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Notch1 signaling determines the plasticity and function of
fibroblasts in diabetic wounds
Hongwei Shao1 , Yan Li1, Irena Pastar2 , Min Xiao3, Rochelle Prokupets1, Sophia Liu1, Kerstin Yu1,
Roberto I Vazquez-Padron1, Marjana Tomic-Canic2, Omaida C Velazquez1, Zhao-Jun Liu1

Fibroblasts play a pivotal role in wound healing. However, the
molecular mechanisms determining the reparative response of
fibroblasts remain unknown. Here, we identify Notch1 signaling as
amolecular determinant controlling the plasticity and function of
fibroblasts in modulating wound healing and angiogenesis. The
Notch pathway is activated in fibroblasts of diabetic wounds but
not in normal skin and non-diabetic wounds. Consistently, wound
healing in the FSP-1+/2;ROSALSL-N1IC+/+ mouse, in which Notch1 is
activated in fibroblasts, is delayed. Increased Notch1 activity in
fibroblasts suppressed their growth, migration, and differentia-
tion into myofibroblasts. Accordingly, significantly fewer myofi-
broblasts and less collagen were present in granulation tissues of
the FSP-1+/2;ROSALSL-N1IC+/+ mice, demonstrating that high Notch1
activity inhibits fibroblast differentiation. High Notch1 activity in
fibroblasts diminished their role in modulating the angiogenic
response. We also identified that IL-6 is a functional Notch1 target
and involved in regulating angiogenesis. These findings suggest
that Notch1 signaling determines the plasticity and function of
fibroblasts in wound healing and angiogenesis, unveiling intra-
cellular Notch1 signaling in fibroblasts as potential target for
therapeutic intervention in diabetic wound healing.
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Introduction

Skin wounds heal due to a coordination of a myriad of cell types
including: keratinocytes, inflammatory cells, endothelial cells (ECs),
and fibroblasts (Eming et al, 2014; Ojeh et al, 2015). In recent years,
there has been an increasing interest in the studies deciphering the
involvement of fibroblasts in wound healing. Fibroblasts are
mesenchymal cells with many vital functions, such as supporting
dermal architecture, maintaining skin homeostasis under normal
physiological conditions, and orchestrating the complex wound
healing responses during tissue repair (Martinez-Santamaria et al,

2013; Eming et al, 2014; Liang et al, 2016; Ferrer et al, 2017; desJardins-
Park et al, 2018; Stunova & Vistejnova, 2018). When tissues are
injured, fibroblasts are stimulated and switch from a quiescent to
activated state and transdifferentiate into myofibroblasts. These
myofibroblasts which express de novo α-smooth muscle actin
(α-SMA), produce abundant ECM, produce remodeling enzymes
and a variety of regulatory soluble factors, provide a structural
scaffold, and generate contractions to modulate and facilitate
wound closure and tissue regeneration (Moulin et al, 1999; Li & Wang,
2011; Hinz, 2016; Smith, 2018). These cells are critical throughout the
inflammation, proliferation, and remodeling phases of wound
healing (Werner et al, 2007; Liu & Velazquez, 2008; Greaves et al, 2013;
O’Brien et al, 2018; Ridiandries et al, 2018; Wallace & Bhimji, 2018). As
such, (myo)fibroblasts are increasingly recognized as important
therapeutic targets.

Fibroblasts display phenotypic plasticity. Fibroblast-to-myofibroblast
differentiation represents a key event during wound healing. It is tightly
regulated in normal wound healing but impaired in delayed or chronic
non-healing wounds, which fail to progress through the orderly phases
of healing and exhibit persistent inflammation, impaired angiogenesis
and lack of collagen and granulation tissue in the wound bed (Falanga,
2005; Bremet al, 2008; Liang et al, 2016; Kashpur et al, 2018). Chronic non-
healing wounds are often developed in patients affected by peripheral
arterial diseaseand/or diabetes (Brem&Tomic-Canic, 2007; Eming et al,
2014; Gould et al, 2015; Pastar et al, 2018). Diabetics are also plagued by a
high incidence of vascular disease that, when combined with foot
ulceration, often results in lower extremity amputation (Pastar et al,
2018). For example, diabetic foot ulcers (DFUs) are one of complications
of diabetes and represent a major burden on patients and the health
care system. The highly inflammatory, ischemic, hypoxic, and hyper-
glycemic environment present in chronic diabetic wounds are generally
inhibitory to myofibroblast differentiation (Tobalem et al, 2015), yet the
intracellular signaling mechanisms leading to impaired fibroblast-to-
myofibroblast differentiation remain largely unknown.

(Myo)fibroblasts participate in the coordinated regulation of
cutaneous healing responses through an interactive dialogue with

1Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA 2Department of Dermatology and Cutaneous Surgery, Wound Healing and
Regenerative Medicine Research Program, Miller School of Medicine, University of Miami, Coral Gables, FL, USA 3Department of Surgery, School of Medicine, University of
Pennsylvania, Philadelphia, PA, USA

Correspondence: zliu@med.miami.edu
Min Xiao’s present address is The Wistar Institute, Philadelphia, PA, USA

© 2020 Shao et al. https://doi.org/10.26508/lsa.202000769 vol 3 | no 12 | e202000769 1 of 16

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.202000769&domain=pdf
https://orcid.org/0000-0001-9770-4132
https://orcid.org/0000-0001-9770-4132
https://orcid.org/0000-0003-0197-6198
https://orcid.org/0000-0003-0197-6198
https://orcid.org/0000-0002-2301-0768
https://orcid.org/0000-0002-2301-0768
https://doi.org/10.26508/lsa.202000769
mailto:zliu@med.miami.edu
https://doi.org/10.26508/lsa.202000769


their neighboring cells in the skin microenvironment, which in-
clude: inflammatory cells, keratinocytes and ECs. During inflam-
mation, (myo)fibroblasts produce and secrete a number of
cytokines and chemokines, which help to modulate the inflam-
matory response to injury. In the proliferative phase of wound
healing, keratinocytes stimulate (myo)fibroblasts to synthesize
soluble factors, which in turn stimulate keratinocyte proliferation to
speed re-epithelialization in a double paracrine manner (Werner et
al, 2007). Cross-talk between (myo)fibroblasts and ECs modulates
wound angiogenesis, which is a critical aspect of wound healing
(Velazquez et al, 2002; Li et al, 2007). The assembly of the endothelial
network and stabilization of neovessels is largely dictated by ex-
ternal signals from (myo)fibroblasts. Newly formed blood vessels
participate in the provisional granulation tissue formation and
provide oxygen and nutrients to support tissue regeneration and
repair. Impaired angiogenesis at the wound site is a hallmark of
most chronic diabetic wounds. It is largely attributed to disrupted
cross-talk between (myo)fibroblasts and ECs and insufficient
support from (myo)fibroblasts.

Despite extensive evidence supporting the prominent role of
(myo)fibroblasts in wound healing, intracellular signaling mecha-
nisms that determine the reparative response of (myo)fibroblasts
in wound healing, for the dysregulated fibroblast-to-myofibroblast
differentiation, and impaired fibroblast-modulated angiogenesis in
chronic diabetic wounds remain largely unknown. We have pre-
viously observed an inverse correlation between the statuses of
Notch signaling and the activity of fibroblasts. Proliferating fibro-
blasts expressed either undetectable or low levels, whereas qui-
escent fibroblasts manifested increased levels of Notch pathway
components. Consistently, loss of Notch1 in MEFs conferred faster
cell growth and motility rate, whereas constitutive activation of the
Notch1 pathway slowed the cell growth and motility of human fi-
broblasts (Liu et al, 2012). Here, we assessed the Notch pathway
activity in fibroblasts derived from human and murine diabetic
wounds versus their non-diabetic counterparts andexplored the role
of the intracellular Notch1 pathway activity in fibroblasts in regu-
lating wound healing and angiogenesis using novel mouse lines in
which gain versus loss-of-functionNotch1 signaling specifically occur
in fibroblasts. We also addressed whether and how manipulation of
the intracellular Notch1 pathway activity in fibroblasts alters their
cross-talk with ECs by which modulate wound angiogenesis.

Results

Notch pathway is activated in fibroblasts of chronic diabetic
wounds but not in normal skin and non-diabetic wounds

To assess the status of Notch signaling in fibroblasts of normal skin
versus chronic non-healing DFU tissues, we generated primary
fibroblasts from healthy foot skin of non-diabetic donors and non-
healing DFU of patients and compared their Notch pathway activity.
Primary fibroblasts were generated from DFU at the site of wound
edge from three patients and normal foot skin specimens of three
non-diabetic donors and characterized as described previously
(Liang et al, 2016; Jozic et al, 2017). These primary cells were named
diabetic foot ulcer fibroblast (DFUF) and NFF, respectively. Levels of

expression of Notch pathway components (Notch receptors, li-
gands, and targets) was determined by immunoblotting. The levels
of Notch1-4, Jagged 1-2, Delta-like (Dll) 1, 3, 4, Hes-1, and Hey-1 were
significantly higher in DFUF than NFF (Fig 1A). NFF expressed
marginal or undetectable levels of Notch 2-4, Jagged 1-2, Dll 4, and
two targets (Hes-1 and Hey-1). Two NFF expressed basal levels of
Notch1, but active form of Notch1 was undetectable. These data
indicated activation of the Notch pathway in DFUF, whereas it is
inactivated in NFF. It is unclear which Notch ligand is primarily
responsible for the Notch1 activation in DFUF. Inhibition of ligand-
induced Notch activation by DAPT, a γ-secretase inhibitor, could
significantly inhibit the Notch1 pathway activation by reducing the
levels of Notch1 and Hey-1 in DFUF (mixture of three DFUF at 1:1:1
ratio), whereas Jagged-1–neutralizing antibody achieved a less
extent inhibition compared with DAPT (Fig 1B). These results suggest
that intracellular Notch pathway activation observed in DFUF is
dependent upon Notch receptor–ligand interaction. Likely, all li-
gands contribute to the Notch pathway activation, as blocking of a
single type of Notch ligand (by Jagged-1 neutralizing antibody) only
partially suppress the Notch pathway activation.

The Notch pathway activity in fibroblasts of normal foot skin
versus DFU was also examined in human tissue specimens by
immunostaining. Fibroblasts in papillary and reticular layers of
dermis were stained with antibody against FSP-1 and the Notch
pathway activity was assessed by Hes-1 and Hey-1 (Notch targets)
expression. Compared with fibroblasts located both in papillary and
reticular layers of dermis in control foot skin, which exhibited barely
detectable levels of Hes-1, expression of Hes-1 was higher in fi-
broblasts (Hes-1 is located in the nucleus [pink color] and cyto-
plasm [orange color]) at DFU tissue (Fig 1C). The combination of
three colors (Hes-1, FSP-1 [fibroblast-specific protein-1, also known
as S100A4], and DAPI) are shown in Fig 1B. Fibroblasts in reticular
layers of dermis are framed with dash lines. See Fig S1 for images
and the ratio of Hes-1:FSP-1 in highlighted reticular layers, and Fig
S2 for images the ratio of Hes-1:FSP-1 in highlighted papillary layers.
Similar pattern of Hey-1 in fibroblasts presented in reticular layers
of dermis was observed (Fig S3). These results confirm the acti-
vation of Notch pathway in fibroblasts from and at DFU.

In addition, we also assessed the Notch pathway activity in fi-
broblasts of murine normal skin wounds versus ischemic (non-
diabetic) skin wounds versus diabetic skin wounds by immuno-
staining. Skin wounds were created on dorsal skin of C57 BL6
(normal non-ischemic acute wounds), ischemic limb skin of C57 BL6
(non-diabetic ischemic chronic wounds), NOD (type I diabetes), and
db/db (type II diabetes) mice by punch biopsies. Wound tissues
were harvested at day 1 (early time point), day 7 (middle time point)
post-wounding in all mice, and at day 9/13/14/15 (late time point,
when wounds are healed) in C57 BL6 (normal non-ischemic acute
wounds)/C57 BL6 (non-diabetic ischemic chronic wounds)/db/db/
NOD mice, respectively. Wound tissues are subjected to immuno-
staining with anti–FSP-1 and anti–Hes-1 and anti-N1IC antibodies.
Similarly, expression of Hes-1 was higher in fibroblasts at diabetic
wounds, both NOD and db/db mice, than that in normal and is-
chemic wounds in C57 BL6 mice at day 7 (Fig 1D). See Fig S4 for
images with individual color and the ratio of Hes-1:FSP-1 in normal
or ischemic skin wound (C57 BL6 mice) and diabetic skin wound
(NOD and db/db mice). Levels of Hes-1 in fibroblasts presented in
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diabetic wounds (NOD and db/db mice) were detectable at day 1,
peaked in day 7, and reduced to a very low level when the wounds
were healed in diabetic mice (NOD and db/db), but remained
undetectable throughout wound healing process in both normal
acute and non-diabetic chronic wounds (C57 BL6 mice) (Fig S5).
These results not only confirm that the Notch pathway is activated
or turned “ON” in fibroblasts in murine diabetic wounds, whereas
inactivated or turned “OFF” in fibroblasts in normal and non-
diabetic murine wounds but also show dynamic changes of the
Notch pathway activity over the wound healing process. Similar
results of N1IC levels in various types of wounds are shown in Fig S6.
Taken together, our data demonstrated that the Notch pathway is
activated or turned “ON” in fibroblasts from human DFU andmurine
diabetic wounds, whereas inactivated or turned “OFF” in fibroblasts
derived from normal (both human and murine) or non-diabetic
murine skin wounds.

Activation of Notch1 in fibroblasts delayed skin wound healing in
mouse model

To address whether the activation of Notch1 in fibroblasts affects
skin wound healing, we generated and tested two mouse lines, in

which activation or inactivation of Notch1 pathway specifically
occurs in fibroblasts. Expression of N1IC (Notch1 intracellular do-
main, an active form of Notch1) in skin fibroblasts of Gain-Of-
Function Notch1 (GOFNotch1: Fsp1.Cre+/−;ROSALSL-N1IC+/+) and dele-
tion of Notch1 in skin fibroblasts of Loss-Of-Function Notch1
(LOFNotch1: Fsp1.Cre+/−;Notch1LoxP/LoxP+/+) mice were validated by
immunostaining (Fig S7). GOFCtrl (FSP1.Cre−/−;ROSALSL-N1IC+/+) and
LOFCtrl (FSP1.Cre−/−; Notch1LoxP/LoxP+/+) mice were used as corre-
sponding control (Shao et al, 2015). Excisional wounds were created
on the dorsal skin of GOFNotch1 versus GOFCtrl mice and LOFNotch1

versus LOFCtrl mice by 6-mm punch biopsies (n = 6/group). All mice
exhibited normal skin structure, cellular morphology, and no
lymphocyte infiltration (data from GOFNotch1 versus GOFctrl mice are
shown in Fig S8). Similar data are obtained in LOFNotch1 versus
LOFctrl mice (data not shown) in skins of 4-wk-old mice, except less
collagen deposition in the skin of GOFNotch1 mice as examined by
Masson’s trichrome staining (data from GOFNotch1 versus GOFctrl

mice are shown in Fig S9), which is consistent with impaired
function of fibroblasts because of increased intracellular Notch1
pathway activity. Wound healing rates were measured by daily
digital photography and wound closure was measured using
ImageJ. We found that the skin wound healing of GOFNotch1 mice was

Figure 1. Differential Notch pathway activities in fibroblasts of chronic diabetic skin wounds versus non-diabetic skin and wounds.
(A) High Notch pathway activity in diabetic foot ulcer fibroblasts (DFUF) versus low Notch pathway activity in normal foot fibroblasts (NFF). Expression of Notch pathway
components in three DFUF and three NFF were assessed by immunoblot. β-actin was used as a loading control. The band of each molecule is shown. (B) Inhibition of the
Notch pathway activity, reflected by decreased levels of N1IC and Hey-1, in DFUF by DAPT and Jag 1 neutralizing Ab. Compared with DAPT, Jag 1 neutralizing Ab only achieved a
partial inhibition. (C) Representative immunostaining images show that fibroblasts (green) express higher levels of Hes-1 (red) in skin at the edge of diabetic foot ulcer
tissue than that in non-diabetic foot skin. Highlighted areas show fibroblasts in reticular layers. (D) Representative immunostaining images show that fibroblasts (green)
express higher levels of Hes-1 (red) in wounds of diabetic mice (db/db and NOD) but not in non-diabetic acute wound and ischemic chronic wounds in C57 BL6 mice.
Wound tissues were harvested at day 7. Highlighted areas show fibroblasts in granulation tissues.
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significantly delayed compared with GOFCtrl mice (Fig 2A). At day 9
post-wounding, 94% of wound areas were healed in GOFCtrl mice,
yet only 67.9% of wound areas were covered in GOFCtrl mice (P <
0.01). Wound healing rates between LOFNotch1 versus LOFCtrl were
comparable (Fig 2B). Overall, these results revealed that similar to
DFU patients, the activation of Notch1 pathway targeted to dermal
fibroblasts (DFs) delayed wound healing in the mouse model.

Activation of Notch1 pathway suppresses cellular proliferation
and migration of fibroblasts

We further tested the effect of the Notch1 pathway activation on cell
proliferation and migration of DFs. For this purpose, DFs were
isolated from GOFNotch1 versus GOFCtrl mice and LOFNotch1 versus
LOFCtrl mice using standard methods (Shao et al, 2015). The gener-
ated mouse DFs were characterized (Fig S10) and named GOFNotch1-
derived fibroblasts (GOFNotch1-DF), GOFCtrl-DF, LOFNotch1-DF, and
LOFCtrl-DF accordingly. We carried out WST cell proliferation assay
to assess cell growth of these DF and found that high intracellular
Notch activity significantly retarded the cell growth of DFs. Cell
proliferative rate of GOFNotch1-DF was ~50% slower than that of
GOFCtrl-DF (Fig 3A). Consistently, cellular proliferative activity of
fibroblasts in the wound environment of mice was fairly low in
GOFNotch1 mice compared with that in GOFCtrl mice. No obvious
difference between the LOFNotch1 and LOFCtrl mice was found, as
evidenced by a decreased expression of the cellular proliferation

marker Ki67 in fibroblasts at wound tissues of mice detected by im-
munostaining (Fig 3B). We also conducted an in vitro wound healing
assay to test effect of the Notch1 pathway activation on cell migration of
DF. GOFNotch1-DF versus GOFCtrl-DF and LOFNotch1-DF versus LOFCtrl-DF
were growing in 24-well plates to reach confluence and formed
monolayers. A cell-freepseudo-woundfield (500μmdiameter)was then
created in the center of the well. Cells were visualized at various time
points post-“wounding” under the microscope at 4× magnification and
images were acquired. Cell-free pseudo-wound fields covered by cells
were calculated as percentage using ImageJ.Weobserved thatmigration
and proliferation of GOFNotch1-DF was significantly slower than GOFCtrl-
DF. At 40-h post-“wounding,” 95.4% of “wound” areas were covered by
GOFCtrl-DF, compared with only 48.3% of wound coverage by GOFNotch1-
DF (P < 0.05) (Fig 3C). No significant difference between LOFNotch1-DF and
LOFCtrl-DF was observed, which is consistent with wound healing ex-
periments. These results showed that high intracellular Notch activity
suppressed cellular proliferation and migration of fibroblasts.

High intracellular Notch1 activity inhibits differentiation of
fibroblasts into myofibroblasts

In the analysis of the collagen content in the wounds, we found a
decrease of collagen deposition in the wound tissues of GOFNotch1

mice compared with GOFCtrl mice, although no significant difference
in the wounds of LOFNotch1 versus LOFCtrl mice was found (Fig 4A).
This finding suggests that the composition of myofibroblasts in

Figure 2. Activation of Notch1 pathway in fibroblasts delays skin wound healing in mouse models.
(A) Mouse skin wound healing was delayed in GOFNotch1 mice compared with GOFCtrl mice. Top: six representative images of wounds in each group at Day 0 and Day 9
were shown. Bottom: Wound healing curves. Numbers of mice in each group is listed. (B)Mouse skin wound healing rates were comparable between LOFNotch1 and LOFCtrl

mice. Top: six representative images of wounds in each group at Day 0 and Day 8 were shown. Bottom: Wound healing curves. Numbers of mice in each group is listed. All
data are analyzed by two way ANOVA followed by post-hoc tests and presented as percentage wound closure (recovery), mean ± SD from each group.
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wound tissues of GOFNotch1 mice may be dysregulated because
myofibroblasts are the major source of newly made collagen during
wound healing. To explore the mechanisms for delayed wound
healing and decreased collagen deposition in the GOFNotch1 mouse,
we investigated whether Notch1 activation in fibroblasts affects
cellular plasticity and differentiation into myofibroblasts. Myofi-
broblasts can be characterized by the neoexpression of α-SMA, the
active production of collagen, the presence of several remodeling
enzymes, and contraction of collagen gel in vitro (Darby et al, 1990;
Kissin et al, 2006; Minz et al, 2010). Thus, we tested expression levels of
α-SMA in these DFs cultured with complete DMEM in vitro. Under
regular culture conditions, fibroblasts can be activated by serum and
cytokines contained in culture media to gain phenotypic charac-
teristics of myofibroblasts. As expected, all DF expressed high levels
of α-SMA except GOFNotch1-DF, which carry high Notch1 activity (Fig
4B). GOFNotch1-DF also displayed less microfilaments. Consistently,
GOFNotch1-DF displayed weak cellular capability to contract collagen
gel in vitro comparedwith GOFCtrl as shown infibroblast-mediated 3D
type I collagen gel assay (Fig 4C). In all assays, we did not observe any
significant difference between LOFNotch1-DF and LOFCtrl-DF. This is
consistent with unaltered wound healing rates between LOFNotch1

and LOFCtrl mice as shown above.
Moreover, we examined the levels of α-SMA in myofibroblasts at

woundgranulation tissuesofGOFNotch1 versusGOFCtrl andLOFNotch1 versus
LOFCtrl mice by immunostaining. As shown in Fig 4D, myofibroblasts in

woundsofGOFNotch1miceexpressed loweramountsofα-SMA than that in
GOFCtrlmice. These in vivo results are consistentwith the results of in vitro
assayas shown inFig 4Bdespite thatmyofibroblasts in thewounddidnot
spread and stretch as well as in vitro. Taken together, our in vitro and in
vivo data indicate that high intracellular Notch1 pathway activity inhibits
the plasticity of fibroblasts and blocks the differentiation of fibroblasts
intomyofibroblasts. In turn, impaired cellular plasticity of fibroblasts and
decreased myofibroblasts result in delayed wound healing.

Activation of Notch1 pathway in fibroblasts mitigates wound
angiogenesis

Another important component of skin wound healing is the for-
mation of new blood vessels in granulation tissues to provide
nutrients and oxygen to support tissue repair. Therefore, we ex-
amined the potential effect of the Notch1 pathway activation in
fibroblasts on the neovascularization in wound tissues. We con-
ducted a live animal whole body perfusion using a formulated
aqueous solution containing DiI and followed by scanning the
entire wound tissue using laser scanning confocal microscopy to
visualize the vascular network in the wound. We observed a sig-
nificant lack of neovascularization in the wounds of GOFNotch1 mice
when compared with the wounds of GOFCtrl mice (Fig 5A). Typically,
neovascularization develops and sprouts from the edge of wounds
and moves towards the center of the wound bed. More mature

Figure 3. Activation of Notch1 pathway in fibroblasts suppresses cellular proliferation and migration.
(A) GOFNotch1-(DF) dermal fibroblast grew slower than GOFCtrl-DF, whereas growth rates of LOFNotch1-DF and LOFCtrl-DF were comparable. Data of mean ± SD are based on
results of three experiments of total six wells/group (cells grew in 96-well plate) and analyzed by t test. (B) Expression of cell proliferation marker Ki67 (red) is lower in
fibroblasts (FSP-1, green) at wound granulation tissue of GOFNotch1 mice than that in GOFCtrl mice, yet no obvious difference between LOFNotch1 and LOFCtrl mice. Quantitative
data are calculated based on three sections/wound andmean ± SD are analyzed by t test. (C) GOFNotch1-DF migrate and proliferate were slower than those from GOFCtrl-
DF, whereas migration and proliferation of LOFNotch1-DF and GOFCtrl-DF were comparable as assessed by in vitro wound healing assay. Data of mean ± SD are based on
results of three experiments of total six pseudo-wounds/group and analyzed by t test.
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vascular branches were formed and grew into the center of the
wounds in GOFCtrl mice. Conversely, GOFNotch1 contained immature
vasculature (characterized by fewer, short and tortuous branches)
that grew from edge of wounds towards the center of wounds. In
addition, they contained leaky and hemorrhagic vessels (as evi-
denced by blurry vasculatures) in the center of wound beds. Im-
mature and leaky vasculatures was reflected by ratio of DiI
fluorescent signals in peripheral/center of wound beds. LOFNotch1

versus LOFCtrl mic showed no significant difference in wound an-
giogenesis (Fig 5B). These data indicate that activation of Notch1
pathway in fibroblasts results in decreased wound angiogenesis,
suggesting a critical role of the Notch1 signaling in fibroblasts-
modulated angiogenic response during wound healing.

Next, we tested the effect of the Notch1 activation in fibroblasts
onmodulating angiogenic response of ECs in a fibroblasts-modulated
in vitro 3D angiogenesis model. This 3D model was developed to
study vascular network formation by ECs under the support of fi-
broblasts embedded within the Type I collagen (Velazquez et al,
2002; Liu et al, 2003b). We embedded equal numbers of GOFNotch1-
DF and GOFCtrl-DF in collagen gels and compared side-by-side their

ability to support vascular network formation by human microvas-
cular endothelial cells (HMEC). Compared with GOFCtrl-DF, GOFNotch1-
DF supported significantly less vascular network formation in 3D
gels (Fig 5C). These results demonstrate that activation of the
Notch1 pathway in fibroblasts diminished their capacity to mod-
ulate angiogenic response of ECs. Therefore, it indicates that de-
creased wound angiogenesis observed in GOFNotch1 mice is ascribed
to impaired function of DFs.

Notch1 activation down-regulates IL-6 in fibroblasts

To explore the mechanism underlying Notch1-determined regu-
latory role of fibroblasts in angiogenesis, we investigated whether
high intracellular Notch1 signaling in fibroblasts modulates the
production of angiogenic factor(s). Thus, we conducted a ProteinArray
analysis to assess the expression of a panel of angiogenic factors by
human foreskin dermal fibroblasts (HDF) (Berking et al, 2001;
Berking & Herlyn, 2001) in which the Notch1 pathway is constitu-
tively activated by stable overexpression of N1IC-GFP using lentiviral
vector and compared them with the control cells expressing GFP

Figure 4. Activation of the Notch1 pathway inhibits differentiation of fibroblasts into myofibroblasts.
(A) Representative Masson’s trichrome staining images show decreased collagen deposition in wound tissues of GOFNotch1 mice compared to GOFCtrl mice. No obvious
difference in the wounds of LOFNotch1 versus LOFCtrl mice was found. Collagen levels in highlighted areas were quantified by ImageJ. Quantitative data of mean ± SD are
based on results from three sections/wound (see N of wounds in Fig 3) and analyzed by t test. (B) Immunostaining shows robustly decreased expression of α-smooth
muscle actin (α-SMA) in GOFNotch1-(DF) dermal fibroblast compared with GOFCtrl-DF, but no obvious difference in LOFNotch1-DF and LOFCtrl-DF was found. Quantitative
data are mean ± SD of intensity of green fluorescence of α-SMA/cell based on total 100 cells in each group. (C) GOFNotch1-DF exhibited weak ability to contract the collagen
gel. Top: representative three gel images/group of gel contraction assay in 0 and 5 h. Bottom: data are mean ± SD of sizes of six gels in each group compared to initial size
(set as 100%) at 0 h. Experiments were repeated three times. (D) Immunostaining shows the levels of α-SMA in myofibroblasts at wound granulation tissues of GOFNotch1

versus GOFCtrl and LOFNotch1 versus LOFCtrl mice. There were fewer myofibroblasts in a given area at wound granulation tissue of the GOFNotch1 mice than GOFCtrl mice. Also,
(myo)fibroblasts at wound granulation tissue of GOFNotch1 express lower amounts of α-SMA than that in GOFCtrl mice. No obvious difference between LOFNotch1 and LOFCtrl

mice was found. Data are mean ± SD of numbers of myofibroblasts in selected given area with equal size and intensity of green fluorescence of α-SMA/cell based on
total 100 cells in each group (ANOVA). Intensity of green fluorescence is adjusted by blue signal intensity (DAPI signal) of each cell.
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using lentiviral vector (Fig 6A). HDF expressing GFP were sorted by
FACS. The generated cells were named N1IC–GFP/HDF and GFP/
HDF accordingly. The culture supernatants from N1IC–GFP/HDF
and GFP/HDF were collected and subjected to TranSignal An-
giogenesis Antibody Array (Panomics), which allows the detection
of 48 different proteins. Levels of IL-6 were significantly down-
regulated in N1IC–GFP/HDF compared with GFP/HDF (Fig 6B),
suggesting that activation of Notch1 pathway in fibroblasts down-
regulates production of IL-6. The decreased expression of IL-6 in
cell lysates was confirmed by Quantikine Human IL-6 ELISA. The
N1IC–GFP/HDF cell produced approximately a 2.5-fold lower
amount of IL-6 compared with the GFP/HDF cell (Fig 6C). These
data reveal that the Notch1 pathway activation down-regulates
IL-6 production in human DFs.

To validate whether DFUF, in which Notch pathway is activated,
express decreased levels of IL-6, we carried out ELISA to examine
the levels of IL-6 in DFUF versus NFF. We confirmed that DFUF
expressed lower levels of IL-6 than control fibroblasts (NFF) (Fig
6D). In addition, we conducted immunostaining to evaluate the
amounts of IL-6 in wounds of GOFNotch1 mice versus GOFCtrl mice.
We found that (myo)fibroblasts, which were stained with anti–
FSP-1, in wound granulation tissues of GOFNotch1 mice expressed
less IL-6 compared with GOFCtrl mice (Fig 6E). Together, our data

demonstrated that Notch1 pathway activation inhibits IL-6 pro-
duction in DFs.

IL-6 rescues decreased angiogenesis mediated by fibroblast
Notch-1 activation in vivo and in vitro

To investigate whether down-regulation of IL-6 production in fi-
broblasts carrying high intracellular Notch activity accounts for their
diminished role in modulating the angiogenic response of ECs, we
tested the effect of exogenous IL-6 supplementation in a fibroblasts-
modulated in vitro 3D angiogenesis model. Addition of recombinant
human IL-6 (10 ng/ml) to collagen gel, in which N1IC–GFP/HDF were
embedded, could partially rescue the vascular network formation
(Fig 7A). These results indicated that decreased IL-6 is responsible for
the inhibitory effect of Notch1-determined regulatory role of fibro-
blasts in modulating angiogenesis, suggesting that IL-6 is a func-
tional down-stream target of Notch1 signaling in fibroblasts.

We further tested theeffect of IL-6 inmediatingfibroblasts-modulated
angiogenesis using in vivo Matrigel plug assay. SCID mice were injected
subcutaneouslywith 200μl of growth factor reducedHCMatrigelMatrix in
which 2 × 105 cells were embedded. Three groups were studied (N = 5/
group): (i) GFP/HDF + Matrigel Matrix + PBS, (ii) N1IC–GFP/HDF + Matrigel
Matrix + PBS, and (iii) N1IC–GFP/HDF + Matrigel Matrix + IL-6 (10 ng/ml).

Figure 5. Activation of the Notch1 pathway in fibroblasts inhibits the angiogenic response of endothelial cells.
(A) Decreased neovascularization in the wounds of GOFNotch1 mice compared with the wounds of GOFCtrl mice. Top: representative three images of capillary networks
developed in the wound beds. Centers of wound beds are highlighted by dash circles. Bottom: quantitative data are mean ± SD of intensity of red fluorescence signals of
Dil in a given area in the center of wound bed in each group (n = 6/group). Ratio of peripheral/center reflects immature leaky vessels in the center of wound beds. (B) No
significant difference in wound angiogenesis between LOFNotch1 and LOFCtrl mice was found. (A) The same displays in Top and Bottom as that in (A). (C) Inhibition of
vascular network formation by GOFNotch1-DF. Left: representative images of capillary networks developed in 3D gel of fibroblasts-modulated in vitro angiogenesis assay.
Right: quantitative data are mean ± SD of number of branches in a low power field (×0) of 3D gel (n = 6/group, ANOVA). Experiments were repeated three times.
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10 d after injection, the Matrigel plugs were harvested and analyzed by
immunohistochemistry. This assay has been used as a surrogate
wound healing assay because the injected fibroblast-containing
Matrigel plug is initially avascular (as is the early granulation tissue
of a wound). Murine blood vessels growing into the Matrigel plug were
stainedwith antimouse CD31 antibody. The vessel density in explanted
plugs was determined by counting the number of blood vessels in five
randomly selected fields from each Matrigel plug. Consistent with
observed results from in vitro 3D angiogenesis assays, N1IC–GFP/HDF
significantly inhibited neovascularization into the Matrigel plug,
whereas supplemental IL-6 was able to reverse the inhibitory effect
of N1IC–GFP/HDF on neovascularization (Fig 7B). These in vivo results
confirm that activation of the Notch1 pathway in fibroblasts atten-
uates their function in supporting angiogenesis and indicates that
Notch1-determined fibroblasts’ regulatory effect on angiogenesis is
mediated, at least in part, by down-regulation of IL-6 expression.

Discussion

Diabetic, non-healing wounds are a major clinical problem with
considerable morbidity and associated financial costs. However,
mechanisms by which diabetes impedes tissue repair mechanisms

remain unclear. Previous studies have suggested decreased tissue
levels of growth factors, including keratinocyte growth factor, VEGF,
PDGF, excess protease activity, decreased angiogenesis, altered
inflammation, or an increased microbial load as possible con-
tributing factors for the impaired wound healing observed in di-
abetes mellitus (Galkowska et al, 2006; Brem & Tomic-Canic, 2007;
Grice et al, 2010; Gardner et al, 2013; Eming et al, 2014; Pastar et al,
2014; Lindley et al, 2016; Quinn et al, 2016; Ramirez et al, 2018). In this
study, we discovered that the Notch pathway activity is elevated in
fibroblasts of human diabetic ulcers and diabetic murine wounds,
but not in normal murine acute wounds and non-diabetic ischemic
wounds. Furthermore, we uncovered the Notch1 pathway as an
important molecular determinant in controlling the plasticity and
function of fibroblasts’ role in modulation of diabetic wound
healing and angiogenesis. We demonstrate that a dysregulated
intracellular Notch1 pathway is responsible for the impaired
plasticity of fibroblasts and fibroblasts-modulated wound healing
and angiogenesis in various in vitro and in vivo models. The in-
tracellular Notch1 signaling pathway in fibroblasts may, therefore,
serve as a potential target for therapeutic interventions in diabetic
wound healing.

The formation of granulation tissue, which is comprised of new
connective tissue rich in myofibroblasts and newly formed microscopic

Figure 6. Down-regulation of IL-6 production by activation of Notch1 pathway in fibroblasts.
(A) Immunoblotting data show expression of N1IC protein in HDF transduced with N1IC-GFP/Lentiviral and GFP/Lentiviral vectors, respectively. (B) Protein Array analysis
displays that IL-6 production is down-regulated in HDF expressing N1IC-GFP compared with HDF expressing GFP. White arrows point to the spots of IL-6 on the array
membrane. (C)Quantitative data of ELISA analysis of IL-6 production (mean ± SD) of three independent experiments (t test). (D) ELISA shows decreased levels of IL-6 in cell
lysates of three diabetic foot ulcer fibroblast compared with three NFF. Levels of IL-6 in NFF are set as 100%. Relative amount of IL-6 in diabetic foot ulcer fibroblast were
calculated. (E) Immunostaining shows decreased levels of IL-6 (red) in myofibroblasts (FSP-1, green) at wound granulation tissues of GOFNotch1 compared with the GOFCtrl

mice. Top: representative images of immunostaining. Bottom: Quantitative data of IL-6 production are calculated based on three sections/wound and mean ± SD are
analyzed by t test.
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blood vessels, is essential for cutaneous wound healing. The
myofibroblasts are central to this healing process. They func-
tion as both builders which deposit a collagen-rich matrix and
orchestrators that coordinate tissue repair and regeneration by
secreting numerous cytokines and growth factors important for
cell–cell communication (Ryan et al, 1974; Takehara, 2000; Tracy
et al, 2016). Any impediment to the quantity or quality of
myofibroblasts will interfere with normal wound healing and
may result in a chronic non-healing wound. The differentiation
of fibroblasts to myofibroblasts is one of key events in wound
healing. When tissues encounter traumatic events, fibroblasts
will undergo a phenotypic change from their default, relatively
quiescent state (in which they are involved in the slow turnover
of the ECM) to a proliferative and contractile phenotype as a
myofibroblast. α-SMA is a well-recognized marker of myofi-
broblasts. Other features of myofibroblasts include the pro-
duction of several components of the ECM, such as collagens
(Schurch et al, 1981; Seemayer et al, 1981) and fibronectin and
are highly contractile (Torr et al, 2015). Our findings demon-
strate that intracellular Notch1 pathway activity regulates the
differentiation of fibroblasts into myofibroblasts as we ob-
served that high intracellular Notch1 pathway activity in fi-
broblasts results in the suppression of α-SMA expression,
decreased collagen production and low contractility. These
findings not only unveil one of the molecular mechanisms of

impaired diabetic wound healing, but also reveals new role of
Notch1 signaling in regulating cell fate.

The Notch pathway is an evolutionarily conserved signaling
cascade that regulates a variety of cellular activities including
proliferation, differentiation, quiescence and cell death (Yin et al,
2010; Shao et al, 2012). The role of Notch signaling in fibroblasts was
not well delineated previously. Studies from our laboratory and
others imply that Notch signaling serves as a negative regulator or
“break” on the growth of fibroblasts. We observed that loss of
Notch1 in MEFs promotes cell growth and migration, whereas
Notch1 activation inhibits cell growth and motility of human fi-
broblasts (Liu et al, 2012). Other investigators have reported that the
Notch pathway activation resulted in cell-cycle arrest and apo-
ptosis in MEFs (Ishikawa et al, 2008). These previous studies suggest
that high intracellular Notch pathway activity attenuates cellular
activity of fibroblasts and are consistent with the findings of the
current study. Interestingly, the inhibitory role of Notch pathway
activation in modulating keratinocyte-, EC-, and macrophages-
mediated diabetic wound healing has been reported (Kimball et
al, 2017; Zheng et al, 2019). These findings, along with ours, imply a
general role of the Notch signaling in the regulation of the re-
parative responses of various types of cells in diabetic wound
healing.

On the other hand, tumors have been described as wounds that do
not heal (Dvorak, 1986). Tumors are highly complex tissues composed

Figure 7. Rescue of capillary network formation with supplemental IL-6.
(A) Left: representative images of capillary networks in in vitro 3D angiogenesis assay. Exogenous supplemental γhIL-6 can partially rescue the vascular network
formation modulated by N1IC–GFP/HDF. Right: quantitative data of vascular network formation by endothelial cells in 3D angiogenesis assay. Data are analyzed by one-
way ANOVA followed by post-hoc test and presented as mean ± SD of three independently performed experiments. (B) Supplemental γhIL-6 in Matrigel reverses the
inhibitory effects of N1IC–GFP/HDF on angiogenesis in mouse Matrigel plug model. Left: representative images of IHC. Blood vessels are brown color (DAB) Right:
quantitative data of vessel density. Data are analyzed by one-way ANOVA followed by post-hoc test and presented asmean ± SD of five randomly selected fields from each
mouse/Matrigel plug in a given group (5 mice/group) (×40).
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of cancer cells and stromal cells, including fibroblasts termed tumor
stromal fibroblasts or cancer-associated fibroblasts (CAFs) (Orimo and
Weinberg, 2006, 2007; Kalluri, 2016). Like wound healing, tumor pro-
gression and metastasis are also tightly regulated by CAFs (Orimo &
Weinberg, 2006; Kalluri, 2016; LeBleu & Kalluri, 2018). In various tumor
models, we have consistently observed that the Notch1 signaling
pathway functions as a crucial molecular determinant in governing
fibroblasts’ regulatory role in tumor progression and metastasis. El-
evated Notch1 pathway activity inhibits the function of CAFs in pro-
moting tumor progression. For example, our prior work demonstrated
that co-grafted normal skin fibroblasts, which were pre-engineered to
carry high Notch1 activity, inhibited tumor growth and angiogenesis in
a tumor xenograft model (Shao et al, 2011), revealing that Notch ac-
tivation antagonizes the tumor-promoting effect of stromal fibroblasts.
We also showed that CAFs carrying elevated Notch1 activity sig-
nificantly inhibited tumor growth and invasion, whereas those
with a null Notch1 activity promoted tumor invasion (Shao et al,
2015). Hence, these previous results generated from tumor models
are also consistent with data derived from wound healing models
in terms of the role of Notch1 pathway in determining function and
cellular activity of fibroblasts.

Interestingly, inactivation of the Notch pathway by deletion of
Notch1 in fibroblasts has little effect on cellular behaviors and
fibroblast-modulated wound healing response. The mechanisms
underlining unaltered wound healing rates between LOFNotch1

versus LOFCtrl mice and cellular behavior between LOFNotch1 versus
LOFCtrl remain unclear. It is possible that the Notch1 signaling is
maintained in an activated status (the Notch1 signaling is “OFF”) in
skin fibroblasts in normal mice as evidenced in Fig 1D (C57B6), Figs
S4–S6, and LOFCtrl mice as evidenced in Fig S7, deletion of Notch1
will not bring about additional effect.

Active formation of new blood vessels is another characteristic of
healthy granulation tissue. Neovascularization plays a critical role
in wound healing (Folkman, 1995). Angiogenesis is a dynamic cel-
lular response that requires temporal and spatial regulation of
multiple cell types (Bauer et al, 2005; Velazquez, 2007). The as-
sembly and stabilization of vascular networks are largely dictated
by external signals from surrounding stromal cells (e.g., fibroblasts)
within the local microenvironment (Velazquez et al, 2002). In-
creasing evidence suggests that fibroblasts are an important
component of stroma-modulated angiogenesis and provide a
unique microenvironment that contributes to the organization and
maintenance of the elaborate post-natal microvasculature (Orimo
& Weinberg, 2006; Hughes, 2008). Our finding of IL-6 as a functional
downstream mediator of Notch1 signaling in regulating wound
angiogenesis reveals a paracrine mechanism by which fibroblasts
communicate with ECs and modulate angiogenesis. IL-6 is a potent
proinflammatory cytokine and participates in angiogenesis during
wound healing, tumor progression, and the development of the
cerebral vasculature (Fee et al, 2000). IL-6 has been known to
activate signal transducers and activators of transcription 3 (STAT-3)
signal pathway by binding to the gp130 subunit, which then trans-
duces intracellular signals and produces various biologic functions
(Kishimoto et al, 1995). This signal pathwaywidely exists in humanECs
and mediates several pathological post-natal neovascularization
processes (Seino et al, 1994). Overexpression of IL-6 in the central
nervous system is correlated to pronounced vascularization in vivo

(Campbell et al, 1993). Increased IL-6 is observed in patients with
giant-cell arthritis, indicating that IL-6 activates a functional
program related to pro-inflammatory angiogenesis (Hernandez-
Rodriguez et al, 2003). IL-6 is also increased in patients after a
cerebral vascular accident, which may reflect these patients’
change in inflammatory-angiogenesis status (Salobir & Sabovic,
2004; Lobbes et al, 2006). IL-6 promotes angiogenesis via MMP-9
activation which induces release of VEGF from cultured ECs and
tumor cells (Cohen et al, 1996; Yao et al, 2006) and also induces
expression of VEGF-R2 (KDR) on cultured ECs (Cohen et al, 1996).
Moreover, IL-6 induces expression of decorin, a small multifunc-
tional proteoglycan expressed by sprouting ECs during inflammation-
induced angiogenesis in vivo and by human ECs co-cultured with
fibroblasts in a collagen lattice (Strazynski et al, 2004). Decreased
IL-6 production by fibroblasts carrying high Notch1 pathway activity
explain, at least in part, the down-regulated angiogenesis observed
in both human and murine samples of our study. Therefore, our
study highlights the intracellular Notch1 pathway in fibroblasts to
be a potential target for therapeutic intervention in diabetic
wound healing. However, it remains unknown whether Notch1
signaling regulates IL-6 through direct or indirect mechanisms
and what other key factors are contributing to the observed in-
hibition of angiogenesis by fibroblasts carrying high Notch1 pathway
activity.

In contrast to understanding the downstream targets of the
Notch1 signaling pathway, the upstream mechanisms for the Notch
pathway activation in diabetic fibroblasts remain unknown. Acti-
vation of the Notch pathway is a dynamic process in fibroblasts
during diabetic wound healing. The activated intracellular Notch
signaling in fibroblasts fades away and switches “OFF” when the
diabetic wounds are healed. Dynamic changes in fibroblasts’ in-
tracellular Notch pathway activity during the diabetic wound
healing process suggest a crucial influence from wound tissue
microenvironments in diabetes mellitus. The question of how
pathological conditions presented in DFU tissues, such as hyper-
glycemia, hypoxia, oxidative stress and inflammation increase in-
tracellular Notch pathway activity in fibroblasts has been raised
and will be studied in the future.

Fibroblasts also play pivotal roles in tissue remodeling. In the
later remodeling stage of wound healing, myofibroblasts undergo
apoptosis resulting in a decreased cellular density to avoid fibrosis
and excessive matrix deposition that result in the overgrowth of
tissue, hardening, and scar formation. Hence, development of any
therapies for the treatment of wound healing through correction
and improvement of the function of skin fibroblasts needs to avoid
fibrosis and scarring. Modulation of Notch-1 activity seems to have
all attributes of such therapeutic approach. Induced activity of
intracellular Notch1 inhibits wound healing and angiogenesis, but
eliminating Notch1 signaling does not (as shown in LOFNotch1 mice).
Furthermore, no evidence of fibrosis, scarring or excessive matrix
production was found in LOFNotch1 mice or LOFCtrl mice. Thus, our
preclinical in vivo data suggest that targeting Notch1 activity in
fibroblasts to modulate its excessive activity appears to be safe and
may have significant therapeutic potential for patients with non-
healing DFUs.

In conclusion, identified connections between the intracellular
Notch pathway activity and the plasticity and biologic activity of
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fibroblasts carry significant clinical relevance. Potentially, the
elevated Notch pathway activity in fibroblasts within the micro-
environment of a chronic diabetic wounds could be manipulated
and reduced to achieve the desired positive effects on fibroblast
proliferation, migration, differentiation into myofibroblasts, and
angiogenic support. Future studies are warranted to test and
verify the precise targeted modulation of the Notch pathway
activity in fibroblasts of chronic diabetic wound tissues as a novel
therapeutic approach in the treatment of diabetic non-healing
ulcers.

Materials and Methods

Reagents

Type I collagen was purchased from Organogenesis; Recombinant
human IL-6 protein was purchased from R&D Systems. SDS–
polyacrylamide gels were obtained from Invitrogen. All other
chemicals and solutions were from Sigma-Aldrich unless otherwise
indicated.

Mice

Notch1Loxp/LoxPmice were described (Radtke et al, 1999). ROSALSL-N1IC+/+

(#008159) and Fsp1.Cre+/− (#012641) mice were purchased from The
Jackson Lab. All these mice have a C57 BL6 background. The Gain-
Of-Function Notch1 (GOFNotch1: Fsp1.Cre+/−;ROSALSL-N1IC+/+) and Loss-
Of-Function Notch1 (LOFNotch1: Fsp1.Cre+/−;Notch1LoxP/LoxP+/+) lines
were generated by crossingROSALSL-N1IC+/+ andNotch1Loxp/LoxP+/+with
Fsp1.Cre+/−mice, and subsequently crossing Fsp1.Cre+/−;ROSALSL-N1IC+/−

with ROSALSL-N1IC+/+ mice and Fsp1.Cre+/−;Notch1LoxP/LoxP+/− with
Notch1Loxp/LoxP+/+mice, respectively. GOFCtrl (FSP1.Cre−/−;ROSALSL-N1IC+/+)
and LOFCtrl (FSP1.Cre−/−; Notch1LoxP/LoxP+/+) mice were used as control.
C57 BL6 (#000664), NOD (#001976) and db/db (#000697) mice were also
purchased from The Jackson Lab. Mice weremaintained at the Division
of Veterinary Resources (DVR) animal facility under standard condi-
tions. Mice were anesthetized for all surgical procedures by ketamine/
xylazine mixture (100/10 mg/kg, IP), and imaging procedures by
inhaling 3% isoflurane gas, and euthanized in CO2 chamber.

Human and mouse skin and wound tissues

Full-thickness skin and DFU samples obtained from consenting
donors and patients receiving standard care at the University of
Miami Hospital. See Table S1 for basic clinical information of the
human subjects. Parts of fresh human tissues were used for iso-
lation of primary cells and remaining tissues were fixed in 10%
formalin (Sigma-Aldrich), and 5-μm paraffin sections were used for
immunostaining (three samples used for the isolation of cell lines
were that for immunostaining). Dorsal skin wound were created by
6-mm punch biopsy on 4-wk-old GOFNotch1, GOFCtrl, LOFNotch1, and
LOFCtrl mice. Male and female mice are 50%:50% and randomly
selected. Mouse dorsal skin wound (created by 6-mm punch bi-
opsy) tissues were obtained from 10- to 15-wk-old C57 BL6 (non-
ischemic), 28- to 33-wk-old diabetic NOD (type I diabetes), 18- to

20-wk-old diabetic db/db (type II diabetes) mice, and ischemic skin
wound (4-mm skin punch biopsy on the anterior thigh of ischemic
limb created by femoral artery ligation [Parikh et al, 2018]) from 10-
to 15-wk-old C57 BL6 mice. Blood glucose levels of NOD and db/db
mice >250 mg/dl for three consecutive days were considered di-
abetes. Mean serum glucose levels in diabetic mice were 423 mg/dl
with a range of 326–527 mg/dl, whereas mean serum glucose levels
in C57 BL6 mice were 115 mg/dl with a range of 85–148 mg/dl. Serum
glucose wasmeasured from themouse tail vein using a glucometer.
NOD and db/db mice developed diabetes at 16~24 wk old. All C57
BL6, db/db, and NOD mice are female.

Cells and cell culture

Primary fibroblasts were generated from discarded foot skin
specimens collected from routine procedures, such as bunion-
ectomy, phalangectomy, or arthroplasty according to (IRB) proto-
cols #20140473 and B# 20120574. Cells were representative of two
groups of donors: DFUFs from three diabetic individuals with a non-
healing foot ulcer at the site of wound edge and non-diabetic
normal foot fibroblasts (NFF) from three healthy, non-diabetic
donors. See Table S1 for basic clinical information of the human
subjects. Patient demographics and isolation of primary fibroblasts
from skin specimens was also previously described (Ramirez et al,
2015, 2018; Liang et al, 2016; Maione et al, 2016; van Asten et al, 2016).
Briefly, skin samples were treated in dispase (Roche) overnight at
4°C and then centrifuged to collect any released cells followed by
removal of the epidermis (keratinocytes) from the dermis the
following day based on established protocol (Normand & Karasek,
1995). Subsequently, the dermis was cut into small pieces, and then
treated with collagenase and hyalurondiase in DMEM-F12 (Invi-
trogen) for 1 h at 37°C with stirring. The cell suspension was mixed
with red blood cell lysis buffer, centrifuged, and then cells were
collected and plated. Fibroblasts were grown in 1 g/l glucose DMEM
(Invitrogen), 10% FBS (HyClone), Hepes (Sigma-Aldrich), and Pen/
Strep/Fung (Invitrogen), passaged after reaching confluence, and
second passage stocks were frozen in liquid nitrogen. Selective
growth conditions were also used to remove macrophages or any
resident immune cells, and the purity of fibroblasts was confirmed
by flow cytometry analysis based on positive staining for vimentin
and CD-140α (PDGFR), and negative staining for CD31 and CD45.
Protein extraction was performed at passages 1–3. Human foreskin
dermal fibroblasts were described previously (Berking et al, 2001;
Berking &Herlyn, 2001). Fibroblasts weremaintained in low-glucose
DMEM containing in 1 g/l glucose (Invitrogen), 10% fetal bovine
serum (HyClone), Hepes (Sigma-Aldrich), and Pen/Strep/Fung
(Invitrogen). Human microvascular endothelial cells (HMVEC) were
purchased from ATCC (CRL-4025) and cultured in complete M199
medium (Invitrogen). 293T and NIH/3T3 cells were also cultured in
complete DMEM.

Recombinant lentiviruses and viral infection of targeting cells

Generation of GFP/lenti and N1IC–GFP/lenti using 293T cells were
described previously (Balint et al, 2005). Lentiviruses collected 48 h
post-transfection displayed titers of around 107 transducing units/
ml in NIH/3T3 cells. To infect HDF by lentiviruses, cells were exposed
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to virus with MOI five in the presence of 4 μg/ml polybrene for 6 h.
Cells were then washed and cultured with regular complete me-
dium for two additional days. GFP+ cells were then sorted by FACS
(FACSAria II; BD Biosciences).

Cell proliferation assay, in vitro wound healing assay, and
collagen gel contraction assays

Cell proliferation was tested using the WST cell proliferation kit
(BioVision) according to the manufacturer’s instruction. 5 × 103 cells
were plated on 96-well plates and cultured for overnight before the
WST assay. In vitro wound healing assay was performed using
radius 24-well cell migration assay kit (CBA-125; Cell Biolabs, Inc.)
according to the manufacturer’s instruction. Collagen gel con-
traction assay was conducted using cell contraction assay kit (CBA-
201; Cell Biolabs, Inc.) according to the manufacturer’s instruction.
All assays were tested in triplicates and assays were repeated three
times.

Mouse skin wound healing model

Skin wounds were induced on the dorsal surface of the mouse back
using a 6-mm punch biopsy. Full-thickness skin was removed,
exposing the underlying muscle. Wounds were followed serially
with daily digital photographs using an Olympus digital camera. A
ruler was included in all photos to allow for calibration of mea-
surements. Images were analyzed using ImageJ software (Imaging
Processing and Analysis in Java, National Institutes of Health).
Wound area was measured each day, and the wound’s percent
recovery rate was expressed as [(original wound area minus daily
wound area)/(original wound area)] × 100.

Live animal blood vessel perfusion and laser scanning confocal
microscopy

Mouse blood vessels were directly labeled in vivo in anesthetized
mice by live perfusion using a specially formulated aqueous so-
lution (7 ml/mouse) containing DiI (D-282; Invitrogen/Molecular
Probes), which incorporates into EC membranes upon contact, and
was administered via direct intra-cardiac injection before animal
euthanasia as previously reported (Li et al, 2008; Shao et al, 2011). 7
ml of fixative (4% paraformaldehyde) was injected after Dil per-
fusion, and the entire wound tissue was harvested. The vascular
network was visualized by scanning the entire wound tissue to a
thickness or depth of 200 μm, using laser scanning confocal mi-
croscopy (Vibratome [VT1000S; Leica Microsystems]). Vessel density
was quantified assessing total number of red Dil-labeled vessels
normalized to the entire scanned wound area, using ImageJ
software.

Immunoblotting, immunohistochemistry, Masson’s trichrome
staining, antibody array, and ELISA

Immunoblotting was performed as described (Shao et al, 2011,
2016). Membranes were probed with Abs to activated Notch1
(ab8925), Notch1 (ab52627), Notch2 (ab72803), Notch3 (ab23426), Dll1
(ab84260), Hes1 (ab71559), Hey1 (ab22614) from Abcam, Notch4

(OASG05123; Aviva Systems Biology), Jag1 (AP091279U-N), Jag2
(AP13110PU-N), Dll3 (AP21739PU-N) from OriGene Technologies, Inc.,
Dll4 (PA5-97664; Thermo Fisher Scientific), and IL-6 (NB600-1131;
Novus). For immunohistochemistry, 5-μm paraffin sections were
processed as described (Shao et al, 2011, 2016) and incubated with
anti-Hes1 (ab71559), Ki67 (ab15580), α-SMA (ab7817) from Abcam,
and FSP-1 (NBP2-52890; Novus) and corresponding isotype matched
non-immunogen antibodies overnight at cold room, and then in-
cubated with secondary antibodies from Invitrogen (Goat anti-Mouse
IgG Alexa Fluor 488 conjugated for FSP-1 and α-SMA, Donkey anti-
Rabbit IgG Alexa Fluor 594 conjugated for Hes-1 and Ki67). The nuclei
were stained with DAPI (Vector Laboratories). Masson’s trichrome
staining was performed as described previously (Gallagher et al,
2007). The relative levels of α-SMA/Hes-1/Hey-1/N1IC expression
were determined using ImageJ software. The fluorescence-integrated
intensity of Hes-1/Hey-1/N1IC in each FSP-1–positive cells was
measured and divided by its own FSP-1 integrated intensity. For
α-SMA, its integrated intensity was divided by its nuclear DAPI in-
tensity. Then each cell’s relative levels of α-SMA/Hes-1/Hey-1/N1IC

expression were grouped, and average of relative fluorescence in-
tensity was calculated.

To do antibody array, cell lysates were diluted with PBS to adjust
concentration to 10 μg/μl. Equal amount of proteins (200 μg) were
subjected to array analysis with TranSignal Angiogenesis Antibody
Array from Panomics, which allows detection of 48 different pro-
teins, based on the manufacturer’s protocol. Concentration of IL-6
was measured by Quantikine IL-6 ELISA kit (R&D Systems) based on
the manufacturer’s protocol. Briefly, 3 × 104 cells/well were plated
and grew in 96 well plates for overnight and levels of IL-6 in the
supernatant of cell culture or cell lysates were tested by ELISA kit.

To inhibit Notch pathway activation, DFUFs were treated with
DAPT at indicated concentrations (DAPT [#D5942; Sigma-Aldrich])
and 5 μg/ml Jagged-1–neutralizing Ab (PA5-46970; Thermo Fisher
Scientific) for 48 h, respectively. Cells were subjected to immu-
noblotting analysis.

In vitro 3D angiogenesis assay

Formation of vessel-like structures in 3D collagen gels and sub-
sequent fluorescent staining of networks/cords in whole-mounted
gels were performed as previously described (Velazquez et al, 2002;
Liu et al, 2003a). Briefly, HMVEC were cultured as monolayers on
bovine type I collagen-coated 24-well plates at 1 × 105 cells/well for
24 h and overlaid with acellular collagen mixed in 10 × medium 199
with heparin (100 U/ml), vitamin C (50 μg/ml), and FBS (1%). After
polymerization of the collagen gels, cells were further overlaid with
a second collagen layer containing 5 × 105 cells/ml NIC–GFP/HDF
versus GFP/HDF cells. Wells were then filled with MCDB131 con-
taining 5% FBS. The reconstructs were incubated at 37°C for 5 d. To
prepare for staining, medium was removed, and the collagen gels
were fixed in Prefer (Anatech LTD) for 4 h at room temperature. Gels
were processed as whole-mounts. After blocking with 10% goat
serum, gels were stained with monoclonal anti-vWF VIII Ab followed
by a PE-conjugated second Ab (Jackson Immunoresearch). Staining
of EC networks/cords was examined by inverted fluorescence
microscopy and gels were photographed. The nuclei were coun-
terstained with DAPI.
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In vivo Matrigel plug assay

8-wk-old female SCID CB-17 mice were purchased from Charles
River Laboratories. Animal experiments were approved by the
Institutional Animal Care and Use Committee (IACUC) of University
of Pennsylvania (protocol# 801110) which conforms to the Guide
for the Care and Use of Laboratory Animals published by the U.S.
National Institutes of Health (NIH Publication No. 85-23, revised
1996). Mice were injected subcutaneously with 200 μl of mixture of
growth factor reduced BD Matrigel Matrix High Concentration (BD
Biosciences) with 2 × 105 NIC–GFP/HDF with or without IL-6 (10 ng/
ml) and GFP/HDF cells, respectively. 10 d after injection, mice were
euthanized in CO2 gas chamber and Matrigel plugs were har-
vested, fixed in 10% formalin/PBS, embedded in paraffin and
sectioned. 5-μm sections were subjected to immunohistochem-
istry analysis.

Statistics

Statistical analysis of differences was performed using ANOVA
followed by post-hoc test (for multiple groups comparison) and
two-tail Student’s t test (for paired comparison). Data were ana-
lyzed using Microsoft Excel (Microsoft Corp). Data are expressed as
mean ± SE. Values are considered statistically significant when P <
0.05.

Study approval

All animal experimental procedures were carried out with approval
from the University of Miami Institutional Animal Care and Use
Committee (IACUC, protocol# 17-130), except in vivo Matrigel plug
assay, which was approved by the IACUC of University of Penn-
sylvania (protocol# 801110). Human skin and DFU samples obtained
from donors and patients receiving standard care at the University
of Miami Hospital. The written informed consent was received from
participants before inclusion in the study. The protocols, including
written informed consent, were approved by the University Insti-
tutional Review Board (IRB) (protocols IRB #20140473 and IRB#
20120574).

Supplementary material

All materials are described in “the Materials and Methods section.”
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The data that support the findings of this study are available on
request from the corresponding author (Z-J Liu).
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