are not appropriate, nuanced, or suit-

ably rich for biomedicine, genetics, or pharmaceutical discovery. Syn-

thetic data may be useful for training or education in those scenarios,

but real clinical discovery requires real data.

MATERIALS AND METHODS

We developed an open-source synthetic health simulation called

Synthea that simulates synthetic patients from cradle to grave. As

listed in Table 1, our simulation includes models for the top 10 rea-

sons patients visit their primary care physicians and the top 10

chronic conditions responsible for years of life lost, as indicated by

the Global Burden of Disease data for the United States.37,38

Synthea was developed with numerous data sources collected on

the internet, including US Census Bureau demographics, Centers for

Disease Control and Prevention prevalence and incidence rates, and

National Institutes of Health reports. The source code and disease

models include annotations and citations for all data, statistics, and

treatments. These models of diseases and treatments interact appro-

priately with the health record. For example, procedures and diag-

noses correspond with patient-physician encounters, labs are

recorded when they are completed, and patients’ records are anno-

tated when they die. When data were publicly available, treatments

were modeled on published care maps, otherwise they were con-

structed by the authors based on publicly available documentation.

RESULTS

The Synthea software design adheres to the PADARSER conceptual

framework while being architected to scale to the web and allow ad-

ditional disease and treatment modules to be added by the commu-

nity. A million patient records are freely available on the Internet

using standard formats (HL7 FHIR and Consolidated-Clinical Doc-

ument Architecture) and using standard application program inter-

faces (HL7 FHIR) at https://syntheticmass.mitre.org/fhir/metadata.

An abridged sample synthetic patient record without longitudi-

nal data (eg, historical vital signs) is displayed in Listing 1, using

plain text rather than FHIR JavaScript Object Notation (JSON) for

readability.

The high-level software architecture of Synthea is illustrated in

Figure 2. Clinical care maps and statistics are used to construct mod-

els of disease progression and treatment in a Generic Module Frame-

work that encodes these models as state transition machines in an

open and documented JSON format.39 Census data and configura-

tion options seed the synthetic world. Each module computes state

transitions (if any) for every person at every timestep in the synthetic

world. Timesteps are configurable, and default to 7 days. Synthea

has logic to handle events that occur within the timestep (eg, it

should take much less than an hour to complete a routine medical

encounter). Each state or transition in a module can trigger condi-

tion onsets, encounters, medication prescriptions, and other clinical

events.

Figure 3 illustrates a simplified example generic module of child-

hood ear infections. In this example, children get ear infections at

different rates based on their age, are then diagnosed at an encoun-

ter, and are prescribed either an antibiotic or a painkiller. This ex-

ample demonstrates several different types of states and transitions.

Listing 2 shows the corresponding JSON definitions for the

“Infection” and “Pediatrician” states illustrated in Figure 3. Each

state has a name (eg, “Infection”) with a type. Depending on the

state type, other attributes (eg, medical terminology codes to use in

a diagnosis) or transitions to other states will be defined.

Figure 1. PADARSER as the conceptual framework for Synthea.
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Synthea currently supports 2 categories of states: control and

clinical. The control states manage starting, terminating, and delay-

ing the progression through a module state machine. Control states

are also used to conditionally control module flow and to read/write

attributes on the patient. Clinical states introduce encounters, symp-

toms, conditions, medications, observations, and care plans to the

EHR.

Control states
Synthea currently supports 7 types of control states: Initial, Termi-

nal, Simple, Guard, Delay, SetAttribute, and Counter.

The Initial state is the starting point of a module.

Golda945 O'Hara16
=================
Race:           White
Ethnicity:      Non-Hispanic
Gender:         F
Age:            45
Birth Date:     1971-10-04
Marital Status: M
--------------------------------------------------------------------------------
ALLERGIES: N/A
--------------------------------------------------------------------------------
MEDICATIONS:
2015-09-14 [CURRENT] : 3 ML liraglutide 6 MG/ML Pen Injector
2014-11-23 [STOPPED] : canagliflozin 100 MG Oral Tablet
2014-11-23 [STOPPED] : 3 ML liraglutide 6 MG/ML Pen Injector
2014-11-23 [CURRENT] : 24 HR Metformin hydrochloride 500 MG Extended Release Oral Tablet
2010-11-30 [STOPPED] : Amoxicillin 250 MG / Clavulanate 125 MG [Augmentin] for Viral sinusitis (disorder)
2007-07-05 [STOPPED] : Amoxicillin 250 MG / Clavulanate 125 MG [Augmentin] for Sinusitis (disorder)
--------------------------------------------------------------------------------
CONDITIONS:
2014-11-23 - : Diabetes
2014-01-10 - 2014-02-05 : Viral sinusitis (disorder)
2010-11-22 - 2010-12-10 : Viral sinusitis (disorder)
2007-06-28 - 2007-07-22 : Sinusitis (disorder)
1998-04-22 - : Prediabetes
1990-08-29 - : Hypertension
--------------------------------------------------------------------------------
CARE PLANS:
1998-04-22 [CURRENT] : Diabetes self management plan

Reason: Diabetes
Activity: Diabetic diet
Activity: Exercise therapy

--------------------------------------------------------------------------------
OBSERVATIONS:
2016-11-14 : Body Height                            157.5 cm
2016-11-14 : Body Weight                            104.3 kg
2016-11-14 : Body Mass Index                         42.0 kg/m2
2016-11-14 : Systolic Blood Pressure                198.0 mmHg
2016-11-14 : Diastolic Blood Pressure               107.0 mmHg
2016-11-14 : Hemoglobin A1c/Hemoglobin.total in Blood 8.3 %
2016-11-14 : Glucose                                133.0 mg/dL
2016-11-14 : Urea Nitrogen                           13.0 mg/dL
2016-11-14 : Creatinine                               1.0 mg/dL
2016-11-14 : Calcium                                  9.4 mg/dL
2016-11-14 : Sodium                                 136.0 mmol/L
2016-11-14 : Potassium                                4.5 mmol/L
2016-11-14 : Chloride                               102.0 mmol/L
2016-11-14 : Carbon Dioxide                          27.0 mmol/L
2016-11-14 : Basic Metabolic Panel
2016-11-14 : Total Cholesterol                      243.0 mg/dL
2016-11-14 : Triglycerides 340.0 mg/dL
2016-11-14 : Low Density Lipoprotein Cholesterol    145.0 mg/dL
2016-11-14 : High Density Lipoprotein Cholesterol    30.0 mg/dL
2016-11-14 : Lipid Panel
2016-11-14 : Microalbumin Creatine Ratio              2.0 mg/g
2016-11-14 : Estimated Glomerular Filtration Rate     >60 mL/min/{1.73_m2}
--------------------------------------------------------------------------------
PROCEDURES:
2014-11-23 : Documentation of current medications
2011-01-02 : Documentation of current medications
2007-11-19 : Documentation of current medications
--------------------------------------------------------------------------------
ENCOUNTERS:
2016-11-14 : Outpatient Encounter
2015-09-14 : Outpatient Encounter
2015-03-23 : Outpatient Encounter
2014-11-23 : Outpatient Encounter
2014-01-15 : Encounter for Viral sinusitis (disorder)
2011-01-02 : Outpatient Encounter
2010-11-30 : Encounter for Viral sinusitis (disorder)
2007-11-19 : Outpatient Encounter
2007-07-05 : Encounter for Sinusitis (disorder)

Listing 1. Sample synthetic patient data (abridged).

Figure 2. Synthea software architecture.
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A Terminal state is where the module ends. Some modules do

not terminate (eg, simple respiratory diseases, to which people are

susceptible their entire lives). All modules always stop and exit when

a patient dies.

Simple states are used to control the flow or increase the read-

ability of a module.

Guard states filter out patients if they do not match specific crite-

ria (eg, demographic filters based on age or gender).

Delay states pause the execution of the module until the specified

amount of time in the simulation has passed (eg, wait 3–4 weeks for

symptoms to emerge).

SetAttribute states set a named attribute/value pair to a patient.

These attributes can later be accessed by Guard states, Clinical

states, or transitions. For example, several modules can set an attrib-

ute regarding prescription opioids (related to a traumatic injury, for

instance). This attribute may be later be referenced and used by

other modules, such as the opioid addiction module.

Counter states increase or decrease the value of a named attribute

on a patient. These attributes can later be accessed by Guard states,

Clinical states, or transitions. For example, this can be used to count

the number of chemotherapy treatments administered to a patient.

Clinical states
Synthea currently supports 11 types of clinical states: Encounter,

ConditionOnset, ConditionEnd, MedicationOrder, MedicationEnd,

CarePlanStart, CarePlanEnd, Procedure, Observation, Symptom,

and Death. The details of clinical states often include medical termi-

nology codes.

Encounter states represent a point where a patient receives health

care services, such as visiting a primary care physician or going to

the emergency room. Encounters can either process immediately or

wait for the patient’s next regularly scheduled wellness exam.

ConditionOnset and ConditionEnd states represent the onset

and end of a condition such as a disease. The condition will not be

diagnosed and present on the patient’s record until a target encoun-

ter has occurred.

MedicationOrder and MedicationEnd states indicate the initial

prescribing and ending of medication.

CarePlanStart and CarePlanEnd states indicate the starting and

ending of a planned delivery of care. For example, the care plan as-

sociated with a hip replacement might include physical therapy and

stretching exercises.

Procedure states indicate that a medical procedure is performed

on the patient, such as an appendectomy, colonoscopy, or

ultrasound.

Observation states represent the capturing and reporting of pa-

tient vital signs and other diagnostic or clinical information.

Symptom states indicate the level of severity of symptoms that

a patient is currently experiencing. If symptoms are sufficiently

severe, then the patient will schedule an encounter to seek treat-

ment.

The Death state represents the death of the patient. The Death

state may process immediately or provide a time representing the

remaining life expectancy given the patient’s condition. The Death

state may indicate cause of death, which will be represented in the

patient’s record as a death certificate.

Transitions
Synthea currently supports 4 types of transitions: direct, distributed,

conditional, and complex.

Figure 3. Simplified example of a Synthea module.

"Infection": {
"type": "ConditionOnset",
"target_encounter": "Pediatrician",
"codes": [ { "system": "SNOMED-CT", "code": "65363002", "display": "Otitis media"} ],
"direct_transition": "Pediatrician"
},
"Pediatrician": {
"type": "Encounter",
"encounter_class": "ambulatory",
"codes": [ { "system": "SNOMED-CT", "code": "183492007", 

"display": "Non-urgent pediatric admission"} ],
"distributed_transition": [ 
{ "distribution": 0.6, "transition": "Antibiotic" }, 
{ "distribution": 0.4, "transition": "Painkiller"} ]

}

Listing 2. Partial JSON representation of a Synthea module.
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Direct transitions are the simplest; they transition directly to the

indicated state.

Distributed transitions will transition to one of several possible

states based on the configured distribution. Distribution values are

from 0.0 to 1.0, such that a value of 0.55 would indicate a 55%

chance of transitioning to the corresponding state.

Conditional transitions will transition to one of several possible

states based on conditional logic. A conditional transition consists

of an array of condition/transition pairs that are tested in the order

they are defined. The first condition that evaluates to true will result

in a transition to its corresponding transition state. Conditional

logic supports And, Or, Not, At Least, At Most operations upon

gender, race, socioeconomic status, and any other patient attribute.

Conditional logic can also access the medical record to look at

observations, conditions, medications, and care plans.

Complex transitions are a combination of direct, distributed,

and conditional transitions. A complex transition consists of an

array of condition/transition pairs that are tested in the order

they are defined. The first condition that evaluates to true will re-

sult in a transition based on its corresponding direct transition or

distributions. If the condition/transition pair defines a direct

transition, it will transition directly to that named state. If the

condition/transition pair defines distributions, it will then transi-

tion to one of these according to the same rules as the distributed

transition.

Validation of Synthea
An initial validation was performed on the quantities and qualities

being produced by the Synthea generator, in particular the type 2 di-

abetes (T2D) modules. T2D is represented in Synthea by 2 modules:

one for disease progression, including patient symptoms and compli-

cations such as nephropathy and retinopathy, and one for standards

of care, including medications such as insulin and procedures such

as dialysis. The interactions between these modules are expected to

produce realistic output at the patient level, such that each medical

record reflects authentic standards of care, and at the population

level, such that prevalence of T2D and complications are close to re-

ality. As real-world statistical information does not always exist re-

garding the progression of T2D and complications through various

stages, in many cases the probability that a patient will transition

from one stage to the next is an estimate intended to produce realis-

tic aggregate results.

The methodology for this validation involved using synthetic

EHRs generated by the T2D modules, contrasting and comparing

statistical and treatment properties with publicly available statis-

tics. Some variance with real-world statistics was expected in

these first results, as the input data, constraints, algorithms, and

methods of Synthea until this point had remained unverified. Fig-

ure 4 presents a graph comparing the age at diagnosis for Synthea

synthetic patients with the Massachusetts state and US national

averages.

While Synthea roughly approximated age at diagnosis curves, it

incorrectly generated 20% of patients in the infant age group (ages

2–5) and failed to note diabetes onset after age 52 years. Further

results indicated that Synthea incorrectly generated prevalence of

T2D by racial group. Comorbid conditions such as neuropathy and

amputations were generated for nearly every synthetic T2D patient,

meaning that overall, a Synthea patient was 4000 times more likely

to undergo a diabetes-related amputation than the national or state

average. Synthea patients were 110 times more likely to suffer kid-

ney failure and end-stage renal disease, surviving between 2 and 3

times longer than similar real patients. A summary of these gener-

ated prevalence statistics is captured in the “Initial Test Run” col-

umn of Table 2.

The diabetes disease progression module within Synthea was

subsequently modified, primarily by altering the transition probabil-

ities between progressive stages of the 3 main hallmarks of the dis-

ease: neuropathy, nephropathy, and retinopathy. Subsequent runs of

the simulation produced individual patient records with realistic dis-

ease progression and treatments. However, due to the variability of

the simulation, replicating population-level statistics proved chal-

lenging. For example, the probability of a diabetic patient develop-

ing mild eye damage is determined by a “roll of the dice” recurring

at each timestep. Once mild eye damage occurs, nonproliferative ret-

inopathy can develop based on a second probability distribution per

timestep, which can develop into proliferative retinopathy based on

a third probability distribution, eventually leading to macular edema

and blindness – each with its own probability distribution per time-

step. In general, each run of Synthea is different due to the probabil-

istic nature of the simulation – the dice rolls come out slightly

different each time. As a probability-based patient simulation, Syn-

thea does not predetermine what will happen to each patient in ad-

vance, so population-level statistics approach real prevalence based

on the probabilities used rather than exactly mirroring those preva-

lences. This differs from an alternative approach of prepopulating a

set of patients exactly matching a set of statistics, and then postpro-

cessing them to fill in the details of disease progression and treat-

ment after the fact. To illustrate the population-level variability in

Synthea, the prevalence of diabetic conditions and medications

Figure 4. Graph of age at diagnosis of type 2 diabetes.
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across several simulation runs is summarized in the “rerun” columns

of Table 2.

Table 2 shows that disease prevalences in the “reruns” are often

underestimated, most notably with retinopathy, neuropathy, and di-

abetic microalbuminuria. Conversely, medications are often overes-

timated, probably due to exact prescribing by doctors according to

the standard of care and complete medication adherence by patients.

Variability between runs is the result of randomness inherent in the

probabilistic technique.

In conclusion, the initial validation of the T2D module showed

that several population-level statistical issues with regard to preva-

lence needed to be addressed, and these did not represent an insur-

mountable challenge to generating realistic synthetic patient

records. The flexibility of the approach and of Synthea allows results

to be tuned with publicly available statistics for any given global

population or infirmity. The significance of the outcome of this vali-

dation is that the Synthea generator provides a solid first step to-

ward realizing the goal of generating a dataset of patients that can

be representative of the 7 million Massachusetts health care consum-

ers. Modules based on a number of the most prevalent conditions

and diseases are being developed and, with input from clinicians and

other research groups, are being iteratively tuned to greater degrees

of accuracy.

Future work
Synthea has been established as an open-source community project.

Synthea-generated EHRs can be used for a variety of secondary

uses, and Synthea itself is available for modification, experimenta-

tion, or incorporation into other projects. We are aware of several

academic researchers performing validation on the data, as well as

analytics, in their student projects. We are also aware of several

health IT vendors in the FHIR community using the data for devel-

opment, testing, and public demonstrations of their FHIR-based

apps. We hope to add more disease modules with collaboration

within the health IT and clinical communities. Our aim is to scale

horizontally by positioning the clinical community to iteratively

contribute care maps and knowledge (as generic modules) to help

produce increasingly realistic patient data for their medical special-

ties and therapeutic areas. Hence one of our immediate future efforts

is to develop a care map authoring tool that would be publicly avail-

able as a web application to facilitate the creation of a shared library

of care maps that can be used with Synthea or other projects. Other

future work areas are summarized in Table 3.

DISCUSSION

The lack of risk-free health records has been a longstanding issue in

health care that has hindered innovation and raised the barrier of en-

try into the industry – which lags other industries in information

technology, data exchange, and interoperability. Approaches and

tools are available to generate risk-free synthetic data. Synthea

establishes an open-source project for the health IT and clinical com-

munity to reuse, experiment with, and generate synthetic data. The

Table 1. Diseases and treatments modeled within Synthea

Top 10 reasons patients visit

primary care providers

Top 10 years of life lost (as of

2013)

1 Routine infant/child health

check

Ischemic heart disease

2 Essential hypertension Lung cancer

3 Diabetes mellitus Alzheimer’s disease

4 Normal pregnancy Chronic obstructive

pulmonary disease

5 Respiratory infections

(pharyngitis, bronchitis,

sinusitis)

Cerebrovascular disease

6 General adult medical

examination

Road injuries

7 Disorders of lipoid

metabolism

Self-harm

8 Ear infection (otitis media) Diabetes mellitus

9 Asthma Colorectal cancer

10 Urinary tract infection Drug use disorders (limited to

opioids)

Table 2. Model prevalence statistics

Prevalence of condition/medication Real prevalence Initial test run Synthea rerun A Synthea rerun B Synthea rerun C

Prediabetes 38.00 28.18 33.14 33.64 33.78

Diabetes 8.80 9.63 6.79 6.86 6.60

Diabetes by race, black 12.80 9.56 11.90 9.66 10.66

Diabetes by race, Hispanic 14.20 10.02 11.47 11.99 11.60

Diabetes by race, Asian 16.00 9.87 13.45 12.44 13.12

Diabetes by race, white 6.50 9.60 5.14 5.43 5.04

Hypertension 29.60 25.36 31.40 30.77 30.75

Hypertension given diabetes 59.40 68.80 50.20 53.80 53.00

Diabetic retinopathy (DR) 40.30 98.00 32.90 30.00 30.50

Proliferative DR 7.00 86.80 5.60 4.90 5.60

Diabetic macular edema 11.00 88.00 7.60 6.60 8.40

Blindness among diabetic patients 1.00 88.10 0.30 0.20 0.10

Diabetic neuropathy 50.00 98.00 42.10 38.40 42.60

Amputations 1.00 80.20 1.40 1.40 0.80

Diabetic nephropathy 34.50 98.00 34.80 34.70 30.80

Diabetic microalbuminuria 28.80 92.20 8.70 10.20 8.70

Diabetic end-stage renal disease 0.78 82.00 0.00 0.00 0.00

Oral medication 63.30 98.00 78.30 80.10 80.60

Insulin 30.80 0.00 39.90 40.10 35.70

Living diabetics generated (n) 1000 1000 1000 1000

236 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 3



quality of synthetic data will improve over time and become increas-

ingly realistic with community contributions. The synthetic data are

of suitable quality for a variety of nonclinical secondary uses for

>20 clinical conditions. The synthetic data are not suitable or ap-

propriate for research into diseases not covered by the project or re-

search focused on clinical discovery.

CONCLUSION

Synthetic patients can be simulated with models for disease progres-

sion and corresponding standards of care to produce risk-free health

care records at large scale. Thus, Synthetic electronic health care

records for synthetic patients can be generated from publicly avail-

able health statistics and clinical guidelines or standards of care

from which models of disease progression could be based.

Source code is available online at https://synthetichealth.github.

io/synthea and RS-EHR records are available online via a FHIR API

at https://syntheticmass.mitre.org/fhir.
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