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ABSTRACT

Objective: Social media is an important pharmacovigilance data source for adverse drug reaction (ADR) identifi-

cation. Human review of social media data is infeasible due to data quantity, thus natural language processing

techniques are necessary. Social media includes informal vocabulary and irregular grammar, which challenge

natural language processing methods. Our objective is to develop a scalable, deep-learning approach that ex-

ceeds state-of-the-art ADR detection performance in social media.

Materials and Methods: We developed a recurrent neural network (RNN) model that labels words in an input

sequence with ADR membership tags. The only input features are word-embedding vectors, which can be

formed through task-independent pretraining or during ADR detection training.

Results: Our best-performing RNN model used pretrained word embeddings created from a large, non–

domain-specific Twitter dataset. It achieved an approximate match F-measure of 0.755 for ADR identification on

the dataset, compared to 0.631 for a baseline lexicon system and 0.65 for the state-of-the-art conditional random

field model. Feature analysis indicated that semantic information in pretrained word embeddings boosted sen-

sitivity and, combined with contextual awareness captured in the RNN, precision.

Discussion: Our model required no task-specific feature engineering, suggesting generalizability to additional

sequence-labeling tasks. Learning curve analysis showed that our model reached optimal performance with

fewer training examples than the other models.

Conclusion: ADR detection performance in social media is significantly improved by using a contextually aware

model and word embeddings formed from large, unlabeled datasets. The approach reduces manual data-

labeling requirements and is scalable to large social media datasets.
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BACKGROUND AND SIGNIFICANCE

Comprehensive knowledge of adverse drug reactions (ADRs) can

reduce their detrimental impact on patients and the health sys-

tem.1,2 Practically, clinical trials cannot investigate all settings in

which a drug will be used,1–3 making it impossible to fully charac-

terize the drug’s adverse effect profile before its approval. Pharma-

covigilance, or post-market drug safety surveillance, identifies

ADRs after a drug’s release. Most current pharmacovigilance activ-

ities rely on passive spontaneous reporting system databases, such

as the Federal Drug Administration’s Adverse Event Reporting Sys-

tem (FAERS).3,4 Such systems may be limited by delayed, biased,

and underreporting of events. For example, the rate of reporting se-

rious adverse events to FAERS is estimated to be only 1–13% of ac-

tual events.1,5
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To address passive reporting system limitations, active pharma-

covigilance methods continuously analyze frequently updated data

sources. Initial research examined ADR extraction from structured

electronic health record (EHR) data (eg, problems list).6,7 These

studies, however, revealed that structured EHR data contain limited

ADR information, thus subsequent studies examined ADRs in EHR

clinical narratives.8–11 More recent research examines social media

text as a complement to EHR data.12–21 Twitter is particularly inter-

esting because of its large user base, demographic variability, and

publicly available data. Additionally, statistically significant correla-

tions (P< .001) have been identified between certain ADRs de-

scribed in Twitter data and those reported in FAERS,17 suggesting

that Twitter is a viable pharmacovigilance data source.

ADR detection in social media requires automated methods to pro-

cess the high data volume. The earliest studies implemented string-

matching methods to identify terms that matched predefined drug and

adverse event lexicons.12–15,17 However, lexicon matching cannot dis-

tinguish whether a drug-related event describes a reaction to or indica-

tion for a medication. Additional characteristics of social media

language further limit lexicon matching as an ADR detection method.

For example, social media language is informal, incorporating vocabu-

lary and phrases from the vernacular (eg, “feeling like crap”), with fre-

quent misspellings and irregular grammar (eg, “dis aderall got me

sweatin”). It also includes abbreviations (eg, “lol”) and symbols (eg,

emoticons) that convey semantic information. To address these chal-

lenges, some researchers treat ADR detection as a supervised machine-

learning sequence-labeling problem where the learning methods may

account for the surrounding context of a given input word. This is

common in natural language processing, where each token (ie, contigu-

ous character sequence, usually corresponding to a word) is labeled

with a named entity tag (eg, person). For ADR detection, tokens can be

labeled as part of an adverse event. The most successful ADR

sequence-labeling efforts employ conditional random field (CRF) mod-

els.21–24 CRFs are limited by the scope of their input in that the model

considers only the target word and its neighboring words within a

fixed-width window and therefore may exclude important information

mentioned more distantly.

Recurrent neural networks (RNNs) may overcome this limita-

tion. RNNs process text as a sequence of words and contain a hid-

den state that “remembers” an arbitrary number of previous

labeling decisions that are used to label the current token. This

“memory” makes RNNs well-suited to labeling tasks where individ-

ual word labels depend on the word itself and the words and labels

that precede it.25–27 RNN model variants have achieved state-of-

the-art performance in part-of-speech tagging28 and named entity

recognition.25 RNNs have been used to elucidate patient phenotypes

from longitudinal clinical data,29 but to our knowledge have not

been applied specifically to labeling drug events, particularly in so-

cial media data.

OBJECTIVE

We sought to develop an RNN model that exceeds current state-of-

the-art ADR detection in social media posts. We investigated a

specific architecture known as a Bidirectional Long Short-Term

Memory (BLSTM) RNN.27,30–32 In the standard RNN model, the

network’s memory is equally dependent on all previous outputs. In

the LSTM variant, the model learns weights for its previous output

and the current input for each sequence item.26,30 Additionally,

the BLSTM31,32 process sequences in the forward and backward

direction, enabling it to learn dependencies in either direction.

We compared the performance of several BLSTM variants to a

state-of-the-art CRF model and a baseline lexicon-based method.

We specifically considered ADR labeling performance on Twitter

user posts.

MATERIALS AND METHODS

This study was determined to be exempt from Institutional Review

Board review by The Children’s Hospital of Philadelphia.

Data collection and labeling
Our dataset combines 2 Twitter datasets. The first dataset, Twitter

ADR Dataset (v1.0), was published previously.21 The dataset au-

thors collected and annotated user posts (called tweets) using search

terms for 81 drugs widely used in the US market and new drugs re-

leased between 2007 and 2010.20,21 The published data includes

unique tweet identifiers but excludes the tweet text (as prohibited by

the Twitter application program interface license agreement). Thus,

it was necessary to obtain text from the Twitter application program

interface using the identifiers. Of the 957 identifiers in the original

dataset, 641 tweets were available for download at the time of this

study. The drugs represented by these tweets were not collected for

a specific condition and represent a broad range of potential ADRs.

This data represents 76% of our complete dataset.

We supplemented this dataset with additional tweets, denoted the

ADHD Dataset, containing at least 1 search term corresponding to 44

brand and generic drugs used for treatment of attention deficit hyperac-

tivity disorder (ADHD). We collected these tweets between May 1,

2015, and December 31, 2015. Tweets with URLs and reposted tweets

were excluded. From these, we included 203 tweets that were identified

as containing a drug-related event and annotated using the guidelines

published with the Twitter ADR Dataset (v1.0). The labeled ADHD

dataset is available at https://github.com/chop-dbhi/twitter-adr-blstm.

Our complete dataset contains 844 tweets, of which 95% con-

tain at least 1 ADR or indication mention. We maintained the train-

test split as published for the Twitter ADR Dataset and randomly

divided the ADHD Dataset to create training and test sets of sizes

634 (75%) and 210 (25%) tweets. The training tweets contained

647 ADRs and 71 indications, while the test tweets contained 199

ADRs and 22 indications.

We separated tweets into individual tokens using the ark-

twokenize-py Python module.33,34 We converted all tokens to lower-

case and replaced “at” mentions (ie, @usename) with a special

token. Although the RNN model can process sequences of arbitrary

length, many modeling frameworks expect fixed-length inputs for

batch processing. Thus, for implementation convenience, it was nec-

essary to standardize the number of tokens in each tweet. Therefore,

we padded each tweet to match the length of the longest tweet in the

training data (36 tokens). For a tweet with k tokens, if k<36, we

appended (36 � k) “<PAD>“ tokens to the beginning of the tweet,

where each <PAD> token was a zero vector. If a tweet in the test

data had more than 36 tokens, the model was set up to truncate it to

include just the first 36 tokens. As it turned out, no test tweets con-

tained more than 36 tokens.

It was necessary to manually label tweets in the ADHD Dataset

as positive or negative for containing a drug event. For event posi-

tives, the event type and text span containing the event were labeled.

Two authors independently labeled all tweets. We performed con-

sensus reconciliation of discordant assessment until 100% agree-

ment was achieved. The published Twitter ADR Dataset included
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the same labels. To facilitate supervised model training and evalua-

tion, it was necessary to generate token labels that indicated ADR

membership. A standard approach for sequence-labeling tasks is to

use an I-O-B scheme, where tokens are assigned labels that indicate

the token’s position at the beginning (B), inside (I), or outside (O)

an entity of interest.35 We adopted an I-O scheme with 4 labels: I-

ADR, I-Indication, O, and <PAD>, indicating that the given token

was, respectively, part of an ADR, part of an indication, outside any

ADR or indication, or was padding (Figure 1). These token labels can

be automatically derived from the event type and text span labels.

BLSTM-RNN model development
Our BLSTM-RNN model processes each tweet as a sequence of tokens

and predicts the label for each token. The model is called bidirectional

because internally it combines 2 RNNs: a forward RNN processes the

sequence from left to right, and a reverse RNN processes the sequence

from right to left. The outputs of both RNNs are averaged for each to-

ken to compute the model’s final label prediction.

Word embedding features

Our model takes as input an index that maps the current token to a

column in a word embedding matrix. The column is a real-valued

numeric representation known as a word embedding. The embed-

dings can be treated as fixed constants or learnable parameters.

When fixed, the embedding matrix values are assumed to have been

pretrained and are not updated during training. When learnable, the

matrix values are treated as model parameters that are initialized

with pretrained values or randomly and are updated during training.

We experimented with all 3 options. For pretrained word embed-

dings, we adopted a published set of 400-dimensional word embed-

dings trained using the skip-gram algorithm on more than 400

million tweets.28 The vocabulary of these word embeddings covered

96.5% of the tokens in our dataset. These tweets were not specific

to any particular domain. Furthermore, the skip-gram algorithm36 is

an unsupervised machine-learning method designed to encode se-

mantic and syntactic information and has no direct connection to

the ADR labeling task. These word embeddings were the only input

features provided to our model. Although we tested additional

features, they did not produce performance differences (see Supple

mentary Appendix).

Model architecture

Our BLSTM-RNN model produces an ADR label for each word em-

bedding of a length-n tweet in a process that can be described in

terms of sequential steps t¼0 to t¼n � 1 (corresponding to token

position in the tweet). At step t¼ i, the forward RNN computes a

D-dimensional output for token wi and the backward RNN com-

putes a D-dimensional output for token wn � 1 � i. The forward and

backward chains are both LSTM RNNs whose hidden layer nodes

compute their output as a function of the current input (either the

token embedding or the preceding hidden layer’s output) and their

individual outputs for the previous input. Each node contains input,

forget, and output gates that weight the current input, previous hid-

den state, and current hidden state, respectively, when calculating its

current output (see Table 1). The final hidden layer outputs of the

2 chains for a given token, wi, are averaged element-wise and passed

to a fully connected layer that reduces the D-dimensional vector to

4 values, representing probabilities for each label (<PAD>, I-ADR,

I-Indication, or O) (see Figure 2).

Model variants

We evaluated 3 BLSTM variants:

• Method 1 (BLSTM-M1): Word-embedding values randomly ini-

tialized (standard normal scaled by the square root of our vocab-

ulary size32) and treated as learnable parameters.
• Method 2 (BLSTM-M2): Word-embedding values initialized

with a publicly available pretrained dataset28,36 and treated as

learnable model parameters.
• Method 3 (BLSTM-M3): Word-embedding values initialized as

in method 2, but treated as fixed constants.

We implemented the models using the Keras Python library37

over a Theano38,39 backend. We used online training (1 tweet at a

time) with back propagation through time,40 for 6, 6, and 18 epochs

(ie, passes over the training set) for the BLSTM-M1, BLSTM-M2,

and BLSTM-M3 models, respectively. We calibrated the number of

epochs for each model individually prior to training using cross-

validation over the training set. Training the BLSTM-M3 model on

the full 634-tweet training set for 18 epochs took �45 min on a

MacBook Pro with a 2.6 GHz processor and 16 GB RAM. Testing

took under 5 s. Our model code is available at: https://github.com/

chop-dbhi/twitter-adr-blstm.

Baseline sequence labeling methods
We also considered 2 baseline techniques: a lexicon-matching

method and a CRF model.

Lexicon-matching method

The first baseline method identifies ADR mentions by matching con-

cepts in a lexicon. Our lexicon, containing 13 014 concept terms,

combines a previously published ADR lexicon21 with concepts from

the Consumer Health Vocabulary41 corresponding to adverse events

known to be associated with medications commonly used to treat

ADHD as derived from the National Institute for Children’s Health

Quality Vanderbilt Assessment Follow-up—PARENT informant

form. We created an Apache Lucene index from the concept terms

and queried the index for concept matches within each tweet. We

preprocessed the concept terms and tweet tokens by removing

Figure 1. Examples of tweets with ADR spans labeled using our binary tag set.
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common English words (eg, “the,” “of”) and reducing words to

their root form (eg, “jumped” to “jump”). We considered lexicon

matches to constitute a predicted ADR if all tokens in the lexicon

concept were present in the tweet, and a true positive approximate

match if the predicted ADR at least partially overlapped with an an-

notated ADR span. Our additional lexicon terms and model imple-

mentation are available at https://github.com/chop-dbhi/twitter-adr-

lexicon.

Conditional random fields model

Our second baseline method utilizes a CRF model22 as described for pre-

vious state-of-the-art results.21 We implemented the model using CRFSuite

software42 and represented each token with the following features:

• Context Tokens: Identities of the current token and its 3 preceding

and 3 following tokens. Tokens were converted to lowercase and

digits, @-mentions, and URLs were replaced with a special symbol.
• ADR Lexicon Match: Binary feature indicating whether the cur-

rent token matches any word in the ADR lexicon.21

• Part-of-Speech Tag: The part-of-speech tag for the current token.

We used the ARK Twitter Part-of-Speech Tagger.34,43

• Negation: Binary feature indicating whether the current token is

negated. We utilized DepND44–46 for negation detection.
• Word Clusters. The nearest word cluster for the word embed-

dings corresponding to the current token and the context tokens.

To generate word clusters, we used the same pretrained word

embeddings28 as for the BLSTM models clustered into 100

groups using the k-means algorithm. We also considered word

clusters derived from health care–specific tweets, but these did

not appreciably affect F-measure (see Supplementary Appendix).

RESULTS

We used approximate matching21,47 of predicted ADR spans on our

held-out test set to evaluate model performance. Approximate

matching considers a predicted ADR span correct if it overlaps with

one or more actual ADR spans. Given the tweet “The Seroquel gave

me lasting sleep paralysis” with the true ADR span “sleep paralysis,”

predicted spans of “lasting sleep paralysis” or simply “paralysis”

Table 1. Update equations for LSTM-RNN layers

Parameters to be learneda Input Output/hidden stateb

Input weights: Wi;Wf ;Wc;Wo 2 R
D�H xt 2 R

D it ¼ rðxtWi þ bi þ st�1UiÞ
Recurrent weights: Ui;Uf ;Uc;Uo 2 R

H�H f t ¼ rðxtWf þ bf þ st�1Uf Þ
Bias vectors: bi; bf ; bc; bo 2 R

H C~
t ¼ tanhðxtWc þ bc þ st�1UcÞ

Ct ¼ f t�Ct�1 þ it�C~
t

ot ¼ rðxtWo þ bo þ st�1UoÞ
st ¼ ot�tanhðCtÞ

aThe parameters D¼ 400 and H¼256 are the word embedding and LSTM internal dimensions, respectively.
bThe parameter xt denotes the word embedding input to the LSTM layer for the tth token in the sequence. st denotes the output of a

node in the current layer for the current input token, and st-1 denotes the output of a node in the current layer for the previous token. The

input gate, it, weights the hidden state C~
t computed by the node for the current input. The forget gate ft weights the value of the node’s pre-

vious hidden state, Ct�1, in computing the current output. The output gate ot weights the node’s current output before passing it to the

next layer. The inner activation function r is the linearly approximated standard sigmoid, ie, rðxÞ ¼ max
�

0;min ð1; 0:2�xþ 0:5Þ
�

. The

operator * indicates element-wise multiplication.

Figure 2. Overview of our bidirectional network architecture, demonstrating prediction for token wn-5¼addy. The network processes the entire length-n sequence

in steps. At step ti, the forward RNN predicts the label of token wi. At step tn-(iþ1) the reverse RNN predicts the label of token wi. Once the entire length-n sequence

is processed, the model averages the forward and reverse predictions for each token. The final fully connected layer reduces the output to 4 dimensions repre-

senting probabilities for each possible label (<PAD>, I-ADR, I-Indication, or O).
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are counted as correct. We report the approximate match precision,

recall, and F-measure:

Precision ¼ # ADR spans correctly identified

# ADR spans predicted

Recall ¼ # ADR spans correctly identified

# ADR spans actual

F-Measure ¼ 2 � Precision � Recall

Precisionþ Recall

The random order in which our model processes tweets during

training can yield slightly different parameter values, thus producing

slightly different predictions on the held-out test set. To account for

this randomness, we trained each model on our complete training

set and predicted the test set labels 10 times. We report the mean

and 95% confidence interval for each metric over the 10 training

and evaluation runs.

The mean approximate match results achieved by each model

over the 210-tweet test set are given in Table 2. Our BLSTM-M3

model significantly outperformed all other models in terms of F-

measure (P< .01) (statistical significance computed using the com-

putationally intensive approximate randomization test48–50).

Although the CRF achieved the highest precision, the BLSTM-M3

Table 2. Mean and 95% confidence intervals for approximate match F-measure, precision, and recall achieved by each model over 10 train-

ing and evaluation rounds

Model F-Measure Precision Recall

Lexicon Matching 0.6306 0.5983 0.6667

CRF 0.6507 0.8015 0.5477

BLSTM-M1 0.6272 (0.6123, 0.6421) 0.6457 (0.5814, 0.7101) 0.6332 (0.5645, 0.7019)

BLSTM-M2 0.6858 (0.6754, 0.6963) 0.6047 (0.5642, 0.6452) 0.8070 (0.7495, 0.8645)

BLSTM-M3 0.7549 (0.7411, 0.7686) 0.7043 (0.6624, 0.7461) 0.8286 (0.7608, 0.8965)

Bold text indicates the top-performing model for each metric.

Figure 3. We observe the mean approximate match F1 score achieved by each model on the test set for training set sizes ranging from 50 to 641 samples (with 5

randomly selected training sets at each size).
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model had a significantly better balance of precision and recall, as

reflected in its F-measure, and thus represents new state-of-the-art

performance. Both BLSTM models initialized with pretrained em-

beddings (BLSTM-M2 and BLSTM-M3) performed significantly

better than the baselines and the BLSTM-M1 model that randomly

initialized embeddings (P< .01). There was no statistically signifi-

cant difference in performance between the Lexicon Matching,

CRF, and BLSTM-M1 models (P> .05).

DISCUSSION

Learning curve analysis
It is important to understand a machine learning model’s sensitivity

to the data sample (ie, model variance), in particular to determine if

the sample size is adequate. To investigate this, we examined the

model learning curves (performance as function of training set size)

shown in Figure 3. For the BLSTM-M3 model, the loss function val-

ues obtained during training and testing approached approximately

the same asymptotic value. This typically indicates that variance is

reasonably controlled and thus adding more training examples will

not improve model performance. We observed that the limiting er-

ror rate for the training and test curves was non-zero (�9%), indi-

cating that bias was present and suggesting that further performance

improvements would likely require additional input features. In con-

trast, the CRF, BLSTM-M1, and BLSTM-M2 models’ training and

test error rates did not reach the same limiting values. Based on the

error rate difference between the training and test evaluations, the

CRF model appears to suffer the most from variance. This is likely

due the greater number of input features (ie, more degrees of free-

dom) required by the model. Although more training examples

might be beneficial for all 3 models, the downward slope of the

learning curves is extremely small, and it is therefore likely that a

prohibitive number of manually labeled training examples would be

required to adequately control variance. Indeed, this is a strong rea-

son to use the pretrained word embeddings, as they can be derived

with unsupervised methods that do not require labeled datasets.

Feature analysis
We largely attribute the superior performance of the BLSTM-M3

model to the use of fixed word embeddings that were trained specifi-

cally to encode semantic information without specific relevance to

the ADR detection task. To understand their impact, we separately

evaluated model performance relative to whether the embeddings

were (1) randomly initialized or pretrained, or (2) held fixed or al-

lowed to vary during training.

We first considered the impact of using pretrained embeddings,

noting that the BLSTM-M2 and BLSTM-M3 models, which did use

pretrained embeddings, achieved 27.4 and 30.8% higher recall, re-

spectively, compared to the BLSTM-M1 model, which used ran-

domly initialized embeddings. We contend that this is a consequence

of the fact that, for the pretrained embeddings, semantically similar

word pairs have nearly equal embeddings, which implicitly exposes

the model to information about words in the test set even if they are

not observed in the training set. Consider, for example, the semanti-

cally similar ADRs “tired” and “sleepy.” We expected the corre-

sponding word vectors to be close to each other in the embedding

space. If “tired” is present in the training set and “sleepy” is only in

the test set, we can still expect the model to detect the ADR in the

test set, because the RNN nodes that activate for “tired” will also

activate for “sleepy.” In contrast, the BLSTM-M1 model randomly

initializes the embeddings, so that semantically similar word pairs

are arbitrarily far apart. Such word pairs do not necessarily converge

Figure 4. Word embeddings before (circles) and after (triangles) BLSTM-M2

model training, projected into 2 dimensions using singular value decomposi-

tion. Note that after training, words associated with ADR mentions (sleep,

pain, weight, hungry, dreams, etc.) separate from non–ADR-associated words

(blue, tonight, all, love, etc.).

Figure 5. Projected embeddings for the same words as Figure 4, learned by

our randomly initialized word embedding model, BLSTM-M1. The randomly

initialized model similarly separates ADR-related and non–ADR-related

words, but semantically related words are not embedded as closely as they

are in the pretrained embeddings (eg, “tired” and “sleepy”).
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through training, because semantic similarity is not reinforced by

the ADR-labeling learning objective, and even if it was, words in the

test set that are not in the training set would necessarily be repre-

sented by random vectors. Thus, in our example, it would never

have observed the word “sleepy” and would not recognize it as simi-

lar to “tired.” In general, this results in more false negative errors

(lower recall) for the randomly initialized model. Concretely, we

found 553 unique words in the test set that were not in the training

set, corresponding to 591 test set instances (84.6% non-ADR,

15.4% ADR) for which the BLSTM-M1, BLSTM-M2, and BLSTM-

M3 models achieved false negative error rates of 13.0, 10.0, and

7.6%, respectively.

We next considered the impact of updating word embeddings

relative to the ADR task, noting that the BLSTM-M3 model, which

held the embeddings fixed, achieved 16.5 and 9.1% greater preci-

sion relative to the BLSTM-M2 and BLSTM-M1 models, respec-

tively, which updated the embeddings during training. We

hypothesized that this was because the BLSTM-M1 and BLSTM-

M2 models encoded ADR detection information directly in the

word embeddings. This is illustrated qualitatively Figures 4 and 5,

where we observe that ADR-related and non–ADR-related words

separate in the embedding space. This initial distinction is rigid and

biases the RNN toward interpreting certain words as ADR-related

or non–ADR-related, regardless of their context. Thus ADR-related

words seen during training will be heavily biased toward being

treated as ADR-related at test time, regardless of the context, and will

induce false positive errors (reduced precision). This hypothesis is sup-

ported by the data in Table 3, where we characterize the false positive

errors made by each model. For the fixed embedding model (BLSTM-

M3), �10% of false positive errors are attributed to ADR-related

words, ie, cases where a word appearing in a true ADR span in training

is erroneously labeled as I-ADR at test time. For the variable embed-

ding models, the share of ADR-related word errors is 3 times higher.

Error analysis
We qualitatively examined the BLSTM-M3 model errors, particularly

false positives, in Table 3 to identify likely causes. Nearly 25% of the

false positives can be characterized as constituent phrase errors, mean-

ing that the model flags words that are part of the constituent phrase

containing the true ADR but not contiguous to the annotated span.

These frequently elaborate on the ADR, as in the first example in Table

3, where our model identified the word “fingertips” as part of the con-

stituent phrase “tingling in my fingertips,” but the strict ADR bound-

ary includes only the verb “tingling.” Other common errors include

labeling indications, drug benefits, ADR symptoms, negated reactions,

and other ADR-related words as ADRs.

Limitations
A potential limitation of our study is the size and scope of our Twit-

ter dataset. Specifically, the limited data size could preclude general-

ization of our results to all drug and ADR types that might be

mentioned on Twitter and other social media platforms. It is likely

that there are rarely mentioned ADRs, or ADRs associated with

drugs not captured by our search terms, with semantic and syntactic

patterns not represented in our training set. Similarly, text from

other data sources could incorporate different language patterns

that require creation of additional word embeddings. The pretrained

word embeddings used here embed semantic information specific to

language used on Twitter. To properly evaluate our model on a data

corpus with substantially different language, eg, clinical notes, re-

quires formation of new word vectors. Fortunately, relevant datasets

exist (eg, Multiparameter Intelligent Monitoring in Intensive Care

[MIMIC] III51), and this is a focus of our continuing research.

CONCLUSION

Mirroring recent successes in other natural language processing

tasks, our results indicate that RNN models with pretrained word

embedding inputs can effectively identify ADRs in social media

data, specifically Twitter data, and establish new state-of-the-art

performance by achieving statistically significant superior F-measure

performance compared to the CRF-based model.

The semantic information encoded in fixed word embeddings

created from a large, non–health care–specific dataset was a critical

factor in improved model performance. In particular, the semantic in-

formation improved model recall by enabling the model to recognize

Table 3. Authors’ classification of false positive errors made by the BLSTM models

Classification of

False Positive Error

Underlined Example of False Positive Error

(Sentence annotations: bold¼ false positive; bold italic¼ true positive;

italic¼ false negative.)

Percent of False Positive

Errors (M1/M2/M3)

Constituent phrase In other news, I’ve got my first weird side effect from quetiapine.

Numbness and tingling in my fingertips.

9.4 / 4.8 /24.4

Other i thought 70 mg a vyvanse was a low dose so i took two and

now i’m bouncing off the walls

34.0 / 30.6 /19.5

Indication Fed up of aching bones:(Wonder drugs work some magic

please. #rheumatoidarthritis #enbrel

7.5 / 4.8 /14.6

Drug benefit whereas dextroamphetamine levels me out and makes

me feel calm and focused. it’s wonderful!!!!!

9.4 / 16.1 /12.2

Negated or conditional reaction @MENTION i never had bleeding or vomiting just alot alot of fatigue

and face was pale and lost tons of weight.. #crohns #humira

5.7 / 6.5 /9.8

Symptom description i’m exhausted but so awake bc vyvanse 5.7 / 8.1 /9.8

ADR-related word @MENTION banana? Hot milk? And randomly lettuce! All contain

sleepy bye chems. All I have is trazodone which means dopey all day tomo

28.3/ 29.0 /9.8

An example of each error type is underlined in the second column. Other sentence annotations are as follows: false positive ADR spans are in bold, true positive

spans are in bold italics, and false negative spans are in italics.
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ADRs in the test set that were not observed in training. We also noted

that model training required fewer ADR-labeled examples to reach

optimal performance. This is advantageous because it reduces the

required number of ADR-labeled training examples, which is im-

portant because labeling is a resource-intensive process. Addition-

ally, word embeddings can be created using unsupervised learning

methods, for which only unlabeled data are needed, and therefore

can readily scale to large datasets. Finally, these embeddings are the

only features used by our model, thereby avoiding task-specific

feature engineering, suggesting generalizability to additional sequence-

labeling tasks and simplicity over systems requiring expert-engineered

input features that are difficult and expensive to develop.

While our results are encouraging, the token-labeling task is only

one challenge associated with automated ADR identification. In our

study, the model was trained and evaluated primarily on user posts

containing drug-related events. We found that including a signifi-

cant number of posts without ADRs in the training data produced

relatively poor results for both the RNN and baseline models.

Therefore, a fully automated system would likely require 2 addi-

tional components: (1) a highly accurate binary classifier that pre-

dicts whether text contains an ADR and (2) a method for mapping

similar ADRs (eg, stomachache and stomach pain) identified

through the text token labeling process to a single ontology term to

support aggregated analysis. Methods for the former have been de-

scribed in prior investigations.18–20,52–54 The latter has received little

attention for pharmacovigilance. Given the effectiveness of our deep

learning architecture combined with the semantic information

encoded in word embeddings created from a large unlabeled dataset

for ADR detection, we will explore the applicability of related methods

for mapping identified ADR text to ontology terms in our future work.
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