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Abstract

Purpose: To optimize diffusion-relaxation MRI with tensor-valued diffusion encoding for 

precise estimation of compartment-specific fractions, diffusivities and T2 values with a two-

compartment model of white matter, and to explore the approach in vivo.

Methods: Sampling protocols featuring different b-values (b), b-tensor shapes (bΔ), and echo 

times (TE) were optimized using Cramér-Rao lower bounds (CRLB). Whole-brain data were 

acquired in children, adults, and elderly with white matter lesions. Compartment fractions, 

diffusivities and T2 values were estimated in a model featuring two microstructural compartments 

represented by a ‘stick’ and a ‘zeppelin’.

Results: Precise parameter estimates were enabled by sampling protocols featuring seven or 

more ‘shells’ with unique b/bΔ/TE-combinations. Acquisition times were approximately 15 

minutes. In white matter of adults, the ‘stick’ compartment had a fraction of approximately 0.5 

and, compared with the ‘zeppelin’ compartment, featured lower isotropic diffusivities (0.6 vs. 1.3 

μm2/ms) but higher T2 values (85 vs. 65 ms). Children featured lower ‘stick’ fractions (0.4). White 

matter lesions exhibited high ‘zeppelin’ isotropic diffusivities (1.7 μm2/ms) and T2 values (150 

ms).
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Conclusions: Diffusion-relaxation MRI with tensor-valued diffusion encoding expands the set 

of microstructure parameters that can be precisely estimated and therefore increases their 

specificity to biological quantities.

Keywords

tensor-valued diffusion encoding; diffusion-relaxation MRI; Fisher information; brain 
microstructure

1 | INTRODUCTION

Diffusion MRI (dMRI) has gained widespread use due to its sensitivity to brain tissue 

microstructure (1). Methods such as diffusion tensor imaging (DTI) (2) and diffusion 

kurtosis imaging (DKI) (3) detect microstructural alterations in diseases such as multiple 

sclerosis (4), white matter lesions (5, 6), gliomas (7) and parkinsonian disorders (8) as well 

as in normal processes such as learning (9, 10) and maturation (11–13). Although sensitive, 

DTI and DKI parameters do not report on specific quantities of the tissue microstructure (14, 

15). Recent research has therefore aimed to develop methods with specificity to 

microstructural quantities such as the axonal density.

One approach to estimate microstructural quantities from dMRI data is to use a forward 

model that parameterizes the signal in terms of such quantities and fit the model to acquired 

data (1). Such models tend to represent tissue by ‘compartments’ with specific signal 

contributions weighted by fractions (16–28). In white matter, water diffusion in the intra- 

and extra-axonal spaces are typically modelled by ‘stick’ and ‘zeppelin’ diffusion tensors, 

respectively. Correlations have been found between parameters of such models and 

microstructural quantities from histology. For example, the ‘stick’ fraction (the fraction of 

the ‘stick’ compartment) has been correlated with the axonal volume fraction (29) and the 

radial diffusivity of the ‘zeppelin’ compartment has been correlated with the myelin volume 

fraction (30).

While a complete description of the tissue microstructure requires many parameters, dMRI 

normally supports the estimation of just a few (31–33). Trying to estimate many 

microstructural parameters from dMRI data leads to problems with degeneracy and low 

precision, which has been addressed by the introduction of various model constraints. For 

example, compartment diffusivities may be fixed to specific values or assumed to follow 

given relations (16, 23, 27). Although such constraints increase precision, they introduce 

another problem: the estimated parameters represent microstructural quantities truthfully 

only when the constraints are valid. For example, interpreting the ‘stick’ fraction as a 

volume fraction without estimating compartment-specific T2 relaxation values is valid only 

if these values are equal. If they are different, as in white matter lesions, the results can be 

strongly misleading (28).

To estimate microstructural quantities across a wide range of conditions, model constraints 

should be replaced with independent information. Here we explore two approaches for 

acquiring such information. The first is tensor-valued diffusion encoding, which adds 

information by acquiring data with multiple shapes of the b-tensor (34–36). Such data can be 
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used to estimate all parameters in the relatively unconstrained ‘standard model’ (37, 38). 

The second is diffusion-relaxation experiments, which adds information by acquiring 

diffusion data for multiple echo times (TE) (39–42). Such data can be used to estimate 

compartment-specific T2 values in brain tissue (28, 40). These approaches have previously 

been used separately but not in combination.

In this work, we investigate how to best combine tensor-valued diffusion encoding and 

diffusion-relaxation experiments for maximal information encoding. For this purpose, we 

defined sampling protocols in terms of ‘shells’ with different b-values (b), shapes of the b-

tensor (bΔ) and echo times (TE). A minimally constrained two-compartment model was used 

to optimize protocols for minimal parameter variance based on Cramér-Rao lower bounds 

(CRLB) (43, 44). The importance of each independent acquisition dimension was assessed, 

and the performance of different sampling protocols was evaluated. The clinical feasibility 

of the approach was tested by using the principles learned from the optimization to design an 

in vivo protocol and acquire data in children, adults, and elderly with white matter lesions.

2 | THEORY

2.1 | A general diffusion-relaxation compartment model

We start by considering the class of models (18, 19, 29, 33, 40, 45–47) that describe the 

dMRI signal as an ‘isotropic convolution’ (⊛) (48) on the unit sphere between an 

axisymmetric microstructure kernel K and an orientation distribution function (ODF) P, 

according to

S u = K ⊛ P u = ∫n = 1
K u · n P n dn, Eq. 1

where u is the symmetry axis of the diffusion encoding and n is the symmetry axis of the 

kernel.

To define a general compartment model of diffusion and T2 relaxation, we consider kernels 

on the form

K u · n = S0∑j = 1
J f jexp −B u :Dj n exp − TE

T2; j
. Eq. 2

The experiment is described by the axisymmetric diffusion-encoding tensor (b-tensor) B 
with symmetry axis u (35, 36) and the echo time TE. Each compartment is described by an 

axisymmetric diffusion tensor Dj and a T2 value T2;j, and is weighted by a fraction fj (Σfj = 

1). Assuming that the model captures the diffusion and T2 relaxation properties of all 

relevant compartments, the fractions theoretically represent the proton density- and T1-

weighted volume fractions of those compartments.

As in Eriksson (49), we parameterize D in terms of its isotropic diffusivity DI and anisotropy 

DΔ, which relate to the axial (D||) and radial (D⊥) diffusivities according to DI = (D|| + 

2D⊥)/3 and DΔ = (D|| – D⊥)/(D|| + 2D⊥). The double inner product B:D is given by
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B u :D n = bDI 1 + 2bΔDΔL2 u · n , Eq. 3

where b is the conventional b-value (50), bΔ is the shape of the b-tensor, which ranges from 

–0.5 (planar tensor encoding; PTE) through zero (spherical tensor encoding; STE) to unity 

(linear tensor encoding; LTE), and L2 is the second Legendre polynomial (49).

We simplify the convolution in Eq. 1 by expanding K and P in the spherical harmonic basis, 

according to

S u = K ⊛ P u = ∑
l

∑
m

kl0 plm Y lm u 4π
2l + 1, Eq. 4

for order l = 0, 2, …, and degree m = –l, –l + 1, …, l. With u = (sinθ cosφ, sinθ sinφ, cosθ), 

the spherical harmonic basis functions are given by

Y lm θ, φ = 2l + 1
4π

l − m !
l + m ! Ll

m cos θ exp imφ, Eq. 5

where Ll
m are the associated Legendre polynomials (m = 0 yields the regular Legendre 

polynomials) (48, 51). The coefficients for K (kl0) and P (plm) are obtained by inner 

products, according to

clm = C Y lm = ∫
0

2π∫
0

π
C Y lmsin θ dθdφ Eq. 6

where the overbar denotes complex conjugation. Eq. 4 uses the axial symmetry of K. First, 

K(θ,φ) = K(θ), wherefore klm = 0 for m ≠ 0. Second, K(–θ) = K(θ), wherefore kl0 ≠ 0 only 

for even l (odd-order harmonics are antisymmetric). Eqs. 2–6 yield kl0 (referred to as kl), 

according to

kl = S0∑j = 1
J f jexp −bDI; j 1 − bΔDΔ; j 4π 2l + 1 Iljexp − TE

T2; j
Eq. 7

where

Ilj = ∫
0

1
e−αjx2 · Ll x dx Eq. 8

and

αj = 3bDI; jbΔDΔ; j . Eq. 9

For the first two harmonic orders, the integral evaluates to

I0j = π
4αj

erf αj Eq. 10
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and

I2j = 1
2 I0j

3
2αj

− 1 − 3
2αj

e−αj . Eq. 11

Note that fitting the l = 0 term in Eq. 4 to the signal’s zeroth order coefficient 〈S|Y00〉 is 

equivalent to the ‘powder-averaging’ approach (52–54), and that jointly fitting the l = 2 

terms to the second order coefficients 〈S|Y2m〉 (after transformation to rotational invariants) 

yields the ‘RotInv’ approach (33, 40, 46).

2.2 | Two-compartment diffusion-relaxation model

We define a two-compartment diffusion-relaxation model by limiting the kernel (Eq. 2) to 

feature a ‘stick’ compartment (S) with DΔ;S = 1 (D⊥;S = 0) and a ‘zeppelin’ compartment 

(Z). The ‘stick’ property of zero radial diffusivity (16) is expected for diffusion within 

cylindrical structures having a radius smaller than the resolution limit (55) and has been 

experimentally indicated in white matter (53, 56, 57). Using Eqs. 4–11 with the harmonic 

expansion truncated at lmax = 2, and p00 = Y00 = 1/ 4π for ODF normalization, yields the 

full signal equation

S e,  m = S0 fSexp −bDI; S 1 − bΔ I0; S + 4π I2; S∑
m

p2mY 2m θ, φ

exp − TE
T2; S

+ 1 − fS exp −bDI; Z 1 − bΔDΔ; Z I0; Z + 4π

I2; Z∑
m

p2mY 2m θ, φ exp − TE
T2; Z

Eq. 12

where m ∈ {–2, –1, 0, 1, 2}. It is a function of five scalar experiment-related parameters,

e = [b, bΔ, θ, φ, TE], Eq. 13

where θ and φ are the colatitude and longitude of the b-tensor symmetry axis, and twelve 

scalar model parameters,

m = [S0, fs, DI:S, DI:Z, DΔ:Z, T2:S, T2:Z, p20, Re(p21), Im(p21), Re(p22) Im(p22
)], Eq. 14

where fS is the ‘stick’ fraction, DI;S and DI;Z are the isotropic diffusivities of the ‘stick’ and 

‘zeppelin’, DΔ;Z is the ‘zeppelin’ shape, T2;S and T2;Z are the T2 values of the ‘stick’ and 

‘zeppelin’, respectively. The requirement of a real ODF enforces conjugate symmetry, 

according to p2-m = (–1)mp2m, leaving five real numbers describing it. As in Novikov (33), 

we use the rotational invariant Euclidean norm of the p2m coefficients to derive an 

‘orientation coherence’ parameter, according to

pl = ∑
m

plm
2/ 2l + 1

4π Eq. 15
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The normalization ensures pl ∈ [0 1]. Since pl is rotational invariant and increases with ODF 

anisotropy, pl = pl
max when P’ = δ(θ = 0)/(4π), where δ is the delta function. With P’ 

plugged into Eq. 6, Eq. 15 yields pl
max = 4π∫0

π
2 θ = 0 / 4π  Y l0 dθ, since Ylm(θ = 0) = 0 for 

m = 0. Using Eq. 5 and Ll(1) = 1 yields pl
max = 2l + 1 /4. Here, the parameter of interest is 

p2.

2.3 | Parameter relations commonly used to constrain the two-compartment diffusion-
relaxation model

Models adapted for conventional multi-shell dMRI acquired with a single TE tend to address 

degeneracy issues by constraining parameters to follow given relations. What we refer to as 

the ‘density assumption’ is a relation implicitly enforced when referring to compartment 

fractions as volume fractions without accounting for T2 relaxation (28). It assumes equal T2 

values across compartments, here according to

T2; s = T2; Z . Eq. 16

With a shared compartment T2 value and data acquired for a single TE, the T2 dependence is 

factored into S0. Another set of relations, here referred to as ‘proportional diffusivities’, link 

axial diffusivities between compartments as

D :S = c ⋅ D :Z Eq. 17

This has been used to enforce equal axial diffusivities (c = 1) (16, 23, 25) or equal isotropic 

diffusivities (c = 3) (27, 58). Yet another relation is the ‘tortuosity relation’, which connects 

the shape of the ‘zeppelin’ compartment to the ‘stick’ fraction (21, 23, 25, 59, 60), according 

to

DΔ; Z = fS/ 3 − 2fS Eq. 18

In this work, we extend this expression to incorporate myelin. We first note that Eq. 18 was 

derived for diffusion around parallel cylinders where simulations showed that (61)

DΔ; Z = 1 − vE / 1 + 2vE , Eq. 19

where vE is the extra-axonal volume fraction. While Eq. 18 assumes vE = 1 – fS, a more 

plausible relation includes myelin, according to vE = 1 – vA – vM, where vA and vM are the 

volume fractions of axons and myelin, respectively. These are related via the g-ratio, 

according to g2 = vA / (vA + vM) (62, 63). By adjusting for MR-invisible myelin, we can 

relate fS to vA, according to fS = vA / (1 – vM), to obtain

DΔ; Z = fS
fS 1 − g2 + g2 / 3 − 2 fS

fS 1 − g2 + g2 Eq. 20
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This relation could be used to update Eq. 18, which assumes g = 1 (no myelin), with g-ratio 

values obtained through independent means. Alternatively, it could be used to fit g using 

estimates of DΔ;Z and fS from the two-compartment diffusion relaxation model. However, 

note that this assignment is valid if and only if the compartment model is also accurate.

Finally, if the ODF is assumed to be axisymmetric, the Watson distribution is a less complex 

alternative to the truncated spherical harmonic expansion used here (64). It is described by 

mean orientation unit vector μ and concentration parameter κ with values from zero 

(spherical ODF) to infinity (delta function ODF). The OD parameter of Zhang (23) remaps κ 
to represent orientation dispersion from zero (OD = 0; κ = ∞) to complete (OD = 1; κ = 0), 

according to

OD = 2
πarctan 1

κ Eq. 21

2.4 | Cramér-Rao lower bounds

Cramér-Rao lower bounds (CRLB) express the lower bound of the noise-induced variance in 

unbiased estimators (43, 44) and have been used previously to quantify the impact of the 

sampling protocol on the variance in model parameter estimates (59, 60, 65, 66). The CRLB 

are obtained as the diagonal elements of the inverse of the Fisher information matrix (F). For 

an experiment described by N samples en, assuming Gaussian noise with standard deviation 

σnoise, F has the elements

Fij = σnoise
−2 ∑

n = 1

N ∂Sn
∂mi

∂Sn
∂mj

en, m , Eq. 22

where ∂Sn/∂mi and ∂Sn/∂mj are partial derivatives of the signal model for measurement n 

with respect to model parameters mi and mj ∈ m (59). Here, we defined F using S, e and m 
from Eqs. 12, 13 and 14, respectively.

3 | METHODS

The procedures described in this section were performed using MATLAB (R2015b, 

MathWorks, Natick, MA, USA) and in-house code, available at https://github.com/

belampinen/lampinen_mrm_2019.

3.1 | Protocol optimization

We optimized sampling protocols by minimizing an objective function based on the model 

parameters’ CRLB (from Eq. 22) converted into an optimization metric referred to as the 

‘weighted parameter variance’ (VW), defined as

VW = 1
3 ∑

X = A, B, C
wTvC; X fTacq, Eq. 23
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where w is a vector of weights, vC = [CRLB1, …, CRLB12], and the average is across the 

prior sets in Table 1, which were intended to represent white matter (A), deep gray matter 

(B), and white matter lesions (C). Furthermore, fTacq is an ‘efficiency factor’ that makes VW 

invariant to the actual acquisition time (Tacq). The weights were defined to ignore S0 and the 

ODF parameters, using w = 0 for these, and to bring the remaining kernel parameters to 

comparable scales, using w–1 values of 0.05 for fS, 0.1 μm2/ms for DI;S and DI;Z, 0.1 for 

DΔ;Z and 10 ms for T2;S and T2;Z. The efficiency factor was defined as fTacq = Tacq/Tacq;ref 

with Tacq;ref = 30 minutes and Tacq = (τfat + TEmax + τEPI /2) nsliceN, using the time for the 

fat saturation pulse (τfat = 5 ms), the maximal TE, the EPI readout time (τEPI = 45 ms), the 

number of slices (nslice = 40) and the protocol’s number of measurements (N). The final 

objective function was given by

OF = VWϕSNRϕgrad Eq. 24

To account for scanner limitations, the penalty factors ϕSNR and ϕgrad approximate step 

functions by (linearly) increasing rapidly from unity under certain conditions (see GitHub 

link for details). The first factor penalized SNR < 2, where the Gaussian noise assumption in 

Eq. 22 is particularly biased (67). The SNR was estimated based on data from 

Szczepankiewicz (68) assuming an approximate voxel T2 of 80 ms. The second factor 

penalized gradient amplitudes g > gmax (default 80 mT/m).

As in our previous work (66), we minimized Eq. 24 using the stochastic Self Organizing 

Migrating Algorithm (SOMA) (69). SOMA was repeated six times per optimization after 

which the best protocol was chosen. The optimization task was to specify b, bΔ and TE for 

each of a predetermined number of shells as well as the number of b-tensor symmetry axis 

orientations (ndir) across which to repeat these parameters. The allowed parameter values 

were b ∈ [0, 0.1, …, 10] ms/μm2, bΔ ∈ [–0.50, –0.45, …, 1], TE ∈ [50, 60, …, 300] ms, and 

ndir ∈ [6, 10, 15, 30, 45]. The directional set [θi, φi] corresponding to each ndir was selected 

from platonic solids (36) for simplicity and optimization performance. The lower bound of 

TE = 50 ms should guarantee that myelin water contributes to the non-diffusion weighted 

signal by less than 2%, assuming an approximate volume fraction of 0.15 with a T2 value of 

15 ms in white matter (70, 71). To obtain a protocol suitable for clinical conditions, referred 

to as the ‘in vivo protocol’, we manually adapted a CRLB-optimized protocol to repeat a set 

of DTI and DKI-compatible shells using LTE (bΔ = 1) for different TE.

3.2 | Model fitting

Fitting was performed with least-squares minimization using MATLAB and the 

multidimensional dMRI toolbox (72). Minimization used the lsqcurvefit function with 

default settings and parameter bounds from Table 1. The diffusivity bounds were enforced 

through penalties ensuring axial and radial diffusivities between 0.2 and 4 μm2/ms. A lower 

bound above zero is the ‘zeppelin’ compartment’s main characteristic and avoids 

representing water at the ‘dot-compartment’ limit of zero isotropic diffusivity (73–76), 

which is presumably negligible in healthy white matter (57, 76, 77). For T2 values, the lower 

bound avoids representing water presumably fully attenuated at our echo times (e.g. myelin 

water), and the upper bounds were considered safe assumptions for water within ‘stick-like’ 
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structures and in tissue without major contamination with cerebrospinal fluid (CSF), 

respectively. Fitting was performed twice with initial guesses randomly selected from 

uniform distributions within the parameter bounds, after which the best fitting solution was 

kept. The probability of finding the global solution using two initial guesses was estimated 

to approximately 99.96% using in vivo data.

3.3 | Optimization evaluation (simulations)

To assess the impact on parameter precision of the different acquisition dimensions, we 

optimized protocols under restrictions on b, bΔ and TE, one at a time, as well as on the 

number of unique combinations of these properties (shells). To assess the effect of the 

maximal gradient amplitude, the optimizations under b and TE restrictions were performed 

for gmax values of 200 mT/m and infinity in addition to 80 mT/m.

To illustrate the ability to determine the ‘stick’ fraction using different protocols, we used 

the normalized residual variance (NRV) (28). For a given protocol, a signal was synthesized 

for each prior set in Table 1 using Eq. 12, after which Eq. 12 was fitted with fS fixed to 

different values between zero and one. The NRV then yields a goodness-of-fit metric for 

each fixed fS, according to

NRV = 1
I ∑

i = 1

I
σR; i

2 /σnoise
2 =  1I ∑

i = 1

I
∑

n = 1

N
Sn − S−n

2 /  N − M  / σnoise
2

Eq. 25

where the average is across I = 10 realizations of Gaussian noise with standard deviation 

σnoise, Sn is the noised signal, Sn-overbar is the fitted signal, N is the protocol’s number of 

measurements and M is the number of free model parameters (M = 11, after fixing fS). 

Plotting the NRV against the fixed fS illustrates how precisely this parameter can be 

determined with a given protocol, which is challenging using a model with free 

compartment T2 values and diffusivities (28).

To explore the precision of parameter estimates under challenging model priors, we fitted 

Eq. 12 to signals synthesized with the in vivo protocol (Table 2, protocol II) assuming four 

different sets of priors for the two-compartment model, modified so that the ODF was 

represented by a Watson distribution rather than the truncated spherical harmonics. The three 

first sets of priors mimicked set A in Table 1, but with gradually increasing orientation 

dispersion achieved by setting OD (Eq. 21) to 0.05, 0.5, and 1. The fourth set mimicked the 

full orientation dispersion set but with equal compartment isotropic diffusivities (0.95 

μm2/ms) and T2 values (70 ms). The simulations were performed for 200 realizations of 

noise from the Rice distribution to obtain distributions of estimated parameter values.

All simulations used the same SNR estimations as described for the optimization. In the 

NRV simulations, acquisition time differences were accounted for according to SNR’ = SNR 

· (Tacq;ref/Tacq)1/2, with Tacq;ref = 30 minutes.

3.4 | In vivo acquisition and processing

To study white and deep gray matter of the normal adult and maturing brain, we included 

five adult volunteers (age 31 ± 5 years; male/female = 3/2) and five children from a reading 
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intervention study (age 6 ± 1 years; male/female = 4/1). To study age-related white matter 

lesions, we included data from five elderly subjects that were controls in a Parkinson’s 

disease study (age 76 ± 3 years; male/female = 2/3), some of which contributed data to a 

previous study (28). The experiments were approved by the regional ethical review board in 

Lund and all subjects gave informed consent.

dMRI data were acquired on a MAGNETOM Prisma 3T system (Siemens Healthcare, 

Erlangen, Germany), using a prototype diffusion-weighted spin-echo sequence (68). 

Encoding gradient waveforms were optimized to maximize the b-value for a given TE (78) 

and to remove concomitant field gradient effects (79). The diffusion-encoding directions 

were translated into gradient waveform rotations as specified in Szczepankiewicz (80). For 

the adults and the children, protocol II in Table 2 was used, featuring LTE, prolate (PrTE) b-

tensors and multiple TE. The sampling order was volume-interleaved to distribute energy 

consumption and heating evenly over time (81) and to reduce potential bias from system 

drift (82). Total acquisition time was 15 minutes for a 2.5 mm isotropic resolution, matrix 

size = 88×88, 40 slices, multiband factor 2 (83), parallel imaging factor 2 (GRAPPA), partial 

Fourier factor 0.75, bandwidth = 1775 Hz/pixel, and ‘strong’ fat saturation. TR was 3.4 s, 

except for one subject with SMS (3.7 s) and another subject without SMS (6.4 s). For the 

elderly subjects, protocol IV in Table 2 was used, featuring LTE, STE and multiple TE for a 

single set of low b-values and directions, see Lampinen (28). All data were corrected for 

eddy-currents and subject motion using ElastiX (84) with extrapolated target volumes (85). 

To obtain parameter maps, Eq. 12 was fitted voxel-by-voxel to data smoothed using a 

Gaussian kernel with a standard deviation of 0.45 times the voxel dimensions.

3.5 | In vivo data evaluation

To assess parameter values from fitted maps, values were extracted from regions of interests 

(ROIs; Figure 1). For the adults and the children, ROIs were defined in white matter (Figure 

1A), deep gray matter (Figure 1B), and the whole brain excluding the cortex and the 

ventricles to avoid CSF contamination (Figure 1C). For the elderly subjects, the anterior 

corona radiata featuring a white matter lesion was defined (Figure 1D).

To explore whether our data supported popular or novel model constraints, we assessed 

different parameter relations using data obtained with our comparatively rich sampling 

protocol. First, we compared the predictions of some commonly enforced relations (Eqs. 16–

18) with our (ROI-averaged) estimates. Second, we investigated the impact on estimated 

parameters from enforcing these relations by fitting the corresponding simplified models 

(using c = 1 in Eq. 17) to our data and comparing the results to those obtained when fitting 

the full model (Eq. 12). For each model, parameter values were obtained from all subjects by 

fitting to the ROI-averaged signals within white matter (Figure 1A and 1D), and parameter 

maps were obtained from one subject through voxel-by-voxel fitting within one slice of non-

cortical brain (Figure 1C). For these maps, data were smoothed using a Gaussian kernel with 

a standard deviation of 0.75 times the voxel dimensions. Third, we tested whether enforcing 

these relations resulted in a significantly worse fit. Model selection maps were obtained for 

the non-cortical brain slice by thresholding an F-statistic at a 5% confidence level. F was 

calculated as the quotient between (SSR1 – SSR2)/(M2 – M1) and SSR2/(N – M2), using the 
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sum of squared residuals (SSR) and the number of fitted parameters (M) of the simplified 

(1) and the full model (2) and the number of measurements N. The SSR values were 

obtained by fitting to unsmoothed data and, for each voxel, averaging across a 3×3 

neighborhood. Fourth, we explored alternative parameter relations, including the tortuosity 

relation based on different g-ratios (Eq. 20).

4 | RESULTS

4.1 | Sampling protocols and parameter precision

Figure 2 illustrates the impact on precision of the acquisition dimensions represented by b-

value (b; A), b-tensor shape (bΔ; B) and echo time (TE; C), as well as of the number of 

shells (b/bΔ/TE-combinations; D). The x-axes show protocols optimized under different 

restrictions, and the y-axes show parameter variance by the CRLB-derived VW parameter 

(Eq. 23). Numerical simulations confirmed that the CRLB accurately quantified the 

parameter variance (Supporting Information Figure S1).

Increasing bmax improved precision up until approximately 4 ms/μm2 (Figure 2A). 

Acquiring data using at least two b-tensor shapes dramatically improved precision (Figure 

2B). For example, using both bΔ = 1 and bΔ = –½ reduced VW to a tenth compared with 

using only bΔ = 1. No particular shape combinations were favored, however. Decreasing 

TEmin improved precision, but primarily when this was achievable for high b-values (Figure 

2C). As a consequence, returns diminished below approximately 60–70 ms for gmax = 80 

mT/m. Protocols with at least seven shells had the best precision and adding shells beyond 

the seventh had marginal impact (Figure 2D). Access to higher maximal gradient amplitudes 

improved precision by enabling shorter TE (Figure 2A/C). Increasing gmax from 80 to 200 

mT/m reduced VW by approximately 50%.

Table 2 shows four protocols: an optimized protocol with 10 shells (I), the in vivo protocol 

(II), an optimized LTE-only protocol (III), and a protocol used in Lampinen (28) (IV). 

Protocol I is representative of optimized protocols in general. In particular, it features both 

low and high b-values using short TE (shells 1–4) as well as long TE (shells 5–8), an ‘ultra-

high’ b-value (shell 9) and a high b-value for a non-LTE b-tensor shape (bΔ ≠ 1; shell 10). 

Protocol II was designed for in vivo use and also exhibited these features but was adapted to 

enable separate DTI and DKI analyses. Protocol III was restricted to only use LTE and 

featured a very high maximal b-value and comparatively short TE. Protocol IV from 

Lampinen (28) had a different design and acquired a range of b-values using two b-tensor 

shapes (bΔ = 0 and 1) for a single TE and low b-values for multiple TE.

Figure 3 illustrates the ability to determine the ‘stick’ fraction using the protocols in Table 2 

under the priors in Table 1. The NRV curves (Eq. 25) indicate parameter precision by the 

width of the minima around the true fS. For the optimized protocol (I) and the in vivo 

protocol (II), the minima were narrow, indicating high precision. For the LTE-only protocol 

(III) and the protocol acquiring multiple TE only for low b-values (IV), however, the curve 

minima were wide and flat, indicating multiple equivalent solutions and poor precision. The 

exception was a narrower minimum for protocol IV under large compartmental differences 

in isotropic diffusivities (Figure 3C), as expected from Lampinen (28).
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Figure 4 illustrates parameter precision using the in vivo protocol (Table 2, protocol II) 

under challenging model priors, showing distributions of parameter estimates from 

simulations. Precision was highest under no orientation dispersion (‘Zero OD’), decreased 

only slightly for a more realistic scenario (‘Mid OD’) and was largely retained even under 

full orientation dispersion (‘Full OD’). Removing both the directional information and 

compartmental differences in isotropic diffusivity (‘Full OD+’) substantially reduced 

precision, however. Precision for p2 was high under all conditions.

4.2 | In vivo results

Maps of the kernel parameters are presented in Figure 5 and in Supporting Information 

Figure S2 together with p2 and the mean squared residuals (MSR). Parameter estimates were 

generally precise, indicated by the lack of visible noise in the parameter maps and confirmed 

by a test-retest experiment (Supporting Information Figure S3). The exception was DΔ;Z, 

with somewhat noisier maps. The maps of fS, DI;S, DI;Z, DΔ;Z, T2;S and p2 were brighter in 

white matter than in gray matter, although the DI;Z maps were brightest in the ventricles and 

the T2;S maps were particularly bright in the cerebrospinal tract. The T2;Z maps were 

relatively homogeneous but darker in iron-rich deep gray matter and brightest in the 

ventricles. The p2 maps were bright in coherent white matter and appeared to correlate with 

larger fit residuals. The median SNR in the non-cortical brain (Figure 1C) was 

approximately 50 at TE = 63 ms and b = 0.1 ms/μm2 based on the MSR (thus including both 

noise and model errors).

Parameter values are presented in Table 3 from the adults, children, and white matter lesions 

of the elderly subjects. In adults, white matter showed similar ‘stick’ properties across all 

regions with fS ≈ 0.5, DI;S ≈ 0.6 μm2/ms and T2;S ≈ 80 ms, with somewhat higher values in 

the internal capsule. ‘Zeppelins’ featured higher isotropic diffusivities and lower T2 values, 

with DI;Z ≈ 1.3 μm2/ms and T2;Z ≈ 65 ms, respectively. The properties of ‘sticks’ were 

similar also between deep gray matter regions, although the ‘stick’ fractions and isotropic 

diffusivities were lower than in white matter, with fS ≈ 0.15, DI;S ≈ 0.25 μm2/ms and T2;S ≈ 
80 ms. ‘Zeppelins’ in deep gray matter featured lower isotropic diffusivities and T2 values 

than in white matter, with DI;Z ≈ 0.9 μm2/ms and T2;Z ≈ 50 ms. In children, most values 

were similar to in adults, but white matter ‘stick’ fractions were 10–30% lower and deep 

gray matter ‘zeppelin’ T2 values were 10–30% higher. Markedly high ‘stick’ T2 values and 

low ‘stick’ fractions were seen in the head of the caudate nucleus and the putamen of 

children, possibly due to imaging artifacts. In white matter lesions, we found elevated 

‘zeppelin’ isotropic diffusivities and T2 values, with DI;Z = 1.68 μm2/ms and T2;Z = 149 ms, 

respectively, and a tendency towards more isotropic diffusion (DΔ;Z closer to zero). The 

‘stick’ fractions and the diffusivities and T2 values of ‘sticks’ were similar to those found in 

adults, however. The lesion parameters also exhibited high inter-subject variance.

Parameter relations are explored in Figure 6. Three commonly enforced parameter relations 

were contradicted by our estimates (Figure 6A). The density assumption predicts equal 

compartment T2 values (Eq. 16) but data indicated higher T2 values for ‘sticks’ than for 

‘zeppelins’ in healthy white matter and the opposite in white matter lesions. Proportional 

diffusivities link compartment axial diffusivities by a constant (Eq. 17) but data did not 

Lampinen et al. Page 12

Magn Reson Med. Author manuscript; available in PMC 2020 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggest a simple linear relationship between these parameters. The tortuosity relation 

connects the ‘zeppelin’ shape to the ‘stick’ fraction (Eq. 18), but again, observations did not 

agree with assumptions. Enforcing these relations yielded ‘stick’ fraction maps that were 

smoother but featured rather different values compared with using the full model (Eq. 12; 

Figure 6B). Enforcing equal T2 values resulted in different ‘stick’ fractions (fS´) that were 

higher in healthy white matter (fS´ – fS = ΔfS ≈ 0.05–0.15), and particularly in the 

cerebrospinal tract, but lower in white matter lesions (ΔfS ≈ –0.30), and thus substantially 

exaggerating their effect. Enforcing equal axial diffusivities resulted in ‘stick’ fractions that 

were similar in white matter but higher in white matter lesions (ΔfS ≈ 0.15). Enforcing the 

tortuosity relation resulted in higher ‘stick’ fractions both within normal (ΔfS ≈ 0.05–0.10) 

and lesioned (ΔfS ≈ 0.15) white matter. Using the full model yielded a significantly better fit 

within most regions of the healthy brain compared with enforcing equal compartment T2 

values or the tortuosity relation, although enforcing equal axial diffusivities appeared 

acceptable in many regions (Figure 6C).

Data suggested some alternative parameter relations (Figure 6D). The ‘zeppelin’ shape 

appeared positively related to the orientation coherence in white matter. Furthermore, 

allowing different g-ratios (Eq. 20) may explain variation unaccounted for by the ‘ordinary’ 

tortuosity relation (g = 1; Eq. 18). Finally, a tortuosity-based ‘g-ratio’ map is shown within 

white matter from fitting g using Eq. 20 and our estimates of fS and DΔ;Z. Although noisy, 

the map featured a median of approximately 0.5, which is close to the value of 0.6 where 

conduction velocities are theoretically optimized (86). The shown data points are available at 

https://github.com/belampinen/lampinen_mrm_2019/tree/master/estimates.

5 | DISCUSSION

In this paper, we show what is required of a diffusion-relaxation sampling protocol to enable 

precise estimation of compartment-specific fractions, diffusivities and T2 values, and present 

a 15-minute whole-brain imaging protocol. Three protocol features were critical to 

parameter precision. First, at least seven unique b/bΔ/TE-combinations (shells) were 

required for robust estimation of seven kernel parameters (counting S0; Figure 2D). Using 

fewer shells resulted in parameters becoming undetermined under high orientation 

dispersion (starting with DΔ;Z for six shells; Supporting Information Figures S4 and S5). 

Second, using at least two shapes of the b-tensor substantially enhanced precision (Figure 

2B). This was expected, because the two-compartment ‘standard model’ is degenerate for 

data acquired with a single b-tensor shape (LTE) (32, 33, 37, 38), even when using very high 

b-values (33, 87) or multiple echo times (40). With multiple b-tensor shapes, this degeneracy 

is resolved (37, 38). Third, multiple echo times for high b-values were required to 

distinguish the T2 values of compartments with different anisotropy but similar isotropic 

diffusivities (Figure 3A/B) (28, 40). Protocols with these three features allowed estimation 

of seven kernel parameters, compared with three kernel parameters allowed by 

contemporary approaches using multi-shell dMRI (27, 28, 31). The estimates were robust to 

full orientation dispersion (Figure 4; Supporting Information Figure S4), where the ‘standard 

model’ is degenerate even for data acquired with multiple shapes of the b-tensor (37, 38). 

This confirms that diffusion-relaxation experiments improve precision in diffusion 

parameters, at least in the presence of compartmental differences in T2 values (88).
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In vivo parameter maps were smooth, indicating precise estimates (Figure 5), which invites a 

tentative interpretation of the parameters in terms of microstructure. In white matter, the 

‘stick’ fractions close to 50% are consistent with estimates from similar approaches (40), 

and are aligned with axonal volume fractions from histology (30, 71, 89) if corrected for the 

space occupied by MR-invisible myelin, according to fS = vA / (1 – vM). In children, white 

matter ‘stick’ fractions were lower than in adults (Table 3), potentially reflecting incomplete 

maturation (90). The ‘stick’ axial diffusivities were low (D||;S ≈ 1.8 μm2/ms; Table 3) in 

comparison with estimates for intra-axonal water obtained using planar signal filtering (D|| ≈ 
2.25 μm2/ms) (91). Potential explanations include the comparatively longer TE used in 

Dhital (91), if longer axonal T2 are related to higher axial diffusivities. The ‘stick’ axial 

diffusivities were low also compared with those of ‘zeppelins’ (D||;Z ≈ 2.7 μm2/ms), possibly 

indicating obstruction of intra-axonal diffusion from, for example, variation in axonal caliber 

(92). The axial diffusivities were more similar between compartments in previous studies 

(33, 40), possibly due to model differences and undetected bias in those or the present study. 

The ‘zeppelin’ shape assumed negative values only sparsely and incoherently (Figure 5), 

indicating an absence of ‘oblate’ diffusion tensors in healthy brain. The ‘stick’ T2 values 

(Table 3) are largely consistent with previous observations (40, 93), including high values in 

the internal capsule. Higher T2 values within the more anisotropic (stick) compartment is 

also consistent with previous findings both in the human brain (40, 93, 94) and in ex vivo 

animal nervous tissue (95–98), possibly reflecting a reduction of ‘zeppelin’ T2 from 

exchange between the extracellular space and myelin water (99). Additionally, we found that 

T2;S yielded a plausible segmentation of the cerebrospinal tract all the way from the 

brainstem to the motor cortex (Figure 7). This suggests that diffusion-relaxation experiments 

increase specificity to particular fiber bundles, which could potentially improve regional 

segmentation or aid separating crossing fibers in tractography (100).

In gray matter, ‘stick’ fractions between 10 and 20% are consistent with previous findings 

(28, 33). However, the findings are not consistent with interpreting ‘sticks’ as neurites, 

because the combined (neurite) density of axons and dendrites is approximately 60% 

according to histology (101–103). We hypothesize, as in Lampinen (28), that this 

discrepancy is due to dendrites not exhibiting stick-like diffusion, due to, for example, 

exchange with soma or between short segments with different orientations. Thus, the model 

may be too simplistic for gray matter.

In white matter lesions, the increased ‘zeppelin’ isotropic diffusivities and T2 values are 

consistent with demyelination enlarging the extracellular space (104). Disambiguating 

between demyelination and axonal loss requires either data with independent sensitivity to 

myelin or the use of assumptions, however. By the tortuosity assumption extended to 

variable g-ratios (Eq. 20), and excluding the outlier lesion in Fig. 6, our results would 

suggest similar axonal volume fractions (vA ≈ 0.2) but lower myelin volume fractions (vM ≈ 
0.4 versus 0.5) in lesions versus in the healthy anterior corona radiata, which is in line with 

the results of Coelho (105).

This study had limitations. First, for efficiency reasons, the optimization used a small set of 

priors (Table 1). One may be concerned that the choice of priors could have a strong effect 

on the protocol and in some way bias the fitting procedure. However, using different priors 
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revealed similar sampling requirements and no bias towards particular solutions was seen in 

the fitting. Second, CLRB-optimized protocols can be susceptible to local minima (Figure 

3A/B). However, these can be avoided by using multiple random initial guesses in the fitting, 

and the manually adjusted in vivo protocol appeared robust. Third, we did not address 

reproducibility. Future studies should investigate the impact on parameter values from 

changing the sampling protocol. Fourth, the gradient waveforms used to generate linear and 

prolate tensor encoding differed with respect to time-dependent diffusion encoding, which 

may lead to bias (106, 107). Such time dependence is only expected for very short encoding 

times (108), however. For the longer encoding times used in this study, we have not been 

able to detect time dependence in the healthy brain (20, 28). Fifth, a spherical harmonic 

expansion truncated at lmax = 2 may be insufficient for representing sharp ODFs, as 

indicated by the fit being worst in regions with high orientation coherence (Figure 5). 

However, comparing our estimates with those obtained using the ‘RotInv’ approach suggests 

that this is not likely to bias the kernel parameters (Supporting Information Figure S6). 

Finally, even the relatively unconstrained model used here is simplistic compared with the 

complexity of neural tissue and does not account for myelin (71), soma (109), the 

microvasculature (50), glial cells (110) or CSF (111), wherefore parameters should be 

interpreted with care. Preliminary results indicate that our present data would support an 

additional free parameter to include a free water compartment (Supporting Information 

Figure S7), and that bias from neglecting free water is small but non-negligible also within 

non-cortical brain, possibly indicating contributions from perivascular spaces (112). This 

should be further investigated and validated in future studies using the b/bΔ/TE measurement 

space to drive models with higher capacity.

5 | CONCLUSIONS

Optimized diffusion-relaxation sampling enabled precise and efficient whole-brain 

estimation of compartment-specific fractions, diffusivities and T2 values. Acquiring data 

using the independent dimensions of b-value, b-tensor shape and echo time expands the set 

of microstructure parameters measurable with MRI, as well as the range of conditions in 

which they may be accurately estimated. According to our findings, the conventional 

approach of improving precision through enforcing parameter relations causes bias even in 

the healthy brain. Future studies could use diffusion-relaxation MRI with tensor-valued 

diffusion encoding for enhanced specificity to microstructural quantities. Our in vivo results 

showed that ‘stick’ fractions were lower in the white matter of children than in adults, and 

that white matter lesions featured changes compatible with demyelination.
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Figure 1 –. 
Regions of interest (ROIs) are shown in red for one adult volunteer (A–C) on top of an FA 

map and for one elderly subject (D) on top of an MD map. The ROIs were defined on maps 

obtained from a DTI analysis of data from shell 1 and 2 of the in vivo protocol (II in Table 

2). Non-cortical brain tissue (C) was defined by manually including deep gray matter and 

the brainstem within a white matter mask generated by thresholding the μFA parameter from 

a QTI analysis (36).
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Figure 2 –. 
The impact of the acquisition dimensions on parameter precision. Plots show the weighted 

parameter variance (VW; Eq. 23; lower is better) for sampling protocols optimized under 

different restrictions indicated on the x-axis: maximal b-value (bmax) in panel A, shapes of 

the b-tensor (bΔ) in panel B, minimal echo times (TEmin ) in panel C, and number of shells 

in panel D. The impact on precision from bmax and TEmin was independent on the maximal 

gradient amplitude (gmax; indicated by shape), although stronger gradients increased 

precision by allowing shorter TE.
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Figure 3 –. 
Illustration of the ability to determine the ‘stick’ fraction (fS). The plot shows the NRV 

(normalized residual variance, Eq. 25) versus the value to which fS was fixed while fitting 

the other model parameters, for the protocols in Table 2 under the priors in Table 1. The 

width of the curve around the ground truth (dashed vertical line) indicates precision by the 

range of fS that yield similar goodness-of-fit values. The minima were narrow (high 

precision) for the CRLB-optimized protocol (I) and the in vivo protocol (II), but wide (poor 

precision) for the LTE-only protocol (III) and the protocol with multiple TE only for low b-

values (IV). However, protocol IV achieved better precision where compartmental difference 

in isotropic diffusivities were large (C). CRLB-optimized protocols can be susceptible to 

local minima (B), although the in vivo protocol appeared robust.
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Figure 4 –. 
Parameter precision illustrated by distributions of parameter estimates (point swarms) 

simulated using the in vivo protocol under priors denoted on the x-axes. Precision was 

highest for ‘Zero OD’ and decreased slightly for the ‘Mid OD’ and the ‘Full OD’ priors. The 

Full OD+ priors, featuring full orientation dispersion together with equal compartment 

isotropic diffusivities and T2 values, had a large detrimental impact on precision.
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Figure 5 –. 
Maps of the kernel parameters in an adult volunteer together with p2 and mean squared 

residuals (MSR) from the fitting. Additional slices are shown in Supporting Information 

Figure S2. Isotropic diffusivities are in μm2/ms, T2 values are in ms and remaining 

parameters are dimensionless. All maps were masked to exclude voxels outside of the brain. 

In addition, the DI;S, T2;S, and p2 maps were masked to exclude voxels where fS < 0.1. The 

S0 maps exhibited proton density-weighting and lacked typical T2-related hypointensities. 

The fS (‘stick’ fraction) maps were bright in white matter and dark in deep gray matter, 
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although somewhat brighter in the lateral thalamus. The DI;S and DI;Z (the ‘stick’ and 

‘zeppelin’ isotropic diffusivities) maps were brightest in white matter, with DI;S maps being 

very dark in deep gray matter. The DΔ;Z (‘zeppelin’ shape) maps appeared somewhat noisy 

and were brightest in white matter and in orientationally coherent structures such as the 

corpus callosum. Negative DΔ;Z values (red) were sparse. The T2;S (‘stick’ T2 value) maps 

were brightest in white matter and particularly in the cerebrospinal tract. The T2;Z 

(‘zeppelin’ T2 value) maps were homogenous but darker in deep gray matter and brighter 

close to CSF. The p2 maps were smooth and resembled FA maps, being bright in white 

matter except in crossing-fiber regions such as the anterior corona radiata. The MSR maps 

were similar to p2 maps, possibly reflecting the ‘bluntness’ of the spherical harmonic ODF 

truncated at lmax = 2.
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Figure 6 –. 
Evaluation of model simplification through enforcing parameter relations. Panel A shows 

commonly enforced relations (dashed lines) together with our estimates (dots). The 

estimates are ROI-averages from adults and children in white matter regions (black) and 

deep gray matter regions (blue), and from elderly subjects in white matter lesions (orange-

bordered black). Panel B compares ‘stick’ fraction maps obtained either using the full model 

or simplified models enforcing different parameter relations. Panel C shows model selection 

maps (F-statistics thresholded at a level corresponding to a significance level of 5%, 
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uncorrected for multiple comparisons) between the full model and the simplified models in 

panel B. Panel D shows alternative parameter relations that may be compatible with data, 

including the tortuosity relation allowing a variable g-ratio (Eq. 20) together with a fitted ‘g-

ratio’ map.
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Figure 7 –. 
Maximum intensity projections of the T2;S parameter in three planes shown on top of a 

coregistered T1-weighted image. The result yielded a plausible segmentation of the 

cerebrospinal tract all the way from the brainstem to close to the motor cortex.
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Table 1 –

Model parameter prior sets and bounds

Prior sets
fS DI;S DI;Z DΔ;Z T2;S T2;Z OD

b

A 0.45 0.6 1.3 0.57 80 60 0.20

B 0.15 0.3 0.9 0.40 75 55 0.45

C 0.40 0.6 1.7 0.40 80 150 0.35

Bounds
fS DI;S DI;Z DΔ;Z T2;S T2;Z

Minimum 0 0.07
a

0.2
a

–0.46
a 30 30

Maximum 1 1.33
a

4.0
a

0.86
a 300 1000

Diffusivities are in μm2/ms and T2 values are in ms.

a
From enforcing D||;S, D||;Z and D⊥;Z ∈ [0.2 4.0] μm2/ms.

b
The parameters describing spherical harmonic coefficients, p20, Re(p21), Im(p21), Re(p22), Im(p21), are, for simplicity, represented by the 

corresponding OD from the Watson distribution (Eq. 21) assuming a main direction of [0 0 1].
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Table 2 –

Sampling protocols: an optimized protocol (I), the in vivo protocol (II), an optimized LTE-only protocol (III) 

and a protocol from Lampinen (28) (IV), featuring multiple TE only for low b-values.

Protocol Shell # b [ms/μm2] bΔ TE [ms] ndir

I 1 0 1 50 10

2 0 1 90 10

3 0.7 0.1 75 30

4 1.9 1 70 30

5 0 1 140 10

6 1.2 0.1 140 6

7 1.8 1 140 15

8 2.1 1 140 45

9 6.2 1 80 45

10 3.6 0.15 105 45

II
1,2,3

a 0.1,1.0,2.0 1 63 6,15,45

4,5,6,7
b 0.1,1.0,2.0,5.0 1 85 6,6,15,45

8,9,10
c 0.1,1.0,2.0 1 130 30,6,30

11,12,13
d 0.1,2.0,2.5 0.6 85 6,15,45

III 1,2 0,0.4 1 50 6,45

3 0.9 1 60 15

4 2.7 1 70 45

5 8.9 1 85 45

6 10 1 90 30

7,8,9,10 0,2.1,2.1,2.2 1 100 6,30,10,10

IV 1,2,3,4,5 0.1,0.5,1.0,1.5,2.0 1 106 6,6,10,16,30

6,7,8,9,10 0.1,0.5,1.0,1.5,2.0 0 106 6,6,10,16,30

11,12 0,0.5 1 50 1,6

13,14 0,0.5 1 85 1,6

15,16 0,0.5 1 120 1,6

17,18 0,0.5 1 155 1,6

The gradient waveforms used for the in vivo protocol (II) had a pause duration of 12.4 ms and durations before (δ1) and after (δ2) refocusing given 

by

a
δ1 = 16.5 ms, δ2 = 16.5 ms

b
δ1 = 27.5 ms, δ2 = 27.5 ms

c
δ1 = 50.0 ms, δ2 = 50.0 ms

d
δ1 = 30.0 ms, δ2 = 27.5 ms
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Table 3 –

ROI parameter values with means and inter-subject standard deviations for adults (Ad; n = 5), children (Ch, n 
= 5) and elderly subjects with white matter lesions (Le; n = 5).

Non-cortical brain 
tissue

fS DI;S DI;Z DΔ;Z T2;S T2;Z p2 D||;Z D⊥;Z

Ad 0.40 
(0.01)

0.54 
(0.03)

1.23 
(0.05)

0.47 
(0.01)

77 (2) 67 (2) 0.37 
(0.01)

2.41 
(0.10)

0.64 
(0.02)

Ch 0.34 
(0.02)

0.51 
(0.03)

1.22 
(0.02)

0.49 
(0.01)

81 (2) 72 (4) 0.40 
(0.01)

2.43 
(0.06)

0.61 
(0.01)

White matter fS DI;S DI;Z DΔ;Z T2;S T2;Z p2 D||;Z D⊥;Z

Centrum 
semiovale

Ad 0.49 
(0.02)

0.62 
(0.03)

1.31 
(0.04)

0.46 
(0.03)

82 (3) 62 (3) 0.29 
(0.03)

2.54 
(0.10)

0.69 
(0.05)

Ch 0.46 
(0.02)

0.61 
(0.05)

1.28 
(0.07)

0.49 
(0.03)

77 (3) 69 (7) 0.36 
(0.03)

2.55 
(0.17)

0.64 
(0.05)

Posterior leg of 
internal 
capsule

Ad 0.53 
(0.03)

0.66 
(0.04)

1.41 
(0.16)

0.63 
(0.05)

107 (8) 65 (6) 0.48 
(0.03)

3.20 
(0.38)

0.52 
(0.10)

Ch 0.41 
(0.07)

0.58 
(0.05)

1.37 
(0.12)

0.65 
(0.02)

102 (17) 66 (3) 0.55 
(0.02)

3.15 
(0.25)

0.48 
(0.06)

Optic 
radiations

Ad 0.45 
(0.01)

0.62 
(0.04)

1.30 
(0.08)

0.50 
(0.04)

79 (3) 68 (5) 0.49 
(0.04)

2.60 
(0.23)

0.64 
(0.04)

Ch 0.39 
(0.03)

0.58 
(0.03)

1.30 
(0.04)

0.48 
(0.02)

74 (1) 80 (11) 0.51 
(0.05)

2.55 
(0.05)

0.67 
(0.04)

Anterior 
corona radiata

Ad 0.45 
(0.04)

0.58 
(0.04)

1.36 
(0.09)

0.44 
(0.03)

69 (3) 60 (4) 0.30 
(0.03)

2.57 
(0.23)

0.75 
(0.04)

Ch 0.40 
(0.03)

0.59 
(0.03)

1.32 
(0.04)

0.46 
(0.05)

68 (3) 61 (7) 0.32 
(0.02)

2.56 
(0.11)

0.70 
(0.08)

Le 0.44 
(0.11)

0.57 
(0.04)

1.68 
(0.16)

0.37 
(0.05)

71 (30) 149 (29) 0.23 
(0.02)

2.70 
(0.18)

1.05 
(0.11)

Deep gray matter fS DI;S DI;Z DΔ;Z T2;S T2;Z p2 D||;Z D⊥;Z

Thalamus Ad 0.15 
(0.02)

0.33 
(0.05)

0.99 
(0.03)

0.52 
(0.03)

97 (16) 53 (3) 0.31 
(0.01)

2.01 
(0.10)

0.47 
(0.03)

Ch 0.13 
(0.01)

0.28 
(0.03)

1.02 
(0.02)

0.50 
(0.01)

115 (17) 64 (3) 0.32 
(0.02)

2.06 
(0.06)

0.50 
(0.02)

Head of 
caudate 
nucleus

Ad 0.14 
(0.03)

0.25 
(0.05)

0.81 
(0.03)

0.34 
(0.05)

77 (19) 60 (3) 0.18 
(0.03)

1.38 
(0.11)

0.53 
(0.04)

Ch 0.07 
(0.02)

0.29 
(0.07)

0.82 
(0.02)

0.32 
(0.04)

172 (42) 68 (3) 0.19 
(0.03)

1.35 
(0.08)

0.56 
(0.03)

Putamen Ad 0.10 
(0.02)

0.20 
(0.02)

0.83 
(0.02)

0.41 
(0.03)

77 (13) 51 (3) 0.16 
(0.01)

1.53 
(0.08)

0.49 
(0.02)

Ch 0.10 
(0.03)

0.27 
(0.09)

0.85 
(0.04)

0.36 
(0.05)

108 (22) 67 (3) 0.13 
(0.01)

1.47 
(0.14)

0.54 
(0.03)

Globus 
pallidus

Ad 0.15 
(0.04)

0.26 
(0.08)

1.06 
(0.05)

0.54 
(0.03)

80 (16) 41 (5) 0.20 
(0.01)

2.23 
(0.16)

0.48 
(0.01)

Ch 0.15 
(0.01)

0.31 
(0.05)

1.09 
(0.06)

0.51 
(0.03)

84 (9) 55 (2) 0.23 
(0.02)

2.23 
(0.17)

0.52 
(0.01)

Diffusivities are in μm2/ms and T2 values are in ms.
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