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Abstract

Motivation

The human microbiome is variable and dynamic in nature. Longitudinal studies could

explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in dis-

ease. However, it remains challenging to properly analyze the longitudinal microbiome data

from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or

counts. Most microbiome data are sparse, requiring statistical models to handle zero-infla-

tion. Moreover, longitudinal design induces correlation among the samples and thus further

complicates the analysis and interpretation of the microbiome data.

Results

In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitu-

dinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for

longitudinal microbiome proportion data or count data generated with either 16S rRNA or shot-

gun sequencing technologies. It can include various types of fixed effects and random effects

and account for various within-subject correlation structures, and can effectively handle zero-

inflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the

ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We

demonstrate the computational efficiency of our EM algorithm by comparing with two other

zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed

models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression

mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through

extensive simulations. We also apply our method to two public longitudinal microbiome data-

sets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa.

1. Introduction

Since birth, the human body becomes host to millions of microbiota that influence health

across whole lives and potentially over generations [1]. The combination of microbiota and

the associated genomes (metagenome) interact with the host environment to form the human
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microbiome [2]. Recent studies have investigated static associations between the human

microbiome and many human diseases such as obesity, diabetes, inflammatory bowel disease,

irritable bowel syndrome, vaginosis and even cancers [2–7]. However, the microbes could

interact with the host and the environment over time [8]. Thus the human microbiome is vari-

able and dynamic in nature, and the infant microbiome could possibly have subsequent impli-

cations in future health through the human host’s early life and even adulthood [9].

Longitudinal studies could explain the mechanisms in maintaining the microbiome in health

or causing dysbiosis in disease [10]. Recent microbiome studies have employed the longitudi-

nal study design to investigate the dynamic changes of microbial abundance over time and the

associations between the microbiome and host environmental/clinical factors [11–15].

As a result of the research interests and the development of high-throughput metage-

nomics, a large amount of longitudinal 16S rRNA data or metagenome shotgun sequencing

data has been generated [16]. It is known that 16S rRNA data or metagenome shotgun

sequencing data are both processed and output as number of fragments or reads (in terms of

raw or relative abundance) in operational taxonomic units (OTUs) or functional units with

various bioinformatics pipelines, such as QIIME and mothur for 16S rRNA data and MetaPh-

lAn, PhyloSift, and Kraken for shotgun libraries [16]. Although some of the pipelines output

the microbiome data in raw counts, others, such as MetaPhlAn, output the relative abundance

from shotgun data in proportions.

However, it remains challenging to properly analyze and interpret the longitudinal micro-

biome data, especially in terms of proportion. Due to both biological and technical reasons,

microbiome sequencing data is sparse [17]. Moreover, longitudinal microbiome data possesses

special features, for example, time-dependent effects and correlations among the samples

within the subjects, for which tailored statistical methods are required [10]. La Rosa, Warner

[12], as several previous studies, used linear mixed models (LMMs) to account for correlations

in longitudinal microbiome studies [12,18–21]. However, using LMMs is not capable to cor-

rect for excess zeros in microbiome data. Recently, we have developed negative binomial

mixed models (NBMMs) for analyzing longitudinal microbiome count data, but have not

explicitly modeled zero-inflation [22,23]. Romero, Hassan [24] used zero-inflated negative

binomial mixed-effects models to analyze longitudinal count data. Neither NBMMs nor the

zero-inflated negative binomial mixed-effects models is applicable in analyzing longitudinal

microbiome proportion data. Alternatively, Chen and Li [25] proposed a zero-inflated Beta

regression model with random effects (ZIBR) for analyzing longitudinal microbiome propor-

tions. However, according to the manual of R package ZIBR [26], ZIBR cannot handle missing

data, which means each subject must have the same number of time points. Moreover, these

two zero-inflated methods have not been developed to account for within-subject correlations

and may be computationally sub-optimal for analyzing many OTUs. Thus, statistical models

are needed to account for sample correlations over time as well as zero-inflation and other

properties of microbiome data [25,27,28].

We here propose zero-inflated Gaussian mixed models (ZIGMMs) and an efficient algo-

rithm to address the previous limitations. Our method is robust and flexible and can analyze

longitudinal microbiome proportion data and count data generated with either 16S rRNA or

shotgun sequencing technologies. The proposed model can effectively deal with zero-inflation

and can include various types of fixed and random effects and within-subject correlation struc-

tures. We develop an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs

by taking advantage of the standard procedure for fitting LMMs. We show computational effi-

ciency of ZIGMMs compared with the other two zero-inflated methods, ZIBR and zero-

inflated negative binomial mixed models implemented in the R package glmmTMB. Extensive

simulations demonstrate that our ZIGMMs outperform the various previously used methods
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in detecting associated effects in longitudinal microbiome data. We also apply our method to a

shotgun longitudinal microbiome proportion data and a 16S rRNA microbiome count data in

detecting dynamic effects of associated taxa. We have implemented the ZIGMMs in the R

package NBZIMM, which is freely available from the public GitHub repository http://github.

com//nyiuab//NBZIMM.

2. Methods

2.1 Zero-Inflated Gaussian Mixed Models (ZIGMMs)

In a longitudinal microbiome study, we collect n subjects and measure each subject at multiple

time points tij, j = 1, ���, ni; i = 1, ���, n. For the j-th sample of the i-th subject, we denote cijh the

observed count for the h-th taxon at certain taxonomic levels (OTU, e.g. species, genus, classes,

etc.). As many previous methods, we analyze one taxon at a time. We first illustrate our model

in analyzing the longitudinal microbiome proportion data. We transform the proportions of

relative abundance with arcsineð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cijh=Tij

q
Þ, where Tij denotes the total sequence read. For

notational simplification, we denote yij ¼ arcsineð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cijh=Tij

q
Þ for any given taxon h. For taxa

with excessive zeros, it can be assumed that transformed values yij may come from either a

degenerate distribution having the point mass at zero (zero state) or a Gaussian (i.e., normal)

distribution [17]. Thus, the transformed values yij can be modeled with the zero-inflated

Gaussian distribution:

yij �
0 with probability pij

Nðyijjmij; s
2Þ yij � 0 with probability 1 � pij

ð1Þ

(

where μij and σ are the mean and standard deviation parameters in normal distribution,

respectively, and pij is the unknown probability that yij is from the zero state. The means μij are

expressed as:

mij ¼ Xijbþ Gijbi ð2Þ

where Xij is the vector of covariates for the j-th sample of the i-th subject; β is the vector of

fixed effects (i.e. population-level effects), representing the average effects of the covariates

over the subjects; bi is the vector of subject-specific effects, or called random effects, and Gij is

the vector of group-level covariates, which is a subset of the population-level covariates Xij. For

longitudinal studies, Xij could be (1, Xi), (1, Xi, tij), or ð1;Xi; tij;Xs
i tijÞ, where Xs

i is the variable

of interest in Xi, for example, an indicator variable for the case group and the control group.

Gij could be 1, i.e. only including the subject-specific intercept, or (1, tij), i.e. including the sub-

ject-specific intercept and time effect.

The random effects are assumed to follow a multivariate normal distribution:

bi � Nð0;CbÞ ð3Þ

whereCb is the variance-covariance matrix which can be defined as a general positive-definite

matrix accounting for the correlation among the random covariates. In most applications we

restrict Cb to be a diagonal matrix for simplicity.

The zero-inflation probabilities pij are assumed to relate some covariates through the logit

link function:

logitðpijÞ ¼ Zija ð4Þ
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where Zij includes some covariates that are potentially associated with the zero state. The sim-

plest zero-inflation model includes only the intercept in Zij, resulting in the same probability

of belonging to the zero state for all zeros. We can also add the random-effect terms into the

above model:

logitðpijÞ ¼ Zijaþ Gijai ð5Þ

where the random effects ai are assumed to follow a multivariate normal distribution:

ai � Nð0;CaÞ ð6Þ

As an alternative, for longitudinal microbiome count data, we transform the observed

count data with yij = log2(cijh+1), which equals zero if cijh = 0. We assume the yij can be mod-

eled with the zero-inflated Gaussian distribution, with the means μij being expressed as:

mij ¼ logðTijÞ þ Xijbþ Gijbi ð7Þ

2.2 The EM algorithm for fitting the ZIGMMs

We propose an EM algorithm to fit the ZIGMMs. We introduce latent indicator variables x ¼

ðxi1; � � � ; xinj
Þ to distinguish the zero state and the Gaussian state, where ξij = 1 when yij is from

the zero state and ξij = 0 when yij is from the normal distribution. The log-likelihood with the

complete data (y, ξ) is given by:

LðF; y; xÞ ¼
Xn

i¼1

Xni

j¼1

ð1 � xijÞlogðNðyijjmij; s
2ÞÞþ

Xn

i¼1

Xni

j¼1

log½pxij
ij ð1 � pijÞ

1� xij � ð8Þ

where F represents all the parameters (including random effects) in the ZIGMMs.

The EM algorithm replaces the indicator variables ξij by their conditional expectations x̂ ij

(E-step), and then updates the parameters by maximizing LðF; y; x̂Þ (M-step). The conditional

expectation of ξij can be calculated as:

x̂ ij ¼ pðxij ¼ 1jF; yijÞ

¼
pðyijjmij; s

2; xij ¼ 1Þpðxij ¼ 1jpijÞ

pðyijjmij; s
2; xij ¼ 0Þpðxij ¼ 0jpijÞ þ pðyijjmij; s

2; xij ¼ 1Þpðxij ¼ 1jpijÞ
ð9Þ

If yi6¼0, we have p(yij|μij,σ2,ξij = 1) = 0, and thus x̂ ij ¼ 0.

If yi = 0, we have

x̂ ij ¼
pðxij ¼ 0jpijÞ

pðxij ¼ 1jpijÞ
pðyij ¼ 0jmij; s

2; xij ¼ 0Þ þ 1

" #� 1

¼
1 � pij

pij
Nðyij ¼ 0jmij; s

2Þ þ 1

" #� 1

:

The parameters in the Gaussian distribution can be updated by fitting a weighted linear

mixed model with (1 - x̂ ij) as weights:

yij ¼ Xijbþ Gijbi þ ð1 � x̂ ijÞ
� 1=2eij; bi � Nqð0;CbÞ; eij � Nð0; s2Þ ð10Þ
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If the zero-inflation part does not include the random-effect term, the parameters can be

updated by running a binomial logistic regression with x̂ ij as response:

x̂ ij � Binð1; pijÞ; logitðpijÞ ¼ Zija ð11Þ

Otherwise, we can fit the binomial logistic mixed model:

x̂ ij � Binð1; pijÞ; logitðpijÞ ¼ Zijaþ Gijai; ai � Nð0;CaÞ ð12Þ

The EM algorithm starts from plausible values for the parameters and then updates the

parameters as described above until convergence. We use the criterion
Xn

i¼1

Xni

j¼1

½ðZ
ðtÞ
ij � Z

ðt� 1Þ

ij Þ
2
þ ðg

ðtÞ
ij � g

ðt� 1Þ

ij Þ
2
� < ε

Xn

i¼1

Xni

j¼1
½ðZ
ðtÞ
ij Þ

2
þ ðg

ðtÞ
ij Þ

2
�

� �
to assess convergence,

where Z
ðtÞ
ij ¼ Xijb

ðtÞ
þ Gijb

ðtÞ
i , g

ðtÞ
ij ¼ Zija

ðtÞ þ Gija
ðtÞ
i , and ε is a small value (say 10−5). At conver-

gence, we obtain the maximum likelihood estimates of the Gaussian-state fixed effects and the

associated standard deviations from the final weighted LMM. We then can test H0: βk = 0

according to the LMM framework. We also obtain the estimates of the zero-state fixed effects

and the associated standard deviations from the final binomial logistic (or mixed) model.

Thus, we can test H0: αk = 0 following the GLM or GLMM framework.

2.3 Accounting for within-subject correlations

The weighted linear mixed model (9) restricts the within-subject errors to be independent. We

can relax the assumption of independent within-subject errors to account for special within-

subject correlation structures:

ei ¼ ðei1; � � � ; eini
Þ
0
� Nð0; s2RiÞ ð13Þ

where Ri is a correlation matrix. Pinheiro and Bates [29] described several ways to specify the

correlation matrix Ri, for example, autoregressive of order 1, AR(1), or continuous-time AR

(1), all of which can be incorporated into our ZIGMMs.

2.4 Software implementation

The proposed method has been implemented in the function lme.zig, which is part of the R

package NBZIMM. In the E-step of the EM algorithm, the conditional expectation of ξij can be

calculated as in Eq (9). In the M-step, the parameters in the Gaussian distribution can be

updated by repeated calls to the function lme in the R package nlme to fit the weighted linear

mixed model with (1 - x̂ ij) as weights. The other parameters can be updated by repeated calls

to the functions glm or glmPQL in the package MASS to fit the binomial logistic or mixed

logistic model. The function lme is the recommended tool for analyzing linear mixed models.

The function lme.zig incorporates the nice features of lme, such as dealing with any types of

random effects and within-subject correlation structures. Thus, it provides an efficient and

flexible tool for analyzing zero-inflated longitudinal microbiome data. The package NBZIMM

is freely available from the public GitHub repository http://github.com//nyiuab//NBZIMM.

3. Results

3.1 Simulation studies

3.1.1 Assess the ZIGMMs in analyzing microbiome proportion data. 3.1.1.1 Simulation

design. To evaluate the proposed ZIGMMs, we performed extensive simulations. We first
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evaluated the ZIGMMs in analyzing microbiome proportion data. We compared ZIGMMs

with ZIBR proposed by Chen and Li [25]. We used the function simulate_zero_inflated_be-

ta_random_effect_data in the R package ZIBR [25] to simulate longitudinal microbiome pro-

portion data from zero-inflated beta distribution:

yij �
0 with probability pij

Betaðyijjuij�; ð1 � uijÞ�Þ with probability 1 � pij

(

with the link functions logit(pij) = Zijα+Gijai and logit(uij) = Xijβ+Gijbi. We employed a case-

control longitudinal design with the following settings: 5 time points for each subject, fixed

effects in both parts, random intercepts in both parts (i.e. Gij = 1)). We also considered three

numbers of subjects: n = 50, 100 and 150, half of which were designated to be cases. We set the

regression coefficients as α = (α0, α1) = (-0.5, 0), β = (β0, β1) = (-0.5, 0) to test for false positive

rate; while α = (α0, α1) = (-0.5, 0.3), β = (β0, β1) = (-0.5, 0.3) to test for power at a low effect set-

ting and α = (α0, α1) = (-0.5, 0.5), β = (β0, β1) = (-0.5, 0.5) to test for power at a high effect set-

ting. The variance of the random effects to control ai and bi were set to be 1. The dispersion

parameter ϕ was set to be 5.

Each simulation was repeated 10000 times. We tested for the hypothesis of β1 = 0. Empirical

power and false positive rate were summarized at the significance level of 0.05. We compared

zero-inflated Beta regression mixed model, denoted by ZIBR, and the proposed ZIGMMs with

the arcsine square root transformation for proportion data, arcsineð ffiffiffiffiyij
p
Þ, denoted by

ZIGMMs(arcsine), the transformed data was standardized by its standard deviation before

model fitting.

3.1.1.2 Simulation results. Table 1 shows the comparison of empirical power and false

positive rates between ZIGMMs and ZIBR in analyzing the longitudinal microbiome propor-

tion data. ZIGMMs and ZIBR controlled the false positive rates similarly close to the signifi-

cance level under all three different sample sizes. Although the proportion data were simulated

under the zero-inflated beta distribution, ZIGMMs lead to a higher empirical power to detect

the group effect than ZIBR.

3.1.2 Assess the ZIGMMs in analyzing microbiome count data. 3.1.2.1 Simulation

design. We then assessed the ZIGMMs in analyzing microbiome count data. We employed

the function sim in NBZIMM to simulate zero-inflated longitudinal microbiome count data cij

as follows. We used the latent-data formulation of the logistic regression to simulate zero-state

indicators; the logistic model, p(ξij = 1) = logit−1(μ+Zijα+Gijai), is approximately equivalent to

the model, uij~N(Zijα+Gijai, 1.62), uij>h,ξij = 1 [30], where h is a constant determined by the

preset overall zero-inflation proportion p. Thus, we first simulated latent normal variables uij

and then set samples with the 100p% largest uij as from zero state. This method can easily con-

trol the overall zero-inflation proportion and also allow for the sample-specific zero-inflation

Table 1. False positive rate and power for testing H0: β1 = 0 based on ZIGMMs and ZIBR for significance level at 0.05 for various sample sizes.

False Positive Rate Power (Low Effect Setting) Power (High Effect Setting)

Sample Size ZIGMMs (arcsine)† ZIBR‡ ZIGMMs (arcsine) ZIBR ZIGMMs (arcsine) ZIBR

n = 50 0.0681 0.0577 0.1937 0.1438 0.4100 0.3022

n = 100 0.0554 0.0578 0.3025 0.2218 0.6592 0.5135

n = 150 0.0563 0.0533 0.4308 0.3031 0.8296 0.6906

ZIBR‡: Zero-inflated beta mixed model.

ZIGMMs(arcsine)†: Zero-inflated Gaussian mixed models with arcsine transformation.

https://doi.org/10.1371/journal.pone.0242073.t001
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probabilities pij. For the samples from nonzero state, we simulated counts cij from the negative

binomial distribution NB(cij|μij,θ), where μij = log(Tij)+Xijβ+Gijbi.

We adopted a longitudinal design and utilized four different simulation settings. In all the

settings, we generated subjects from two groups (i.e. case or control) and simulated samples at

multiple time points for each subject. We considered three numbers of subjects: n = 50, 100

and 150, half of which were designated to be cases. Each subject was measured at 5 time points.

The random effects, and within-subject correlation structures were set as follows:

1. Setting A: a group variable (β1) is included as fixed effect in the count part, no fixed effect in

the zero-inflation part (i.e. Zij = 1), random intercepts in both count and zero-inflation

parts (i.e. Gij = 1)), and no within-subject correlation;

2. Setting B: a group variable is included as fixed effects in both parts, random intercept in the

count part only, and no within-subject correlation;

3. Setting C: a group variable is included as fixed effects in both parts, random intercepts in

both parts (i.e. Gij = 1)), and no within-subject correlation;

4. Setting D: a group variable is included as fixed effect in the count part, no fixed effect in the

zero-inflation part, random intercept in the count part only, and the within-subject correla-

tion was autoregressive of order 1, AR(1), in the count part;

5. Setting E: a group variable (β1), a time variable (β2), and a time by main effect interaction

term (β3) are included as fixed effects in both parts, random intercept in the count part

only, and no within-subject correlation;

We randomly generated the parameters in the models from reasonable ranges. The parame-

ters to simulate the counts from negative binomial distribution were set by following the work

of [31]. This can largely reduce the combinations of parameter values and minimize possible

bias from setting inappropriate values for parameters. The ranges were described as follows:

1. To simulate counts similar to real microbiome data, we controlled the means of simulated

counts through log(Tij) + β0, where β0 is the fixed intercept. We set β0 = -7 and randomly

sampled log(Tij) from the range [7.1, 10.5];

2. For settings A-D, the dispersion parameter θ was uniformly sampled from the range [0.1,

5], which yielded highly or moderate over-dispersed counts; for setting E, the dispersion

parameter θ was set to be 5.

3. To evaluate false positive rates, the fixed effects β1 was set to be zero. To evaluate empirical

powers, we considered two scenarios: a) low effect scenario: β1 was sampled from [0.2, 0.3];

b) high effect scenario: β1 was sampled from [0.3, 0.4]; fixed effects in the zero-inflation

part were considered in setting B and C, where α1 was set to be the same as β1; for setting E,

β1 was set to be equal to β3. And β2 was set to be 0 in all scenarios.

4. The random effects bi and ai were generated from N(0, τ2), for settings A-D, where τ was

randomly drawn from the range [0.5, 1]; for setting E, τ was set to be 0.5.

5. For settings A-D, the overall zero-inflation proportion was set to be chosen from three lev-

els, that is [0, 0.2], [0.2, 0.4] and [0.4, 0.6]; for setting E, the proportion was set to be chosen

from [0, 0.5].

6. The correlation coefficient ρ and the standard deviation σ for AR(1) correlation were both

sampled from [0.1, 0.5], and the AR(1) correlation was generated by the function arima.sim

from R package stats;
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The ranges of all the parameters used in the simulation are summarized in Table 2.

We repeated the procedure 10000 times for each combination of the parameters. The

hypothesis of interest is the fixed effect H0: β1 = 0. Empirical power and false positive rate for

testing the hypothesis were calculated at the significance level of 0.05. We compared the pro-

posed ZIGMMs, denoted by ZIGMMs(log), with a previously developed negative binomial

mixed model, denoted by NBMMs, and the linear mixed model with the arcsine square root

transformed response, arcsineð
ffiffiffiffiffiffiffiffiffiffiffi
yij=Tij

q
Þ, denoted by LMMs.

3.1.2.2 Simulation results. Fig 1 showed empirical power to detect the group effect for

settings A, B, C and D at the low effect scenario. It can be clearly seen that the proposed

method performed consistently better than NBMMs and LMMs in all the scenarios. Under set-

ting B and C, we simulated fixed effects in the zero-inflation part. ZIGMMs performed

extremely remarkable than NBMMs and LMMs in those two settings, inferring ignoring the

association between zero-inflation and any covariate could lead to a significant decrease in

power. The power was largely affected by the sample size and the zero-inflation probability.

The difference in power among ZIGMMs and NBMMs and LMMs increased significantly as

the zero-inflation probability increased. With the zero-inflation proportion less than 20%,

ZIGMMs performed similarly as NBMMs but still better than LMMs. ZIGMMs had a more

noteworthy higher power than NBMMs and LMMs to detect the fixed effect especially when

the data was highly zero-inflated. We also summarized the empirical power to detect the

binary group effect for the settings A, B, C and D with the high effect scenario in S1 Fig. In the

high effect scenario, ZIGMMs outperformed NBMMs and LMMs more significantly when the

zero-inflation probability was higher and the sample size was smaller. Fig 2 displays false posi-

tive rates for detecting the group effect. For all the four settings, ZIGMMs controlled the false

positive rates close to the significance level under all the combinations of parameters. As

expected, the increase in sample size n led to the decrease in false positive rates in ZIGMMs.

Table 3 summarized empirical power and false positive rates for setting E comparing

LMMs, NBMMs and ZIGMMs. In this setting, we included group variable, time variable and a

time by group interaction term in the simulation and reported empirical power and false posi-

tive rates for group variable and time by group interaction term. ZIGMMs had a higher power

than LMMs and NBMMs for both group effect and interaction term under various sample

Table 2. Parameter ranges in simulation studies.

Parameter Range

log(Tij) + β0 Unif(0.1, 3.5)

dispersion parameter θ Unif(0.1, 5)

Fixed effects β1 (false positive rate) 0

Fixed effects β1 (power) Unif(0.2, 0.3)

Unif(0.3, 0.4)

Fixed effect α1 (Setting B and C only) Unif(0.2, 0.3)

Unif(0.3, 0.4)

standard deviation τ Unif(0.5, 1)

correlation ρ Unif(0.1, 0.5)

standard deviation σ Unif(0.1, 0.5)

Overall zero-inflation proportion Unif(0.0, 0.2)

Unif(0.2, 0.4)

Unif(0.4, 0.6)

https://doi.org/10.1371/journal.pone.0242073.t002
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sizes however ZIGMMs had inflated the false positive rates compared to LMMs and NBMMs

especially for the interaction term.

3.1.3 Assess the computational efficiency of ZIGMMs. To evaluate the computational

efficiency of ZIGMMs, we recorded the computation time for ZIGMMs and two other zero-

inflated methods in one simulation when sample size is set to be 100. First, we compared

ZIGMMs and ZIBR in analyzing the longitudinal microbiome proportion data. We found that

the computation time for ZIGMMs and ZIBR in one simulation was 0.011 and 0.023 minutes,

respectively. Besides, we compared ZIGMMs and a zero-inflated negative binomial mixed

model which was implemented in the R package glmmTMB in analyzing the longitudinal

microbiome count data, and found that the computation time for ZIGMMs and the zero-

inflated negative binomial mixed model in one simulation was 0.009 and 0.041 minutes,

respectively. ZIGMMs remarkably outperformed in computational efficiency than the other

two zero-inflated methods.

3.2 Application to 16S rRNA and shotgun sequencing microbiome data

In our real data analysis, there are two major purposes, one is to evaluate the performances of

ZIGMMs in analyzing 16S rRNA data in raw counts, the other is to evaluate the performances

of ZIGMMs in analyzing shotgun sequencing data in proportions. So that, we applied our

ZIGMMs in two publicly available datasets from Romero, Hassan [24] and Vincent, Miller [32].

Fig 1. Empirical powers in four simulation settings under low effect scenario.

https://doi.org/10.1371/journal.pone.0242073.g001
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Romero, Hassan [24] employed a retrospective case-control longitudinal study to investigate

the difference of composition and stability of vaginal microbiota between pregnant and non-

pregnant women. They conducted a 16S rRNA gene sequence-based survey among 22 normal

pregnant women who delivered at term (38–40 weeks) and 32 non-pregnant women. Vaginal

fluid samples were collected every two to four weeks apart for the pregnant group and twice per

week for 16 weeks in the non-pregnant group. We analyzed the 16S rRNA sequencing data

from Romero, Hassan [24] in terms of counts to evaluate the performances of ZIGMMs(log).

Vincent, Miller [32] used metagenome shotgun sequencing to examine the diversity and

composition of the fecal microbiota from 98 hospitalized patients. The prospective cohort

study was carried out among 8 patients who were either Clostridium difficile infected or colo-

nized and other 90 patients. Clinical data included gender, age, and days from first collection

of the fecal samples. The clinical data and shotgun sequencing microbiome relative abundance

data were downloaded by R package curatedMetagenomicData [33]. The shotgun sequencing

data is normally output as proportion data. So, here, we illustrated our ZIGMMs(arcsine) to

analyze this shogun sequencing microbiome data from Vincent, Miller [32] in proportions.

According to the manual of R package ZIBR [26], ZIBR cannot handle missing data. There-

fore, we could not compare with ZIBR in our real data example.

We used the following eight different models to compare the performances of LMMs,

NBMMs, and ZIGMMs in detecting the dynamic association between host factor and

Fig 2. False positive rates in all four simulation settings.

https://doi.org/10.1371/journal.pone.0242073.g002
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microbiota composition. Models A-D were used in all LMMs, NBMMs and ZIGMMs while

models E-G were only used in ZIGMMs:

1. Model A: host factor and time as fixed effects in Gaussian part, random intercept in Gauss-

ian part;

2. Model B: host factor, time, host factor and time interaction term as fixed effects in Gaussian

part, random intercept in Gaussian part;

3. Model C: host factor, time, host factor and time interaction term as fixed effects in Gaussian

part, random intercept and the within-subject correlation was autoregressive of order 1, AR

(1) in Gaussian part;

4. Model D: host factor, time, host factor and time interaction term as fixed effects in Gaussian

part, two random effects (i.e., random intercept and time effect) in Gaussian part;

5. Model E: host factor and time as fixed effects only in both zero-inflation part and Gaussian

part, random intercept in Gaussian part;

6. Model F: host factor, time, host factor and time interaction term as fixed effects in both

zero-inflation part and Gaussian part, random intercept in Gaussian part;

7. Model G: host factor, time, host factor and time interaction term as fixed effects in both

zero inflation part and Gaussian part, random intercept and the within-subject correlation

was autoregressive of order 1, AR(1) in Gaussian part;

8. Model H: host factor, time, host factor and time interaction term as fixed effects in both

zero-inflation part and Gaussian part, two random effects (i.e., random intercept and time

effect) in Gaussian part;

Table 3. False positive rate and power for testing H0: β1 = 0 and H0: β3 = 0 from setting E for significance level at 0.05 for various sample sizes.

False Positive Rate

Test of β1 Test of β3

Sample Size LMMs§ NBMMs¶ ZIGMMs(log)! LMMs§ NBMMs¶ ZIGMMs(log)!

n = 50 0.045 0.053 0.065 0.045 0.064 0.084

n = 100 0.050 0.061 0.067 0.054 0.072 0.082

n = 150 0.047 0.061 0.071 0.050 0.068 0.082

Power (Low Effect Setting)

Test of β1 Test of β3

Sample Size LMMs§ NBMMs¶ ZIGMMs(log)! LMMs§ NBMMs¶ ZIGMMs(log)!

n = 50 0.082 0.158 0.187 0.172 0.251 0.334

n = 100 0.148 0.265 0.325 0.295 0.425 0.563

n = 150 0.204 0.360 0.439 0.405 0.562 0.720

Power (High Effect Setting)

Test of β1 Test of β3

Sample Size LMMs§ NBMMs¶ ZIGMMs(log)! LMMs§ NBMMs¶ ZIGMMs(log)!

n = 50 0.121 0.252 0.304 0.303 0.418 0.558

n = 100 0.224 0.439 0.522 0.507 0.654 0.815

n = 150 0.340 0.602 0.699 0.628 0.769 0.920

LMMs§: Linear mixed models.

NBMMs¶: Negative Binomial mixed models.

ZIGMMs(log)!: Zero-inflated Gaussian mixed models with log transformation.

https://doi.org/10.1371/journal.pone.0242073.t003
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The real data and the R code for our analysis are available from the GitHub page: https://

abbyyan3.github.io//NBZIMM-tutorial/ZIGMMs-longitudinal.html.

3.2.1 Application in 16S rRNA longitudinal pregnancy data. We first applied our

ZIGMMs to the data of Romero, Hassan [24]. We explored the abilities of ZIGMMs in detect-

ing the dynamic associations between vaginal bacteria taxa composition and two groups (preg-

nancy vs non-pregnancy) controlled by possible confounding effects of the covariates. We

analyzed 16S rRNA sequencing microbiome count data with log transformation (ZIGMMs

(log)). In all the eight models, the binary case-control indicator for pregnancy vs non-preg-

nancy was the host factor of interest (β1), and the collection time (GA_days) was the time vari-

able. An interaction term between host factor and time variable (β3) was included in model B,

C, D, F, G and H. We also included age and race as confounding covariates. The sample size

was 897 in the final analysis. We included 59 taxa which has a proportion of zeros greater than

0.3 but smaller than 0.9 in our analysis.

Table 4 shows the proportions of significant taxa detected by LMMs, NBMMs and

ZIGMMs(log) at the alpha level at 0.05, respectively. The significance of the taxa was evaluated

at the alpha level of 0.05 (p-value <0.05) for Models A-H. Test of β1 in Table 4 summarized

the proportions of taxa which is significantly differentiated presented between pregnancy

group vs non-pregnancy group. Test of β3 in Table 4 summarized the proportions of taxa

which is significantly differentiated presented between pregnancy group vs non-pregnancy

group over the collection time. The proportions of detected significant taxa in model B, C, D,

F, G and H were substantially less than the rates from models A and E. It inferred that the

majority of taxa existing in the vaginal microbiome did not possess a time-dependent associa-

tion between the pregnant and non-pregnant groups. Moreover, it showed that ZIGMMs(log)

detected more associated taxa than NBMMs and LMMs. We also found ZIGMMs with fixed

effects in zero-inflation and Gaussian part in models E-H decrease slightly in the number of

significant taxa detected than ZIGMMs with fixed effects in Gaussian part from models A-D.

It implied that those taxa did not possess a strong association between the host factors and the

zero-inflation.

To compare the differences in detecting significant taxa for both host factor and interaction

term between LMMs, NBMMs, and ZIGMMs(log), we presented model C in Fig 3 and S2 Fig.

Fig 3 shows significant taxa in model C at the 5% significance threshold and minus log trans-

formed p-values for LMMs, NBMMs, and ZIGMMs(log). S2 Fig presents three heatmaps of p-

values between the taxa and each variable from model C using LMMs, NBMMs, and ZIGMMs

(log). We found that ZIGMMs(log) discovered more taxa than NBMMs and LMMs consis-

tently, and yielded smaller p-values. In model C, we were interested in both the host factor and

the interaction effect between time and host factor. ZIGMMs(log) identified not only the same

taxa which were detected by LMMs and NBMMs but also more taxa for both effects. For the

host factor, several taxa were only identified with ZIGMMs(log), including Clostridiales, Strep-
tococcus, Proteobacteria, BVAB1 and Lactobacillales. For the interaction effect between time

and host factor, Prevotella genogroup 3, Gemella, Lactobacillus gasseri, Megasphaera sp type 1
and Firmicutes were identified both by NBMMs and ZIGMMs(log). BVAB1, and Sneathia San-
guinegens were only identified by ZIGMMs(log). Among them, bacterial vaginosis associated
bacteria 1 (BVAB1) has been previously reported as a highly specific novel bacteria for bacterial

vaginosis in the Clostridiales order [34]. Also, the abundance of Gemella, BVAB1, and Sneathia
sanguinegens have been reported to change within the duration of pregnancy from another

study by Romero, Hassan [35].

3.2.2 Application in shotgun sequencing longitudinal intestinal microbiome data. We

then applied our ZIGMMs to the shotgun sequencing microbiome proportion data from Vin-

cent, Miller [32]. In this case, we only compared our ZIGMMs with LMMs. We explored the
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abilities of ZIGMMs in detecting the dynamic associations between fecal microbiome compo-

sition and Clostridium difficile colonization or infection. We adapted ZIGMMs in analyzing

microbiome proportion data with arcsine transformation (ZIGMMs(arcsine)). In all the eight

models, the binary case-control indicator for Clostridium difficile colonization or infection vs

Table 4. Proportions of significant taxa detected in four models with LMMs, NBMMs and ZIGMMs.

Model A Model B Model C Model D

Test of β1 Test of β1 Test of β3 Test of β1 Test of β3 Test of β1 Test of β3

LMMs§ 0.29 0.03 0.15 0.03 0.12 0.07 0.10

NBMMs¶ 0.49 0.12 0.25 0.12 0.25 0.12 0.25

ZIGMMs(log)! 0.63 0.34 0.24 0.39 0.27 0.36 0.24

Model E Model F Model G Model H

Test of β1 Test of β1 Test of β3 Test of β1 Test of β3 Test of β1 Test of β3

ZIGMMs(log) 0.54 0.19 0.31 0.20 0.24 0.20 0.20

LMMs§: Linear mixed models.

NBMMs¶: Negative Binomial mixed models.

ZIGMMs(log)!: Zero-inflated Gaussian mixed models with log transformation.

https://doi.org/10.1371/journal.pone.0242073.t004

Fig 3. The analyses of ZIGMMs(log), NBMMs and LMMs: minus log transformed p-values for the significant differentially abundant taxa at the 5% significance

threshold between pregnancy and non-pregnancy groups for host factor effect (left panel) and interaction effect (right panel) from Model C.

https://doi.org/10.1371/journal.pone.0242073.g003
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control was the host factor of interest (β1), and the collection time (days from the first collec-

tion) was the time variable. An interaction term between host factor and time variable (β3) was

included in models B, C, D, F, G and H. We also included age and gender as confounding

covariates. The sample size was 229 in the final analysis. We included 357 taxa which has a pro-

portion of zeros greater than 0.3 but smaller than 0.9 in our analysis.

Table 5 shows the proportions of significant taxa detected by LMMs and ZIGMMs(arcsine)

at the alpha level at 0.05, respectively. The significance of the taxa was evaluated at the alpha

level of 0.05 (p-value <0.05) for Models A-H. Test of β1 in Table 5 summarized the propor-

tions of taxa which is significantly differentiated presented between Clostridium difficile colo-

nization or infection group vs control group. Test of β3 in Table 5 summarized the proportions

of taxa which is significantly differentiated presented between Clostridium difficile colonization

or infection group vs control group over the collection time. We found that our ZIGMMs(arc-

sine) detected more associated taxa than LMMs in most scenarios. We also found ZIGMMs

(arcsine) with fixed effects in zero-inflation and Gaussian part in models E-H increase slightly

in the number of significant taxa detected than ZIGMMs(arcsine) with fixed effects in Gauss-

ian part from models A-D. It implied that there is a significant association between the host

factors and the zero-inflation in those taxa.

4. Discussion

With the emergence of longitudinal microbiome studies, more understandings about the

dynamic shifts of the microbiota have been unraveled [8]. It is of interest in studying the

dynamic associations between the microbiota and various host factors [8,36]. To realize these

research interests, powerful analytic methods are necessary to account for sources of heteroge-

neity and dependence in microbiome measurements. However, previous methods have not

fully addressed the properties of longitudinal microbiome data and are not computationally

feasible for analyzing many taxa.

Here, we propose ZIGMMs to model longitudinal microbiome proportion and count data.

The method is robust in performance when applied to both 16S rRNA gene sequencing and

genome shotgun sequencing data, in terms of proportion or count data. The proportions data,

mostly from genome shotgun sequencing data, should be transformed with arcsine square

root transformation. For count data, mostly from 16S rRNA platforms, log transformation is

more appropriate because if converting those count data to proportion data will lead to very

small proportions. The proposed ZIGMMs can effectively handle excessive zeros observed in

microbiome data, and can incorporate various types of random effects and within-subject cor-

relation structures [29,37]. We have developed an EM algorithm to fit the proposed ZIGMMs

by extending a commonly used procedure for fitting LMMs [37–40]. This allows us to

Table 5. Proportions of significant taxa detected in four models with LMMs and ZIGMMs.

Model A Model B Model C Model D

Test of β1 Test of β1 Test of β3 Test of β1 Test of β3 Test of β1 Test of β3

LMMs§ 0.11 0.13 0.12 0.11 0.11 0.10 0.06

ZIGMMs (arcsine)† 0.12 0.12 0.19 0.17 0.18 0.11 0.10

Model E Model F Model G Model H

Test of β1 Test of β1 Test of β3 Test of β1 Test of β3 Test of β1 Test of β3

ZIGMMs (arcsine) 0.15 0.14 0.21 0.14 0.23 0.14 0.10

ZIGMMs(arcsine)†: Zero-inflated Gaussian mixed models with arcsine transformation.

LMMs§: Linear mixed models.

https://doi.org/10.1371/journal.pone.0242073.t005
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integrate the well-established procedures for analyzing longitudinal data into our ZIGMMs.

Our analyses show that our algorithm is efficient and stable for most of the scenarios. We

showed the computational efficiency of our EM algorithm by comparing with the other two

zero-inflated methods. In the simulations, ZIGMMs outperform LMMs, NBMMs and ZIBR

consistently. We have also shown that ZIGMMs can efficiently deal with various fixed and ran-

dom effects in both normal distribution and zero-inflation models, moreover, and account for

the auto-regressive correlation among samples. However, we found ZIGMMs had inflated

false positive rates especially in detecting interaction terms, suggesting potential fitting issues.

According to Weiss, Xu [41] and Hawinkel, Mattiello [42], most of the parametric methods,

such as edgeR, limma–voom and metagenomeSeq, fail to control the false positive rate at the

nominal level. A possible reason could be the p-value distributions tend to be smaller than uni-

form distribution especially when taxa is highly inflated [42]. Thus, in current analysis of a real

microbial data, researchers normally focus on the top abundant taxa with less zero-inflation

rates.

Moreover, we applied our method to two previously published datasets and compared the

performances of LMMs, NBMMs and ZIGMMs in detecting the dynamic association between

host factor and taxa composition. We could not apply the ZIBR in the real data since according

to the manual of R package ZIBR, it could only deal with subjects measured at the same num-

ber of time points [26]. We found that our ZIGMMs was capable to detect more significant

taxa than LMMs and NBMMs. The differences between our ZIGMMs and the other two meth-

ods were more substantial when analyzing the taxa with high zero rates. Notably, we found

that several taxa from Romero, Hassan [24], which have only been identified by ZIGMMs,

have been previously reported for the associations between pregnancy and vaginal bacterial

composition by Romero, Hassan [35]. However, we still encounter the fitting issues similarly

as other parametric methods to control false positive rates under nominal level, especially

when analyzing complex microbiome/metagenomics data. A future plan is to develop analyz-

ing methods under Bayesian framework using MCMC algorithm to possibly address the cur-

rent fitting issues.

Supporting information

S1 Fig. Empirical power of hypothesis in four simulation settings under high effect sce-

nario.

(PDF)

S2 Fig. Heat map for p-values between the taxa and each variable from Model C using LMMs

(left panel), NBMMs (middle panel) and ZIGMMs (right panel). The sign “+” indicates the

positive effect.

(PDF)
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