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ABSTRACT Erythropoietin (EPO) stimulates erythroid differentiation and maturation.
Though the transcriptional regulation of EPO has been well studied, the molecular
determinants of EPO secretion remain unknown. Here, we generated a HEK293T re-
porter cell line that provides a quantifiable and selectable readout of intracellular
EPO levels and performed a genome-scale CRISPR screen that identified SURF4 as an
important mediator of EPO secretion. Targeting SURF4 with multiple independent
single guide RNAs (sgRNAs) resulted in intracellular accumulation and extracellular
depletion of EPO. Both of these phenotypes were rescued by expression of SURF4
cDNA. Additionally, we found that disruption of SURF4 resulted in accumulation of
EPO in the endoplasmic reticulum (ER) compartment and that SURF4 and EPO physi-
cally interact. Furthermore, SURF4 disruption in Hep3B cells also caused a defect in
the secretion of endogenous EPO under conditions mimicking hypoxia, ruling out an
artifact of heterologous overexpression. This work demonstrates that SURF4 func-
tions as an ER cargo receptor that mediates the efficient secretion of EPO. Our find-
ings also suggest that modulating SURF4 may be an effective treatment for disor-
ders of erythropoiesis that are driven by aberrant EPO levels. Finally, we show that
SURF4 overexpression results in increased secretion of EPO, suggesting a new strat-
egy for more efficient production of recombinant EPO.
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Approximately one-third of the proteins encoded by the mammalian genome are
secretory proteins (1, 2). These proteins traffic from the endoplasmic reticulum (ER)

to the Golgi apparatus via coat protein complex II (COPII) vesicles before reaching their
final destinations: endosomes, lysosomes, plasma membrane, or extracellular space.
COPII vesicles have an inner coat composed of SAR1 and SEC23-SEC24 heterodimers
and an outer coat composed of SEC13-SEC31 heterotetramers (3). Though transmem-
brane cargo proteins may directly interact with COPII components, the physical barrier
created by the ER membrane prevents direct interaction between soluble cargos and
the COPII coat. Therefore, soluble cargos either passively flow into COPII vesicles (bulk
flow) or are captured in COPII vesicles through recognition by intermediary receptors
or adapters (cargo capture) (4).
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Support for receptor-mediated cargo capture arose from early electron microscopy
studies and in vitro assays of cargo packaging in COPII vesicles, which demonstrated
efficient selection and concentration of cargos into COPII vesicles, as well as physical
interactions between soluble cargos and COPII components (4–9). Subsequent studies
uncovered LMAN1 as the first ER cargo receptor that mediates ER export of soluble
cargos in mammals (10–12). LMAN1, together with its adapter MCFD2, forms a complex
that is required for the efficient secretion of coagulation factors V and VIII, cathepsins,
and alpha1-antitrypsin (12–16). While a handful of additional interactions between
soluble cargos and ER receptors have been described in mammals (4, 9, 17), the extent
to which bulk flow and cargo capture contribute to recruitment of proteins in COPII
vesicles is unclear. This is primarily due to the fact that ER cargo receptors that are
necessary for the efficient secretion of the majority of soluble cargos remain uniden-
tified.

Erythropoietin (EPO) is a glycoprotein that is produced predominantly by specialized
kidney peritubular fibroblasts and secreted into the plasma (18–21). EPO binds to its
receptor expressed on erythroid precursors and promotes cell survival, proliferation,
and differentiation (22–24). EPO plays a crucial role in the regulation of red blood cell
production (erythropoiesis). Failure to make sufficient amounts of EPO, as seen in the
setting of chronic kidney disease, results in anemia. In contrast, supraphysiological EPO
levels, as seen in the context of EPO-secreting tumors, result in polycythemia. Though
the transcriptional regulation of EPO production has been well studied (25–30), the
molecular basis of EPO trafficking remains poorly understood.

In this study, in an effort to identify proteins involved in EPO secretion, we devel-
oped a genome-scale CRISPR/Cas9 knockout screen that provides a quantifiable and
selectable readout of intracellular EPO levels. This screen, followed by several validation
experiments, identified the ER cargo receptor SURF4 as a key mediator of efficient EPO
secretion. These findings suggest that modulation of SURF4 in the EPO-producing cells
could provide a novel strategy for altering plasma EPO levels and therefore regulating
erythropoiesis. Additionally, this report suggests a novel strategy for improving the
efficiency of recombinant EPO production.

RESULTS
Generation of a reporter cell line that allows for a quantifiable and selectable

readout of intracellular EPO levels. To identify proteins that regulate the intracellular
trafficking of EPO, we developed a genome-scale functional screen that provides a
quantifiable and selectable readout of intracellular EPO accumulation. Therefore, we
generated a reporter HEK293T cell line stably expressing enhanced green fluorescent
protein (eGFP)-tagged EPO (EPO-eGFP) and, as an internal control, mCherry-tagged
alpha1-antitrypsin (A1AT-mCherry) (Fig. 1A). This cell line is herein referred to as the
EPO-eGFP/A1AT-mCherry reporter cell line or just as the reporter cell line. Importantly,
EPO-eGFP and A1AT-mCherry are equally expressed from the same cytomegalovirus
(CMV) promoter, with their respective coding sequences separated by a sequence
encoding a P2A peptide (Fig. 1A).

We found that both EPO and A1AT are efficiently secreted from the reporter cell line
(Fig. 1B and C) and that disruption of ER-to-Golgi transport with brefeldin A results in
intracellular accumulation of EPO and A1AT (Fig. 1D). Deletion of the gene for the ER
cargo receptor for A1AT, LMAN1, resulted in intracellular accumulation of A1AT, as
expected, with no effect on intracellular EPO (Fig. 1E), ruling out a role for LMAN1 in
EPO secretion. These studies demonstrate that the machinery required for the efficient
secretion of EPO via the classical secretory pathway is intact in this cell line and
establish the utility of this cell line to identify modifiers of intracellular EPO levels.

A CRISPR/Cas9 loss-of-function screen identified SURF4 as a putative regulator
of intracellular EPO level. To identify proteins that affect EPO secretion, we mu-
tagenized the EPO-eGFP/A1AT-mCherry reporter cell line with a CRISPR/Cas9 knockout
library (hGeCKO-v2), which delivers SpCas9, a puromycin resistance cassette, and a
pooled collection of 123,411 single guide RNAs (sgRNAs) that include 6 sgRNAs
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targeting nearly every gene in the human genome. Transduction of the library was
performed at a low multiplicity of infection (MOI) (�0.3), such that most infected cells
receive one sgRNA to mutate one gene in the genome. Puromycin selection was
applied from days 1 to 4 posttransduction. After an additional 9 days, cells with normal
mCherry but increased (top �7%) or decreased (bottom �7%) eGFP fluorescence were
isolated (Fig. 2A). This cell sorting strategy allows the identification of genes that affect
EPO but not A1AT levels, therefore reducing the likelihood of identifying genes that
affect global protein secretion. Integrated sgRNA sequences were quantified by deep
sequencing and analyzed for their enrichment in the eGFP high compared to the eGFP
low population.

This screen, performed in biological triplicates, identified that the sgRNA sequences
targeting only one gene, the surfeit locus protein 4 gene (SURF4), are enriched in the eGFP
high population compared to the eGFP low population at a false discovery rate (FDR) of
�10% (Fig. 2B). Five out of six sgRNAs targeting SURF4 were significantly enriched in the
eGFP high population (Fig. 2C and D; also see Table S1 in the supplemental material).

SURF4 deletion results in intracellular accumulation and reduced secretion of
EPO. To validate the results of the screen, we targeted SURF4 with one sgRNA (sgRNA1)
that showed significant enrichment in the whole-genome screen (Fig. 2D) and a second
sgRNA (sgRNA2) not included in the hGeCKO-v2 library. SURF4 mutagenesis with
sgRNA1 or sgRNA2 was highly efficient, resulting in insertions or deletions (indels) in
�97% and 77% of alleles, respectively (Fig. 3A). Cells transduced with SURF4 sgRNA1 or
sgRNA2 exhibited increased intracellular accumulation of EPO-eGFP, with no effect
on A1AT-mCherry (Fig. 3B and C). This finding was confirmed in three independent
EPO-eGFP/A1AT-mCherry reporter cell clones (Fig. 3D), ruling out an artifact unique to
the clone used in the original screen.

To further confirm a direct effect of SURF4 deficiency on intracellular EPO accumu-
lation, we next generated three clonal reporter cell lines with confirmed frameshift
mutations of both SURF4 alleles by transient expression of SURF4 sgRNA1. The in-

FIG 1 A reporter HEK293T cell line stably expressing EPO-eGFP and A1AT-mCherry. (A) A construct that expresses EPO-eGFP and
A1AT-mCherry from the same CMV promoter was assembled and used to generate the reporter cell line. A P2A sequence separates
EPO-eGFP from A1AT-mCherry. (B) Intracellular and extracellular EPO-eGFP and A1AT-mCherry protein abundance was determined by
Western blotting using anti-eGFP and anti-mCherry antibodies, respectively. E, ER form of EPO; F, fully glycosylated EPO. (C) Protein
abundance was quantified using ImageJ. (D) Inhibiting ER-to-Golgi transport with brefeldin A (BFA) leads to intracellular accumulation
of EPO-eGFP and A1AT-mCherry, as measured by fluorescence intensity. (E) LMAN1 deletion results in intracellular accumulation of
A1AT with no effect on EPO. Unless stated otherwise, data are represented as mean values.
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creased intracellular EPO protein levels observed in SURF4-deleted cells was completely
rescued by a lentivirus expressing wild-type SURF4 cDNA (Fig. 3E and F), ruling out an
off-target effect shared by sgRNA1 and sgRNA2. Taken together, these findings dem-
onstrate that SURF4 disruption results in intracellular accumulation of EPO. Notably,
disruption of ER-to-Golgi transport with brefeldin A further enhances the intracellular
accumulation of EPO-eGFP in SURF4-deleted cells (Fig. 3G).

To rule out an indirect effect on EPO-eGFP secretion resulting from an interaction
between eGFP and SURF4, we analyzed the dependence of FLAG-tagged EPO on SURF4
for secretion. We generated a wild-type and SURF4-deficient HEK293 cell line express-
ing FLAG-tagged EPO (EPO-FLAG) from a tetracycline-inducible promoter (Fig. 4A).
Following tetracycline administration, the intracellular EPO accumulation was signifi-

FIG 2 CRISPR/Cas9 loss-of-function screen to identify genes that affect intracellular EPO levels. (A) Screen
strategy. Twenty-four hours following transduction of the CRISPR library, puromycin selection was
applied for 3 days. At day 14, cells with unchanged mCherry but with top or bottom 7% eGFP
fluorescence were isolated. sgRNA abundance was then determined in each cell population. (B) Gene
level enrichment score was calculated for every gene using MAGeCK (see Materials and Methods). Each
gene is represented by a bubble, the size of which is proportional to the number of sgRNAs with
significant enrichment in the eGFP high population. SURF4 has the highest MAGeCK enrichment score
and is the only gene for which the false discovery rate (FDR) is �10%. NT, nontargeting. (C) Normalized
abundance of SURF4-targeting sgRNAs in the eGFP high and eGFP low populations. The abundance score
was calculated from three biological replicates, using DEseq (see Materials and Methods). SURF4 sgRNAs
are highlighted in orange. (D) Normalized counts for the six SURF4-targeting sgRNAs included in the
library, for all three biological replicates. P values were calculated using MAGeCK. Unless stated
otherwise, data are represented as mean values and the error bars represent standard deviations.
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cantly more pronounced in SURF4-deficient cells than in wild-type cells (Fig. 4B),
recapitulating the findings described above with EPO-eGFP and ruling out an indirect
effect due to the eGFP tag.

SURF4 localizes to the ER membrane (31–33) and functions as an ER cargo receptor,
suggesting that the increased accumulation of intracellular EPO in the setting of SURF4

FIG 3 SURF4 deletion results in intracellular accumulation of EPO-eGFP. (A) SURF4-targeting sgRNA1 and sgRNA2
are highly efficient, causing indels in �97% and 77% of alleles, respectively. (B and C) Flow cytometry histograms
showing intracellular accumulation of EPO, but not A1AT, following SURF4 deletion in HEK293T cells, using two
independent sgRNAs, sgRNA1 (B) or sgRNA2 (C). (D) Quantification of intracellular mean fluorescence intensity in
three independent clonal reporter cell lines transduced with SURF4-sgRNA1 (n � 12). Results were normalized to
mean fluorescence intensity of cells transduced with nontargeting sgRNAs. (E and F) Flow cytometry histograms
and normalized mean fluorescence intensity of EPO-eGFP in several clonal cell lines with sequence-confirmed SURF4
frameshift mutations (SURF4 deleted) with or without stable expression of wild-type SURF4 cDNA. Mean fluorescence
intensity in panel F was normalized to that of wild-type cells. (G) Mean eGFP fluorescence intensity in wild-type and
SURF4-deleted reporter cells with and without treatment with BFA (n � 3 per condition). ****, P � 0.0001.
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deficiency is secondary to reduced EPO secretion. Consistent with this hypothesis, the
extracellular EPO-FLAG protein level was considerably lower in the conditioned media
of SURF4-deleted cells compared to the conditioned media of wild-type cells (Fig. 4B
and C), as was the ratio of extracellular to intracellular EPO-FLAG levels (Fig. 4D). The
latter findings observed in SURF4-deficient cells were rescued by stable expression of
SURF4 cDNA (Fig. 4B and C). These results indicate that disruption of SURF4 results in
a defect in EPO secretion.

SURF4 deletion results in accumulation of EPO in the ER. We next performed
live-cell fluorescent confocal microscopy to determine the localization of accumulated
EPO in the setting of SURF4 deletion. We cotransfected the EPO-eGFP/A1AT-mCherry
reporter construct (Fig. 1A) with a vector expressing an ER blue fluorescent marker
(ERoxBFP) into wild-type or SURF4-deficient HEK293 cells. We quantified the degree of
colocalization between EPO and ERoxBFP (as well as A1AT and ERoxBFP, as a control)
by Pearson correlation coefficient (PCC). SURF4-deficient cells exhibited an increased
colocalization of EPO (but not A1AT) with ERoxBFP compared to wild-type cells (PCC
of 0.7870 in SURF4-deleted cells versus 0.2934 in wild-type cells, P � 0.0001) (Fig.
5A and B).

To confirm the ER accumulation of EPO upon SURF4 disruption, we tested the
glycosylation status of EPO in SURF4-deficient cells. EPO contains three N-glycosylation
sites (34–36). In the ER, N-linked high-mannose oligosaccharides are added to EPO and
further modifications are made in the Golgi apparatus. The ER form of EPO is cleavable
by endoglycosidase H (EndoH) (37, 38), but the post-ER form is not. Therefore, the ratio
of EndoH-cleaved to EndoH-uncleaved EPO will approximate the ratio of the amount of
EPO in the ER versus the amount of EPO in the Golgi apparatus or beyond. In
SURF4-deficient cells, the ratio of ER/post-ER form of EPO was significantly increased
compared to that in wild-type cells (Fig. 5C to E), an effect that was decreased by stable
expression of SURF4 cDNA (Fig. 5C and E). Taken together, these results demonstrate
that SURF4 promotes the efficient ER exit and secretion of EPO.

FIG 4 SURF4 mutagenesis causes reduced extracellular EPO-FLAG secretion. (A) We generated a Flp-In TREX HEK293 cell
line with tetracycline-inducible EPO-FLAG expression. (B) Intracellular and extracellular EPO-FLAG abundance in wild-type,
SURF4-deficient, and SURF4-rescued cells was measured by Western blotting (using anti-FLAG antibody) after 0, 12, and
24 h of incubation with tetracycline. �-Tubulin was used as a loading control. (C and D) Quantification of densitometry of
extracellular EPO (C) and ratios of extracellular/intracellular EPO normalized to �-tubulin in 3 independent experiments (D).
*, P � 0.05; **, P � 0.01 by two-way ANOVA.

Lin et al. Molecular and Cellular Biology

December 2020 Volume 40 Issue 23 e00180-20 mcb.asm.org 6

https://mcb.asm.org


SURF4 physically interacts with EPO. To determine whether SURF4 binds to EPO, we
tested for reciprocal coimmunoprecipitation of SURF4-FLAG and EPO-eGFP in HEK293T
cells. An antibody against the FLAG epitope coimmunoprecipitated EPO-eGFP but not the
ER luminal resident protein calnexin. Similarly, an antibody against eGFP coimmunopre-
cipitated FLAG-SURF4 (Fig. 5F). These results are consistent with a specific physical inter-
action between SURF4 and EPO.

Thrombopoietin (TPO) shares significant sequence homology with EPO. To test
whether TPO, similarly to EPO, depends on SURF4 for efficient secretion, we generated
two independent clonal HEK293 cells stably expressing and efficiently secreting TPO-
eGFP and A1AT-mCherry (Fig. 6A and B). As expected, disruption of ER-to-Golgi
transport with brefeldin A results in intracellular accumulation of TPO and A1AT (Fig.
6C). Notably, like A1AT, TPO did not accumulate intracellularly upon SURF4 deletion
(Fig. 6D and E). These findings demonstrate the specificity of SURF4 for promoting EPO
secretion and suggest that the SURF4-EPO interaction is mediated by one of the EPO
domains not present in TPO.

SURF4 promotes the secretion of endogenous EPO. The experiments described
above were performed in a heterologous cell line overexpressing EPO fused to either
an eGFP or FLAG tag. To test the impact of SURF4 deletion on the secretion of
endogenous EPO, we transduced human HEP3B cells with SURF4-targeting sgRNAs or

FIG 5 Disruption of SURF4 results in accumulation of EPO in the ER. (A) Live-cell fluorescent confocal microscopy of wild-type or SURF4-deleted reporter cells
expressing the ER marker, ERoxBFP. (B) Quantification of the degree of colocalization between EPO and ERoxBFP, as well as A1AT and ERoxBFP as a control,
by Pearson correlation coefficient. n � 6 for wild-type, n � 11 for SURF4-deficient cells. ****, P � 0.0001 by unpaired Student’s t test; ns, not significant. (C) Cell
lysates were collected from wild-type, SURF4-deleted, or SURF4-rescued cells (SURF4-deleted cells with stable expression of wild-type SURF4 cDNA) expressing
EPO-eGFP and were either treated with EndoH or left untreated. Immunoblotting was done with anti-eGFP antibody. The different forms of EPO (E, ER form
of EPO [EndoH sensitive]; U, unglycosylated EPO; F, fully glycosylated EPO [post-Golgi form of EPO]) were confirmed by treating wild-type cells with either
PNGase or EndoH (D). (E) Quantification of EndoH sensitivity from three independent experiments. *, P � 0.05. (F) FLAG antibody or eGFP antibody was used
to immunoprecipitate EPO-eGFP or SURF4-FLAG, respectively, from lysates of cells expressing either EPO-eGFP, SURF4-FLAG, both, or neither. IP, immunopre-
cipitation; IB, immunoblotting.
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control sgRNAs. As a positive control, a sgRNA targeting EPO resulted in profound
reduction of extracellular EPO level to almost an undetectable (0.45% of control) level
(Fig. 7A). Disruption of SURF4 in HEP3B cells using two independent sgRNAs resulted in
a significant reduction (51.22% of control) of extracellular EPO levels compared to cells
transduced with control sgRNAs (Fig. 7A), with no significant change in cellular EPO
mRNA levels (Fig. 7B). Notably, SURF4 mRNA levels increased by �30% in cells treated
with a prolyl hydroxylase inhibitor (Fig. 7C), suggesting that under conditions mimick-
ing hypoxia, increased SURF4 expression may contribute to enhanced EPO secretion.

SURF4 overexpression promotes more efficient EPO secretion. We next deter-
mined whether SURF4 overexpression promotes more efficient EPO secretion. We
generated a lentivirus expressing equal amounts of SURF4 and Katushka2S (SURF4-
p2A-Katushka2S) (Fig. 8A) and transduced it into HEK293 cells expressing EPO-FLAG
from a tetracycline-inducible promoter. Cells with the highest (top 10%) and lowest
(bottom 10%) SURF4 expression, as determined by Katushka2 fluorescence, were
sorted by fluorescence-activated cell sorting (FACS). Following tetracycline administra-
tion, EPO level was found to be significantly increased in the conditioned media of cells
overexpressing SURF4 compared to cells expressing low SURF4, with the reverse
pattern observed intracellularly (Fig. 8B to E).

To assess the impact of SURF4 overexpression on the secretion of EPO expressed
from its endogenous genomic locus, we performed the same experiment described
above in HEP3B cells. EPO level was increased in the conditioned media of cells
expressing high compared to low SURF4 levels (Fig. 8F), with no significant change in
cellular EPO mRNA levels (Fig. 8G). Taken together, these results demonstrate that
SURF4 overexpression promotes more efficient EPO secretion.

FIG 6 Thrombopoietin (TPO) secretion does not depend on SURF4. (A) A construct that expresses TPO-eGFP and A1AT-mCherry from the same
CMV promoter was assembled and used to generate a reporter cell line stably expressing these two fusion proteins. (B) Intracellular and
extracellular TPO-eGFP and A1AT-mCherry protein abundance was determined by Western blotting using anti-eGFP and anti-mCherry antibodies,
respectively. (C) Inhibiting ER-to-Golgi transport with brefeldin A (BFA) leads to intracellular accumulation of TPO-eGFP and A1AT-mCherry, as
measured by fluorescence intensity. (D) Flow cytometry histograms showing absence of intracellular accumulation of TPO following SURF4
deletion in HEK293T cells. (E) Quantification of cellular mean fluorescence intensity of TPO-eGFP and A1AT-mCherry in cells transduced with
SURF4-targeting sgRNAs (n � 29). Results were normalized to mean fluorescence intensity of cells transduced with nontargeting sgRNAs. As a
positive control, the same experiment was performed in parallel in reporter cell lines expressing EPO-eGFP and A1AT-mCherry (n � 48). ****,
P � 0.0001; ns, not significant.
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DISCUSSION

In this report, we developed an unbiased genome-scale loss-of-function screen and
identified SURF4 as a regulator of intracellular EPO levels. Deletion of SURF4 resulted in
intracellular accumulation and extracellular depletion of EPO. Overexpression of SURF4
resulted in the reversed pattern. Consistent with the reported localization of SURF4 at
the ER membrane (32, 33, 39), we found that disruption of SURF4 resulted in accumu-
lation of EPO in the ER and that EPO and SURF4 physically interact. Taken together,
these results strongly suggest that SURF4 is the ER cargo receptor that mediates the
efficient secretion of EPO.

The screen described above was performed in a cell line with heterologous over-
expression of EPO under the control of a CMV promoter. Therefore, it was important to
examine whether SURF4 facilitates the secretion of EPO when expressed at a more
physiological level. Accordingly, we deleted SURF4 in HEP3B cells that were induced to
express EPO from its endogenous genomic locus and found that SURF4 also promotes
EPO secretion under these conditions.

SURF4 is the mammalian ortholog of yeast Erv29p. Erv29p facilitates packaging of
pro-alpha-factor in COPII vesicles promoting their ER-to-Golgi transport (31, 40, 41).
Erv29p recycles back from the Golgi apparatus to ER via recognition of its well-
conserved dilysine sorting signal by the COPI coat (42). In mammalian cells, only a
handful of cargos (APOB, PCSK9, DSSP, AMLEX, and GH) have been shown to depend
on SURF4 for efficient secretion (32, 33, 43). However, a recent report demonstrated
that mice with germ line deletion of Surf4 exhibit early embryonic lethality (44) similar
to Caenorhabditis elegans (33), suggesting the presence of one or more SURF4-
dependent cargos with a critical function during embryogenesis. Future studies aimed
at identifying the repertoire of cargos that depend on SURF4 for secretion are essential.
Equally important are future studies that examine the transcriptional landscape of
SURF4-deficient EPO-producing cells (such as HEP3B cells).

A recently published report suggested that the cargo proteins that depend on
SURF4 for secretion contain an N-terminal tripeptide “ER-ESCAPE” motif (43). This motif
is exposed following removal of the leader sequences and is recognized by SURF4 (43).
However, an N-terminal “ER-ESCAPE” motif with high SURF4 binding affinity is not
present in EPO. Additionally, we found that EPO, but not TPO, depends on SURF4 for

FIG 7 SURF4 deletion in HEP3B cells results in reduced extracellular secretion of EPO expressed from its endogenous genomic locus. mIU,
milli-international units. (A) HEP3B cells were transduced with lentivirus expressing SURF4-targeting sgRNAs, control sgRNAs, or EPO-targeting
sgRNA as a positive control. EPO expression from its endogenous regulatory elements was subsequently induced with CoCl2 and measured in
the conditioned media by ELISA and normalized to the amount of cellular DNA (a surrogate of the total number of cells). (B) EPO mRNA expression
by qRT-PCR in wild-type (n � 8) and SURF4-deleted (n � 8) HEP3B cells following CoCl2 treatment. (C) SURF4 mRNA expression by qRT-PCR in
wild-type HEP3B cells with and without dimethyloxalylglycine (DMOG) treatment (n � 8 per condition). *. P � 0.05; **, P � 0.01; ****, P � 0.0001.
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efficient secretion. However, TPO has an N-terminal motif with a better predicted SURF4
binding affinity than EPO. These results suggest that the N-terminal “ER-ESCAPE” motif
may not be a generalizable determinant of SURF4 interaction for all SURF4-dependent
cargos.

Soluble cargos are exported from the ER via the passive “bulk flow” or the concen-
trative “cargo capture” processes, with several lines of evidence supporting one route
versus the other (4). Though “bulk flow” and “cargo capture” are not mutually exclusive,
this report provides support for the “cargo capture” model of EPO secretion. However,
it is important to note that in our experimental conditions, �50 to 70% of extracellular
EPO is reduced in the setting of SURF4 deficiency. Therefore, the secretion of the
remaining EPO depends on either bulk flow or one or more separate and unidentified
receptors.

Recent developments in genome engineering using CRISPR/Cas9 technology have
dramatically enhanced the potential and efficacy of comprehensive, high-throughput
genetic screens (45–59). Such strategies can be applied in vitro and in vivo to discover

FIG 8 SURF4 overexpression leads to enhanced EPO secretion. (A) A lentiviral construct that expresses equal amounts of SURF4 and Katushka2S from the same
phosphoglycerate kinase (PGK) promoter was assembled and transduced into HEK293 cells expressing EPO-FLAG from a tetracycline-inducible promoter. Cells
with top 10% and bottom 10% Katushka2S fluorescence were FACS sorted, corresponding to cells overexpressing SURF4 and control cells, respectively. (B and
C) Intracellular and extracellular EPO abundance following a 12-h tetracycline incubation was analyzed by Western blotting (using anti-FLAG antibody) (B), and
quantification of densitometry of the ratio of extracellular/intracellular EPO was determined in three independent experiments (C). (D) The extracellular EPO
level was also measured by ELISA. (E) SURF4 mRNA expression by qRT-PCR in wild-type (n � 16) and top 10% SURF4-expressing reporter cells (n � 4). (F) HEP3B
cells overexpressing SURF4 (and control cells) were generated as described above. Following incubation with CoCl2, the extracellular EPO level was measured
by ELISA. (G) EPO mRNA expression by qRT-PCR in wild-type (n � 8) and SURF4-overexpressing (n � 3) HEP3B cells following CoCl2 treatment. ***, P � 0.001;
****, P � 0.0001 by unpaired t test.
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novel biologic insights. Our screen was designed to focus on posttranscriptional
regulators of EPO by placing its expression under the control of a CMV promoter.
Screening strategies similar to the one employed in this article and in a recently
published report (32) might help identify additional ER cargo receptors for other
soluble secreted proteins and shed more light into the extent of the contribution of
“cargo capture” to recruitment of cargos into COPII vesicles.

Findings in this report may have important implications for erythropoiesis. EPO, the
master regulator of erythropoiesis, is produced by specialized peritubular fibroblasts in
the kidney. The transcriptional control of EPO via the hypoxia-inducible factor pathway
has been well studied (28, 60–69), culminating in the development of prolyl hydroxy-
lase inhibitors, a class of compounds that increase EPO production at the transcriptional
level via activation of the hypoxia-inducible factor (70–77). These drugs are currently in
clinical development, with several compounds in advanced phase 2 or 3 trials (78–82);
however, there are numerous potential concerns and adverse effects of these drugs,
including possible increased risks of malignancy and autoimmune disease (83–85).
Similar to the transcriptional control of EPO, the intracellular signal transduction
pathway downstream of the EPO receptor has also been well studied (86–88). In
contrast, much less is known about the molecular basis of EPO trafficking. Our findings
suggest that modulating SURF4 may be effective for the treatment of disorders of
erythropoeisis that are driven by aberrant EPO levels (89–94). Though a handful of other
cargos depend on SURF4 for their secretion (32, 33, 43), with additional cargos likely
remaining to be identified, targeting SURF4 exclusively in the EPO-producing cells
might alter plasma EPO levels and therefore regulate erythropoiesis without affecting
other SURF4-dependent cargos that are expressed in other cells. Alternatively, an
inhibitor that specifically disrupts the SURF4-EPO interaction would also be expected to
have no effects on other cargos that bind SURF4.

Recombinant human EPO (rhEPO) is used clinically for the treatment of anemia due
to chronic kidney disease, chemotherapy, or ziduvidine. rhEPO is also used to reduce
the requirement of allogeneic red blood cell transfusion following certain elective
surgeries. Though the use of rhEPO is indicated in only a subset of the above clinical
scenarios, the rhEPO market size was valued at �7.4 billion U.S. dollars in 2016 (95). In
this report, we demonstrate that SURF4 overexpression results in enhanced EPO
secretion. This approach could be applied to increase the efficiency of rhEPO produc-
tion, which might translate into reduced costs of this drug.

MATERIALS AND METHODS
Cell culture. HEK293T and HEP3B cells were purchased from ATCC. Flp-In T-REx 293 cells were

purchased from Invitrogen. HEK293T and Flp-In T-REx 293 cells were cultured in Dulbecco modified Eagle
medium (DMEM) (Gibco) supplemented with 10% heat-inactivated fetal bovine serum (Peak Serum) and
1% penicillin-streptomycin (Gibco). HEP3B cells were cultured in alpha-MEM (Gibco) supplemented with
2 mM L-glutamine (Gibco), 10% heat-inactivated fetal bovine serum (Peak Serum), and 1% penicillin-
streptomycin (Gibco). All cells were grown in a humidified 37°C incubator with 5% CO2.

Generation of the EPO-eGFP A1AT-mCherry reporter cell line. The CMV-EPO-eGFP-p2A-A1AT-
mCherry construct was assembled using the NEBuilder HiFi DNA assembly cloning kit (New England
Biolabs [NEB]) using vector sequences derived from PCSK9-eGFP-p2A-A1AT-mCherry (32) and EPO cDNA
obtained from Dharmacon. This construct expresses EPO linked to eGFP via a linker peptide formed of
glycines, prolines, and alanines (GGAPAPAPAPAPAPAPAPG). HEK293T cells were transfected with CMV-
EPO-eGFP-p2A-A1AT-mCherry using Fugene HD transfection reagent (Promega). Transfected cells were
selected with 350 �g/ml hygromycin (Invitrogen). Five weeks following hygromycin selection, single cells
were sorted into 96-well plates using a SY-3200 flow cytometer (Sony). Single cell clones were expanded
and analyzed for stable expression of EPO-eGFP and A1AT-mCherry using an LSR Fortessa flow cytometer
(BD Bioscience).

Generation of the TPO-eGFP A1AT-mCherry reporter cell line. The TPO cDNA sequence was
amplified from human liver RNA (deidentified tissue sample obtained from the tissue procurement core,
University of Michigan, institutional review board [IRB] no. HUM00048303) and the CMV-TPO-eGFP-p2A-
A1AT-mCherry construct was generated and transfected into HEK293T cells as described in the para-
graph above. The same linker peptide linking TPO and eGFP (GGAPAPAPAPAPAPAPAPG) was used.
Single cell clones were sorted, expanded, and analyzed for stable expression of TPO-eGFP and A1AT-
mCherry as described above.

Expansion and lentiviral preparation of the pLentiCRISPRv2 library. The pLentiCRISPRv2 whole-
genome CRISPR library was obtained from Addgene (Addgene no. 1000000048, a gift from Feng Zhang
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[45]), expanded by 16 electroporations (8 for each half library) into Endura electrocompetent cells
(Lucigen), and plated on 16 24.5-cm bioassay plates (ThermoFisher Scientific). Following a 12- to 14-h
incubation at 37°C, colonies were harvested from agar plates, and pooled plasmids for each half library
were isolated separately by Maxipreps using an EndoFree Plasmid Maxi kit (Qiagen). To prepare the
pooled lentiviral library, 11.3 �g of each half library was cotransfected with 17 �g of psPAX2 (Addgene
no. 12260, a gift from Didier Trono) and 11.3 �g of pCMV-VSV-G (Addgene no. 8454, a gift from Robert
Weinberg [96]) using Lipofectamine LTX with PLUS reagent (ThermoFisher Scientific) into each of six T225
tissue culture flasks (ThermoFisher Scientific) containing HEK293T cells at �80 to 90% confluence. The
medium was changed 24 h posttransfection, and viral supernatant was collected 12, 24, and 36 h
afterwards. Media containing viral supernatant were centrifuged at 500 � g for 5 min, pooled, aliquoted,
snap-frozen in liquid nitrogen, and stored at �80°C.

CRISPR/Cas9 loss-of-function genome-wide screen. For each independent screen, more than 142
million reporter cells were plated in 15-cm tissue culture dishes (Corning) at 30% confluence. Cells were
transduced with the lentiviral library (with 8 �g/ml Polybrene [Sigma]) at a multiplicity of infection (MOI)
of �0.3. Twenty-four hours after viral transduction, puromycin selection (1 �g/ml; Sigma) was applied for
4 days. Subsequently, cells were kept at a logarithmic phase of growth and passaged every 2 or 3 days,
maintaining more than 36 million cells in culture at all times in order to preserve library depth. Fourteen
days posttransduction, �80 million cells were isolated from tissue culture dishes using 0.25% trypsin
(Gibco), pelleted by centrifugation (350 � g, 4°C, 5 min), resuspended in cold phosphate buffered saline
(PBS) plus 2% fetal bovine serum (FBS), and filtered through a 35-�m mesh into flow cytometry tubes
(Corning). Cells were divided into 20 tubes and maintained on ice until sorting. Cells with normal
mCherry fluorescence (mid 70 to 80% fluorescence) and top or bottom �7% eGFP fluorescence (�4
million cells/population) were sorted using a BD FACSAria III (BD Biosciences) and collected into 15-ml
polypropylene tubes (Cellstar) containing media. Genomic DNA was extracted using a DNeasy blood and
tissue kit (Qiagen), and integrated lentiviral sgRNA sequences were amplified by a two-step PCR (20
cycles and 14 cycles, respectively) as previously described (32, 45) using a Herculase II fusion DNA
polymerase kit (Agilent Biotechnologies). DNA was purified after each of the PCRs using a QIAquick PCR
purification kit (Qiagen). Following the two-step PCR, DNA was analyzed with a bioanalyzer (Agilent), and
the sgRNA amplicons were sequenced using a NextSeq 500 sequencing system (Illumina). On average,
23.5 million reads were generated for each sorted cell population of each screen. Overall, 98% of the
reads had a per sequence quality score (phred-based base quality score) of greater than 30. A total of
104,331 sgRNA sequences were mapped and identified (along with the barcode corresponding to each
cell population of each replicate) using a custom Perl script as previously described (32). Enrichment at
the sgRNA and gene levels was analyzed using DESeq2 and MAGeCK, respectively (97, 98).

Disruption of candidate genes using CRISPR/Cas9. sgRNAs targeting several genes and several
nontargeting sgRNAs were cloned into the pLentiCRISPRv2 plasmid (Addgene no. 52961, a gift from Feng
Zhang [45]) as previously described (46). pLentiCRISPR plasmids were packaged into lentivirus, using the
same method described above. To disrupt genes in a population of cells, cells were transduced with
lentivirus at an MOI of �0.3. Subsequently, transduced cells were selected with puromycin and passaged
for 10 to 14 days prior to FACS analysis. For all validation experiments, a minimum of three biologic
replicates were analyzed. The nontargeting sgRNA sequences (5=¡3=) are sgRNA1 (GTTCATTTCCAAGT
CCGCTG), sgRNA2 (CGTGTGTGGGTAAACGGAAA), sgRNA3 (GTATTACTGATATTGGTGGG), and sgRNA4
(TCATGCTTGCTTGGGCAAAA). SURF4-targeting sgRNA sequences (5=¡3=) are sgRNA1 (TCAGACAGAGGC
GCGCCACG) and sgRNA2 (CAGGTAGCCGCAGTTCCAGG).

Generation of SURF4-deficient clonal cell lines. To generate clonal cell lines that are deficient for
SURF4, a sgRNA targeting SURF4 exon 2 was cloned into the PX459 plasmid (Addgene no. 62988, a gift
from Feng Zhang) as previously described (99), and the construct was transiently transfected into cells
using Fugene HD transfection reagent (Promega). Twenty-four hours posttransfection, puromycin (1 �g/
ml; Sigma) selection was applied for 3 days, and subsequently, single cells were sorted into each well of
three 96-well plates using the SY-3200 flow cytometry instrument (Sony). Following expansion of the
single cell clones, genomic DNA was extracted with QuickExtract (Epicentre) and indels were determined
by amplification of the sgRNA target site by PCR using Herculase II Fusion DNA polymerase (Agilent
Biotechnologies) and Sanger sequencing. The primers used for PCR and Sanger sequencing are SURF4
forward (TCTGTTCCTCACACACCCCGCCC) and SURF4 reverse (ACTCACTCAGCTGTCCCAGCAAG). Three
independent single cell clones with homozygous frameshift indels in SURF4 (13-bp insertion, 1-bp
insertion, and 10-bp deletion) were generated.

Flow cytometry analysis. HEK293T cells were detached with 0.25% trypsin (Gibco), washed with
PBS, collected by centrifugation (350 � g, 5 min, 4°C), resuspended in cold PBS with 0.1% bovine serum
albumin (BSA) and 10 mM HEPES (Invitrogen), filtered with 70-�m cell strainers, and analyzed by BD LSR
Fortessa (BD Bioscience). FlowJo (Tree Star) was used to calculate the mean fluorescence intensity and
for further analysis.

Brefeldin A treatment. HEK293 cells stably expressing EPO-eGFP (or TPO-eGFP) and A1At-mCherry
were incubated with 1 �g/ml brefeldin A (Biolegend) for 12 h. Subsequently, cells were collected as
described above and analyzed by flow cytometry for intracellular accumulation of EPO-eGFP (or
TPO-eGFP) and A1AT-mCherry.

Western blots. To prepare cell lysates, cells were washed in PBS, suspended in radioimmunopre-
cipitation assay (RIPA) buffer (Invitrogen) supplemented with cOmplete protease inhibitor cocktail
(Sigma), briefly sonicated, and incubated for 30 min in the cold room with end-over-end rotation. Cell
lysates were cleared by centrifugation to remove cell debris (20,000 � g, 30 min, 4°C) and were analyzed
immediately or stored at �80°C until analysis. Protein quantification was performed using Pierce BCA
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protein assay kit (ThermoFisher Scientific) per the manufacturer’s instructions. Lysates were boiled for
5 min at 95°C with 4� Laemmli sample buffer (Bio-Rad) supplemented with �-mercaptoethanol. Equal
amounts of proteins were loaded on either a 4 to 12% Bis-Tris gel or a 4 to 20% Tris-glycine gel
(Invitrogen), and sodium dodecyl sulfate (SDS) gel electrophoresis was performed as previously de-
scribed (100, 101). Proteins were then transferred onto a nitrocellulose membrane (Bio-Rad). Following
blocking in 5% (wt/vol) milk�Tris-buffered saline with Tween (TBST), membranes were incubated with
primary antibody at 4°C overnight, washed three times in TBST, probed with peroxidase-coupled
secondary antibodies, washed again three times in TBST, and developed with SuperSignal West Pico Plus
(ThermoFisher Scientific). For horseradish peroxidase (HRP)-conjugated primary antibodies, nitrocellulose
membranes were incubated with these antibodies and immediately developed following three TBST
washes. Densitometry was performed with ImageJ. To test for the secretion efficiency of various cargo
proteins, cells were seeded at equal densities in six-well plates or 10-cm plates, and conditioned medium
was collected at different time points, cleared by centrifugation (500 � g, 5 min, 4°C), and analyzed
immediately (by Western blotting) as described above or stored at �80°C until analysis.

Antibodies. The following antibodies were used for immunoblotting: anti-GFP (Abcam, ab290),
anti-mCherry (Abcam, ab167453), anticalnexin (Cell Signaling, 2679S), anti-glyceraldehyde-3-phosphate
dehydrogenase (anti-GAPDH) (Millipore, MAB374), HRP-conjugated anti-FLAG (Abcam, ab1238), anti-
alpha-tubulin (Abcam, ab176560), HRP-conjugated anti-mouse IgG (Bio-Rad, catalog no. 1706516), and
HRP-conjugated anti-rabbit IgG (Jackson ImmunoResearch Laboratories, catalog no. 111-035-003).

Tetracycline-induced EPO-FLAG expression. The coding sequence of EPO with a C-terminal FLAG
was cloned into pDEST-pcDNA5-BirA-FLAG (Invitrogen) using NEBuilder HiFi DNA assembly cloning kit
(NEB). Wild-type, SURF4-deficient (with homozygous frameshift SURF4 indels), or SURF4-rescued (with
homozygous frameshift SURF4 indels but with stable expression of SURF4 cDNA) Flp-In T-REx HEK293
cells with tetracycline-inducible expression of EPO-FLAG were generated as previously described (102).
The canonical isoform of SURF4 encoded by NM_033161.3 was used. To induce the expression of
EPO-FLAG, tetracycline (1 �g/ml) was added to the medium. Cells and medium were collected prior to
the addition of tetracycline and 12 and 24 h following tetracycline. Intracellular and extracellular EPO
levels were analyzed by Western blotting as described above.

EndoH assay. HEK293T cells that are either wild type, SURF4 deficient, or SURF4 rescue (defined in
the paragraph above) were transfected with a plasmid expressing EPO-eGFP. Thirty-six hours posttrans-
fection, total cell lysates were prepared, and protein quantification was performed, both as described
above. Lysates were incubated with denaturing buffer (NEB) 95°C for 10 min, and equal amounts of
lysates (180 �g) were treated with either 1 �l of endoglycosidase H (EndoH) (NEB), peptide-N-glycosidase
F (PNGase F) (NEB), or dimethyl sulfoxide (DMSO) as the control for 1 h (37°C). Subsequently, Laemmli
buffer (Bio-Rad) was added, and the samples were boiled (95°C) for 5 min. Samples were loaded on a 4
to 12% Bis-Tris gel (Invitrogen), and Western blotting was performed as described above. This experiment
was performed in biologic triplicates.

Live-cell confocal fluorescence microscopy. Wild-type or SURF4-deficient HEK293T cells that stably
express EPO-eGFP and A1AT-mCherry were transfected with a plasmid expressing ERoxBFP (Addgene no.
68126, a gift from Erik Snapp [103]). Twenty-four hours posttransfection, cells were seeded on Lab-Tek
Chambered Coverglass (ThermoFisher). Fluorescent images were captured on a Nikon A2 confocal
microscope. To quantify colocalization between two proteins, Pearson correlation coefficient was calcu-
lated using the Nikon Elements software. This experiment was performed and analyzed by an investi-
gator in a blind manner (investigator unaware of the genotype of the cells).

Coimmunoprecipitation. Flp-In T-Rex 293 cells that are either wild type, SURF4 deficient, or SURF4
rescued (defined above) were transfected with CMV-EPO-eGFP-p2A-A1AT-mCherry using Fugene HD
transfection reagent (Promega). Twenty-four hours posttransfection, cells were washed with PBS and
incubated in PBS containing 2 mM dithiobis (succinimidyl propionate) (Pierce) for 30 min at room
temperature. Subsequently, 20 mM Tris-HCl (pH 7.5) was added to quench the reaction. Cells were then
washed twice in PBS, and cell lysis was performed with the following lysis buffer (100 mM Tris, 10%
glycerol, 1% NP-40, 130 mM NaCl, 5 mM MgCl2, 1 mM NaF, and 1 mM EDTA, supplemented with
cOmplete protease inhibitor cocktail [pH 7.5]). Cell lysates were collected as described above and
incubated overnight at 4°C with either anti-FLAG M2 magnetic beads (Sigma) or GFP-Trap beads
(ChromoTek). Following five washes with lysis buffer, proteins were eluted from the beads via incubation
with 2� Laemmli sample buffer containing �-mercaptoethanol for 15 min at room temperature.

Generation of cell lines expressing low or high SURF4 levels. A construct expressing SURF4 and
the Katushka2S fluorescent marker (PGK-SURF4-p2A-Katushka2S) was assembled with the NEBuilder HiFi
DNA assembly cloning kit (NEB) using vector sequence derived from LV1-5 (Addgene no. 68411) and
cDNAs of SURF4 and Katushka2S (a gift from Gary Luker [104]). The canonical isoform of SURF4 encoded
by NM_033161.3 was used. The construct was packaged into lentivirus as described above and trans-
duced at a MOI of �1 into Flp-In T-REx 293 or HEP3B cells. Transduced cells were selected with
puromycin and passaged for 14 days prior to FACS sorting. Cells with top and bottom 10% Katushka2S
fluorescence were sorted.

Generation of SURF4-deficient HEP3B cells. Wild-type HEP3B cells were transduced with lentiviral
sgRNA targeting SURF4, control sgRNA (combination of nontargeting sgRNAs and sgRNAs targeting
genes that do not affect EPO such as BCL11A, MPL, and SERPINA1), or sgRNA targeting EPO as a positive
control. Cells were selected with puromycin and passaged for at least 2 weeks prior to further analysis.
EPO levels in the conditioned media were compared between SURF4-deleted cells and control cells,
correcting for the total cell number at the time of EPO measurement. Genomic DNA was extracted from
HEP3B cells using QuickExtract (Epicentre).
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EPO ELISA. Equal numbers of cells were seeded in 6-well or 24-well plates. For HEP3B cells, EPO
production was stimulated with CoCl2 (75 �M, Sigma) for 24 h and conditioned medium was collected
and cleared by centrifugation (500 � g, 5 min, 4°C). For Flp-In T-Rex HEK293 cells with tetracycline-
inducible expression of EPO-FLAG, tetracycline (1 �g/ml) was added for 12 h and conditioned medium
was collected, cleared by centrifugation (500 � g, 5 min, 4°C), and diluted 1:500. EPO level was measured
in the conditioned medium using the Legend Max human erythropoietin enzyme-linked immunosorbent
assay (ELISA) kit (Biolegend), according to the manufacturer’s instructions.

qRT-PCR. RNA was isolated using the RNeasy kit (Qiagen), and cDNA was synthesized using the
Superscript first-strand synthesis system for reverse transcription-PCR (RT-PCR) (Invitrogen) with random
hexamers. Quantitative RT-PCR (qRT-PCR) was perfomed using Power SYBR green PCR Master Mix using
the ViiA7 real-time qPCR System from ThermoFisher. Samples were analyzed in triplicates, and A1AT
(forward primer [GGTCAACTGGGCATCACTAA] and reverse primer [GATGGTCAGCACAGCCTTAT]) was
used as an internal control for EPO (forward primer [GGGAGCCCAGAAGGAAGCCAT] and reverse primer
[CTGCAGGCCTCCCCTGTGTA]). TUBA1A (forward primer [CGATATTGAGCGTCCAACCTAT] and reverse
primer [TTCAGGGCTCCATCAAATCTC]) was used as an internal control for SURF4 (forward primers
CTCTTGTTGTGTGGCTCTTTG and GATGAGGAACCTGGCCCTGGG; respective reverse primers TGGTCTGGA
AGAAGTCGTATTT and CCTGCCTCCGAGCTGCATGTA). The threshold cycle (2�ΔΔCT) method was used to
determine relative gene expression.

Statistical analysis. CRISPR screen data analysis was performed as described above. The statistical
differences in mean fluorescence intensity between EPO-eGFP and A1AT-mCherry were compared by
two-way analysis of variance (ANOVA). The difference in extracellular EPO-FLAG level among wild-type,
SURF4-deficient, and SURF4-rescued Flp-In T-REx 293 cells were compared by two-way ANOVA. The
Pearson correlation coefficient differences between wild-type and SURF4-deficient HEK293T cells were
compared by unpaired t test. The statistical difference in extracellular EPO detected by EPO ELISA was
assessed using an unpaired t test. The differences in the relative amounts of EndoH-sensitive EPO among
wild-type, SURF4-deficient, and SURF4-rescued HEK 293T cells were assessed by one-way ANOVA.
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