
ANIMAL GENETICS • ORIGINAL PAPER

The application of deep learning for the classification of correct
and incorrect SNP genotypes from whole-genome DNA sequencing
pipelines

Krzysztof Kotlarz1 & Magda Mielczarek1,2 & Tomasz Suchocki1,2 & Bartosz Czech1
& Bernt Guldbrandtsen3

&

Joanna Szyda1,2

Received: 26 August 2020 /Revised: 11 September 2020 /Accepted: 18 September 2020
The Author(s) 2020, corrected publication 2020

Abstract
A downside of next-generation sequencing technology is the high technical error rate. We built a tool, which uses array-based
genotype information to classify next-generation sequencing–based SNPs into the correct and the incorrect calls. The deep
learning algorithms were implemented via Keras. Several algorithms were tested: (i) the basic, naïve algorithm, (ii) the naïve
algorithm modified by pre-imposing different weights on incorrect and correct SNP class in calculating the loss metric and
(iii)–(v) the naïve algorithmmodified by random re-sampling (with replacement) of the incorrect SNPs tomatch 30%/60%/100%
of the number of correct SNPs. The training data set was composed of data from three bulls and consisted of 2,227,995 correct
(97.94%) and 46,920 incorrect SNPs, while the validation data set consisted of data from one bull with 749,506 correct (98.05%)
and 14,908 incorrect SNPs. The results showed that for a rare event classification problem, like incorrect SNP detection in NGS
data, the most parsimonious naïve model and a model with the weighting of SNP classes provided the best results for the
classification of the validation data set. Both classified 19% of truly incorrect SNPs as incorrect and 99% of truly correct
SNPs as correct and resulted in the F1 score of 0.21 — the highest among the compared algorithms. We conclude the basic
models were less adapted to the specificity of a training data set and thus resulted in better classification of the independent,
validation data set, than the other tested models.

Keywords Classification . Keras . Next-generation sequencing . Python . SNP calling . SNPmicroarray . TensorFlow

Introduction

Next-generation sequencing (NGS) technology has led to a
tremendous increase in sequencing speed and a decrease in

sequencing cost. It allows fast and cost-effective sequencing
of whole genomes of many individuals. The downside of se-
quencing carried out by high-throughput processes are the
significant technical (Pfeiffer et al. 2018; Ma et al. 2019)
and bioinformatics (Abnizova et al. 2017) error rates. In par-
ticular, the very large amounts of genomes sequenced with
moderate or low coverage, short-read lengths and individual
genetic variation often cause numerous computational prob-
lems (Horner et al. 2010). Such drawbacks make utilizing
NGS data for research dependent on bioinformatics tools for
data editing and processing. The resulting polymorphism de-
tected should therefore rather be regarded as an estimate of the
true underlying genetic variation. Therefore, it should be kept
in mind that not all of the reported polymorphisms represent
true variants. In addition, some true polymorphisms remain
undetected despite the availability of the whole-genome se-
quence. A trivial example of such situations is differences in
the number and positions of detected polymorphisms resulting
from the application of various bioinformatics pipelines to the

Communicated by: Maciej Szydlowski

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s13353-020-00586-0) contains supplementary
material, which is available to authorized users.

* Joanna Szyda
joanna.szyda@upwr.edu.pl

1 Biostatistics Group, Department of Genetics, Wroclaw University of
Environmental and Life Sciences, Kozuchowska 7,
51-631 Wroclaw, Poland

2 Institute of Animal Breeding, Balice, Poland
3 Animal BreedingGroup, Department of Animal Sciences, University

of Bonn, Bonn, Germany

https://doi.org/10.1007/s13353-020-00586-0

/ Published online: 29 September 2020

Journal of Applied Genetics (2020) 61:607–616

http://crossmark.crossref.org/dialog/?doi=10.1007/s13353-020-00586-0&domain=pdf
https://orcid.org/0000-0003-2271-025X
https://orcid.org/0000-0002-1086-9119
https://orcid.org/0000-0002-8530-3486
https://orcid.org/0000-0002-9908-3007
https://orcid.org/0000-0003-1764-135X
https://orcid.org/0000-0001-9688-0193
https://doi.org/10.1007/s13353-020-00586-0
mailto:joanna.szyda@upwr.edu.pl

same set of short-read sequence data (e.g. Hwang et al. 2015;
Laurie et al. 2016). Also, in our unpublished analyses of 197
cattle genomes, with an average genome coverage of 10×, we
observed differences between single-nucleotide polymor-
phism (SNP) called using GATK (McKenna et al. 2010),
FreeBayes (Garrison and Marth 2012) and SAMtools (Li
et al. 2009). The differences amounted to some 25% depend-
ing on the particular chromosome.

Therefore, in the current study, we aimed to build a tool,
which uses standard information available in the Variant
Calling Format (VCF) file for the classification of SNPs into
correct and incorrect detections. Based on the available data,
which comprises individuals genotyped by a commercial
high-density oligonucleotide microarray and with whole-
genome sequence, we were able to identify correct and incor-
rect SNP detections. The rate of SNPs incorrectly called from
NGS data—represented by polymorphisms with discordant
genotypes between a microarray and NGS—was only 2%.
Although it is a positive observation, it makes it difficult to
use standard statistical tools for classification since, with such
a severe imbalance in class counts, we enter a rare event data
problem. For such data, a standard logistic regression-based
classifier does not apply because of a bias in maximum
likelihood-derived parameter and probability estimates, which
is due to the strong imbalance between the observed counts of
events and non-events (King and Zeng 2001a, b). Even
though a modification of logistic regression based on boot-
strap and Markov chain Monte Carlo (Frühwirth-Schnatter
andWagner 2008) dedicated to the rare event data was applied
for the analysis of the data, parameter estimation and subse-
quent classification did not improve. Clearly, a valid possibil-
ity to improve the model would be to add more independent
variables. In practice, the number of explanatory variables is
limited by the information included in VCF files. On the other
hand, machine learning algorithms, including deep learning
(DL), proved to provide a flexible classification tool for di-
verse and complex data structures (Jiang et al. 2020). DL has
been successfully implemented in many classification chal-
lenges naming, for example, the KAGGLE competition
(https://www.kaggle.com). For livestock data, the
application of DL has just begun. It has mainly focussed on
the prediction of animals’ genetic merit (for a review, see
Pérez-Enciso and Zingaretti 2019). The use of DL-based tools
for NGS variant detection and/or classification is still scarce. It
has only recently been considered by Ravasio et al. (2018),
Singh and Bhatia (2019) and Gupta and Saini (2020). In the
current study, we exploited the potential of DL to classify
correct and incorrect SNP discoveries for the context of live-
stock whole-genome sequence data. Beginning from a naïve
classification algorithm, we further moved towards its modi-
fications aiming to mitigate the problem of the very low num-
ber of SNPs representing the incorrect SNP class. Moreover,
we also explored the continuous [0, 1] space of the distribution

of SNP class probability estimated by the deep learning net-
work in order to determine the best cutoff for SNP binary
classification. Since the study aims to provide a general clas-
sifier, we used explanatory variables available in a standard
VCF file.

Materials and methods

Datasets

The data comprised whole-genome DNA sequence reads of
four traditional Danish Red Dairy Cattle bulls. Samples were
sequenced by the Illumina HiSeq2000 platform with paired-
end 100 bp read length with a 300 bp insert size. The total
number of raw reads generated for a single animal varied
between 249,478,818 and 290,364,464. This resulted in the
average genome coverage of 10x. Additionally, these bulls
were genotyped using the Illumina BovineHD BeadArray
comprising 777,962 SNPs. This data was then utilised to com-
pose the following subsets:

– The training data set, used for building a DL-based clas-
sifier, was composed of three (out of the four) animals.

– The validation data set, used as the independent input for
the validation of the classification quality, comprised data
from the fourth animal with NGS SNPs identified based
on the same pipeline as in the training data set.

SNP calling

A pipeline for SNP calling comprised the alignment to the
reference genome carried out by using BWA-MEM (Li and
Durbin 2009) with the following default parameters: the
seed length of 19, the matching score of 1, mismatch penalty
of 4, gap open penalty of 6 and gap extension penalty of 1.
Post-alignment processing included the conversion of
SAM-formatted files into the binary (BAM) format, data
indexing and marking of PCR duplicates. This step was
performed using Picard (https://broadinstitute.github.io/
picard/) and SAMtools. Pre-variant calling was implement-
ed via the GATK package and included local re-alignment
around INDELs by using GATK’s RealignerTargetCreator
and IndelRealigner tools followed by quality score recali-
bration by using BaseRecalibrator and PrintReads tools. For
the actual variant calling, the UnifiedGenotyper tool from
the GATK package was used. Note that the above pipeline
was run only for those 772,173 SNPs genomic positions,
which were also genotyped by the Illumina BovineHD
BeadArray and were defined in the SNPchiMp (Nicolazzi
et al. 2015) database.

608 J Appl Genetics (2020) 61:607–616

https://www.kaggle.com
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/

Correct and incorrect SNP definition

After the exclusion of missing genotypes, the total number of
the analysed polymorphic loci for each of the bulls was
764,446 and these were compared between the NGS and the
microarray outputs. Correct SNPs refer to a full agreement in
genotypes estimated by both technologies; incorrect SNPs
were defined as mismatches involving at least one allele. For
the case of multi-allelic SNPs, when two or more alternative
alleles were called in the NGS output, we checked if at least
one of these alleles allowed for a match with the genotype
called by a microarray.

Explanatory variables

The following explanatory variables from a standard VCF
output were considered for the classification:

– The probability of incorrectly called alternative allele
(QUAL): QUAL = − 10log10(P1), where P1 denotes the
probability that the identified alternative allele is an in-
correct detection.

– The conditional likelihood of incorrectly called alterna-
tive allele (GQ): GQ = − 10log10(P2), where P2 denotes
the probability that the identified genotype is an incorrect
detection conditional on the position being polymorphic.

– Sequencing depth at the polymorphic site combined over
all four sequenced individuals (DP).

– Sequencing depth at the polymorphic site for a given
individual (DP2).

– The coded genotype (CALL): CALL ¼ 1 for :=:f 2
for 0=0 3 for 0=1 4 for 1=1 .

– A categorical variable was constructed based on three
reference bases downstream of a SNP.

– A categorical variable was constructed based on three
reference bases upstream of a SNP.

The last three variables were included into modelling in
order to capture the potential sequencer errors specific to the
fluorescence of particular genotypes (CALL) or the sequence
closely neighbouring the polymorphic site.

Deep learning algorithms

The deep learning algorithms were implemented via the Keras
interface (Chollet 2015) with the TensorFlow (Abadi et al.
2015) library in Python 3.7.7 on a personal computer running
Windows 10, with an Intel Core i5-3210M CPU 2.50GHz (2
cores and 3-MB cache memory), 8 GB RAM and 120 GB of
SSD. Prior to the implementation of the algorithm, all quanti-
tative explanatory variables (QUAL, GQ, DP and DP2) were
transformed into the standard normal distribution. The cate-
gorical explanatory variables (base trio up- and downstream of

a SNP as well as CALL) were one-hot encoded. The network
architecture underlying the naïve algorithm (NAÏVE) was
composed of eight sequentially connected layers with gradu-
ally decreasing numbers of parameters and a dropout rate of
0.2 after the first five layers. The dropout algorithm modifies
the activation matrix (X) estimated by every single network by
randomly setting 20% of its values to zero. In the first seven
layers, the rectified linear unit (ReLU) function, given by
f(x) = max(0, xij), was used for activation, while the sigmoid,
given by f xð Þ ¼ 1

1þe−xij was used as the activation of the last

layer. The Adam algorithm (Kingma and Ba 2014)
implementing the stochastic gradient descent approach was
used to explore the likelihood function and the binary
crossentropy loss function was used to quantify the quality
of the classification applied to the training data set. The
Keras implementation is summarised by Fig. 1.

In order to mitigate the imbalance in class counts observed
in the training data set, the above, naïve, algorithm was mod-
ified by pre-imposing different weights for the correct and the
incorrect SNP class while calculating the loss metric.
Following the recommendations from the TensorFlow online
manual, a weight for the correct SNP class was estimated as
1
2 � N trueSNPþN falseSNP

N trueSNP
and for the incorrect SNP class as

1
2 � N trueSNPþN falseSNP

N falseSNP
, where N represents the number of SNPs

representing the respective class. This algorithm is referred
to as WEIGHTED. Another modification of the NAÏVE algo-
rithm was realised within the frame of construction of the
training data set. In particular, SNPs for the incorrect class
were randomly sampled with replacement from the pool of
all incorrect SNPs. This resulted in the larger number of
SNPs representing the incorrect SNP class. In the
OVERSAMPLED30 algorithm, the number of incorrect
SNPs was equal to 30% of the number of correct SNPs; in
the OVERSAMPLED60 algorithm, the number of incorrect
SNPs was equal to 60% of the number of correct SNPs and in
the OVERSAMPLED100 algorithm, both classes were repre-
sented by the equal numbers of SNPs.

Classification quality metrics

The classification approach comprises the following
categories:

– True positive (TP) is defined as the situation when an
incorrect SNP was classified as incorrect.

– False negative (FN) is defined as the situation when an
incorrect SNP was classified as correct.

– True negative (TN) is defined as the situation when a
correct SNP was classified as correct.

– False positive (FP) is defined as the situation when a
correct SNP was classified as incorrect.

609J Appl Genetics (2020) 61:607–616

Based on these categories, two summary statistics were
used for the quantification of the quality of classifiers. The
F1 metric is given by F1 ¼ 2TP

2TPþFNþFP, and the SUMSS met-

ric given by SUMSS ¼ TN
TNþFP þ TP

TPþFN.

The estimation of probability cutoff

For each analysed SNP, the original output from the last layer
is a probability of a SNP being correct, resulting from the
sigmoid activation function. The default true/false class as-
signment applies the 0.5 probability threshold. For each of
the implemented algorithms (NAÏVE, WEIGHTED and the
three OVERSAMPLED), in addition to this standard thresh-
old, probability cutoff values were also estimated based on the
optimisation of F1 or SUMSS metrics respectively, using the
cutpointR package (Thiele and Hirschfeld 2020) implemented
in the R. In brief, in this package, separately for each of the
five algorithms, a subset of data is sampled with replacement
from the original training set of SNPs multiple times. For each
such sub-sample, the probability cutoff is represented by the
value which yields the highest F1/SUMSS metric. The final
estimate is the bootstrap mean of cutoff values from all the
bootstrap samples. In order to check the robustness of the
cutoff estimates towards the initial data, cutoff estimates were
validated by estimating them based on 20 sub-samples of our
original training data.

Results

Data sets

For the training data set, 2,274,915 SNPs from the three bulls
were considered, among which 2,227,995 (97.94%) were cor-
rectly identified by the NGS platform (Table 1). Since 24.4%
of observations did not have an estimate for the conditional
probability of incorrectly called alternative allele (GQ), this
metric was not used as an explanatory variable in the DL
algorithm. For the validation data set representing the fourth
bull, 749,506 correct (98.05%) and 14,940 incorrect SNPs
were used (Table 1). A total of 24.2% of observations also
did not have an estimate GQ this metric.

Probabilities of SNP being incorrect, based on training
data

For each SNP, the probabilities of being incorrectly called,
estimated in the training data set by the five models, are
depicted in Fig. 2. It is evident that the estimates differ be-
tween algorithms, with the two algorithms which mitigate the
rare data problem (WEIGHTED, OVERSAMPLED)
resulting in generally higher probabilities of a SNP being in-
correct. Unfortunately, the examination of the probability
curves shows that the NAÏVE algorithm fails to make a dis-
tinction between truly correct and incorrect polymorphisms

Fig. 1 Implementation scheme for the NAÏVE deep learning algorithm for SNP classification in Keras

610 J Appl Genetics (2020) 61:607–616

since the empirical probability distributions for each SNP
class is quite similar. A visually best differentiation results
from the implementation of OVERSAMPLED algorithms,
with performance increasing with the balancing of the SNP
class counts in the training data set—i.e. the most visually
d i s t i n c t d i s t r i b u t i o n s a r e p r o v i d e d b y t h e
OVERSAMPLED100 version.

Note, that in Keras, for a binary (i.e. correct/incorrect) clas-
sification, a default cutoff point is 0.5; however, for almost all
the applied algorithms, the optimal cutoff points were estimat-
ed based on the F1 or SUMSS metrics deviated from this
default value (Fig. 3). The most difference was observed when
cutoff points were optimised based on the F1 metric and var-

ied between as low as 0.1005 for the NAÏVE algorithm and
0.8550 for the OVERSAMPLED100 algorithm. Cutoff points
estimated based on the F1 metric were always higher than
those estimated based on SUMSS. However, regardless of
which metric was used for the cutoff optimisation, the
NAÏVE algorithm resulted in the lowest cutoffs and the
h i g h e s t c u t o f f v a l u e s c o r r e s p o n d e d t o t h e
OVERSAMPLED100 algorithm. The accuracy of the cutoff
points was examined by re-estimating them based on the
bootstrapped sub-samples from the training data set and was
very high, as expressed by the standard deviations varying
between < 0.001 (NAÏVE for SUMSS) and 0.016
(WEIGHTED for SUMSS).

Fig. 2 Probabilities of each SNP being incorrect, estimated based on the training data set, by the different algorithms

Table 1 Characteristics of the
analysed data sets SNP Training data Validation data

Correct Incorrect Correct Incorrect

% 97.94% 2.06% 98.05% 1.95%

Genotype counts

0/0 882,838 19,725 299,804 6037

0/1 571,549 12,910 193,755 4270

1/1 773,608 14,285 255,947 4633

Mean DP ± SD 37.91 ± 11.66 30.68 ± 13.21 37.61 ± 11.95 33.51 ± 13.08

DP range 1–587 1–457 1–587 1–457

Mean DP2 ± SD 9.53 ± 4.16 6.20 ± 4.09 9.27 ± 3.59 7.13 ± 4.33

DP2 range 1–159 1–113 1–192 1–184

Mean QUAL ± SD 484.15 ± 430.14 365.74 ± 318.29 479.85 ± 429.82 405.4 ± 340.08

QUAL range 10.00–3829.35 10.00–4516.94 10.00–3829.35 10.0–4516.90

611J Appl Genetics (2020) 61:607–616

Model optimisation

To avoid overfitting, each model was appropriately
optimised. For our imbalanced data sets, not only a loss

metric, but also precision TP
TPþFP

� �
and recall TP

TPþFN

� �

metrics were used to choose the optimal number of
epochs. Network optimisation was applied based on a
subset constructed from 10% of SNPs, stratified (i.e. the
same ratio of correct to incorrect SNPs as in the training
data set) randomly sampled from the training data set
(OPTset). Early stopping parameters were set to control
a loss metric of the OPTset, where after 25 epochs with-
out loss improvement, the learning process was stopped.
The Supplementary Fig. 1A shows the learning process
along with each epoch for the NAÏVE algorithm. It is
evident, that this baseline model did not handle our im-
balanced data well. According to the loss metric, the net-
work began to overfit after seven epochs. The NAÏVE
approach brings high precision at the cost of poor recall
close to zero. The WEIGHTED algorithm achieved a
much higher recall with a constant level of precision.
Based on loss and recall metrics, the WEIGHTED algo-
rithm was trimmed to 30 epochs (Supplementary Fig. 2A).
In relation to OVERSAMPLED30 (Supplementary
Fig. 3A), OVERSAMPLED60 (Supplementary Fig. 4A)
and OVERSAMPLED100 (Supplementary Fig. 5A) algo-
rithms, learning was stopped after 70, 120 and 113 epochs
r e s p e c t i v e l y . H ow e v e r , w i t h r e g a r d t o t h e
OVERSAMPLED algorithms, it is crucial to note that
the distributions of metrics will be different because of
differences in SNP class percentages between the
OPTset and the training data set.

Classification of training data

Figure 4 visualises the classification obtained for training data
with the final parameters of the classification algorithms.
Regardless of the applied probability cutoff (i.e. estimated
base on the F1 or on the SUMSS metrics), both—the
NAÏVE and especially the WEIGHTED algorithms—do not
provide a reasonable classification. Therefore, the approach
based on oversampling of the incorrect SNP category emerged
to be a better option. No marked differences were observed
among the three oversampling schemes tested, but nominally,
the best F1 metric of 0.42 was obtained for the most balanced
scheme attributed to the OVERSAMPLED60 algorithm.
Depending on the probability cutoff applied, this algorithm
properly classifies 59.22% of incorrect SNPs and 97.42% of
correct SNPs (for the F1 based cutoff estimated to 0.77) or
96.96% of incorrect SNPs and 89.56% of correct SNPs (for
the SUMMS based cutoff estimated to 0.49). The latter shall
be regarded as the best of the compared classification
schemes. Since the probability cutoffs estimated based on
the F1 metric were always higher than those based on the
SUMMS metric classification based on the former always
favoured, the proper assignment of correct SNPs while the
classification trend based on SUMMS was the opposite.

0.5 0.5 0.5 0.5 0.5

0.10

0.82

0.67

0.77

0.86

0.03

0.50 0.35 0.49

0.65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NAIVE WEIGHTED OVERSAMPLED 30% OVERSAMPLED 60% OVERSAMPLED 100%

cu
t-

off

DEFAULT F1 SUMSS

Fig. 3 Probability cutoff values for SNP classification into the correct or incorrect group, estimated by the different algorithms based on the optimisation
either for the F1 or for SUMSS metric

�Fig. 4 Classification of training data by the different algorithms, based on
the probability cutoff thresholds estimated for the F1 or SUMSS metrics.
The numbers above columns represent TP—percentages of true positive
results, TN—percentages of true negative results, F1—values of the F1
metric

612 J Appl Genetics (2020) 61:607–616

26 26

56 59 58

73

100
95 97 98

0

20

40

60

80

100

NAIVE WEIGHTED OVERSAMPLED30 OVERSAMPLED60 OVERSAMPLED100

%

TP F1 SUMSS

98 98 98 97 97

73

1

88 90 89

0

20

40

60

80

100

NAIVE WEIGHTED OVERSAMPLED30 OVERSAMPLED60 OVERSAMPLED100

%

TN

0.25 0.25

0.41 0.42 0.41

0

0.1

0.2

0.3

0.4

0.5

NAIVE WEIGHTED OVERSAMPLED30 OVERSAMPLED60 OVERSAMPLED100

F1

613J Appl Genetics (2020) 61:607–616

19 19 22 22 22

62

100

45 42 42

0

20

40

60

80

100

NAIVE WEIGHTED OVERSAMPLED30 OVERSAMPLED60 OVERSAMPLED100

%

TP F1 SUMSS

99 99 97 97 97

73

1

87 89 89

0

20

40

60

80

100

NAIVE WEIGHTED OVERSAMPLED30 OVERSAMPLED60 OVERSAMPLED100

%

TN

0.21 0.21
0.17 0.17 0.17

0.0

0.1

0.2

0.3

0.4

0.5

NAIVE WEIGHTED OVERSAMPLED30 OVERSAMPLED60 OVERSAMPLED100

F1

614 J Appl Genetics (2020) 61:607–616

Classification of validation data

Obviously, the classification of validation data, depicted in
Fig. 5, was not as good as in the training conditions. The F1
metrics dropped down to 0.21 for NAÏVE and WEIGHTED
algorithms as well as 0.17 for all OVERSAMPLED algo-
r i thms, which was a decrease by 0.04 (NAÏVE,
W E I G H T E D) , 0 . 2 4 (O V E R S AM P L E D 3 0 ,
OVERSAMPLED100) and 0.25 (OVERSAMPLED60).
With that, it became evident that the good performance of
the OVERSAMPLED algorithms observed on training data
was not robust, especially for the detection of incorrect
SNPs. In particular, for training data and using the probability
cutoff estimated (using the training data set) based on F1, only
some 22% of such SNPs were de tec ted by the
OVERSAMPLED algorithms. This was a decrease of
33.87% for OVERSAMPLED30, by 36.39% for
O V E R S A M P L E D 1 0 0 a n d 3 7 . 4 0 % f o r
OVERDSAMPLED60 and thus much higher than the de-
crease of 7.13% and 6.69% observed respectively for
NAÏVE and WEIGHTED algorithms. On the other hand, the
proper detection of correct SNPs was on the same level for
both analysed data sets (i.e. training and validation). A very
similar relation between test-based and validation-based clas-
sifications was observed when using probability cutoff values
estimated based on the SUMSS metric, visualised in Fig. 5.
The F1 metric quantifying the overall performance of the al-
gorithms favoured the basic models—NAÏVE and
WEIGHTED, which yielded F1 of 0.21. All three algorithms
trained based on OVERSAMPLING of the incorrect SNPs
resulted in a lower F1 of 0.17.

Discussion and conclusions

The classification of rare event data has been a long
recognised problem in statistics. Before the era of machine
learning, such data was typically attacked either by modifica-
tion of input data through applying continuity corrections
(Sweeting et al. 2004) and re-sampling (Frühwirth-Schnatter
andWagner 2008) or by modification of the underlying logis-
tic regression model by estimates correction and applying dif-
ferent weighting for input data classes (King and Zeng 2001a).
Unfortunately, none of those statistical-based approaches re-
sulted in satisfactory handling of the rare event class. A mod-
ern extension of handling the problem is to apply the machine

learning approach, which with its flexibility towards data
structures poses a promising alternative.

NGS-based classification of variants based on the standard
output from VCF files is not a new idea. Already in 2013,
Durtschi et al. proposed a metric based on the likelihood of
three possible genotypes and read depth at a polymorphic site
to classify each SNP into four categories expressing different
probabilities of being a correct call. Other methods, reviewed
by Heydari et al. (2017), aiming not only to identify ambigu-
ous SNP calls but also to correct the original output from
variant calling pipelines based on Illumina sequencing, were
either based on analysing sequence k-mers or on multiple
alignments. In the context of machine learning for SNP clas-
sification based on the standard VCF output, Shringarpure
et al. (2017) constructed a classifier based on random forests.
Deep learning was applied by Ravasio et al. (2018) who esti-
mated the SNP correctness probability and provided a SNP
classification tool GARFIELD based on a multi-layer network
implemented through the H2O platform (www.h2o.ai). The
authors achieved generally high areas under the ROC,
varying between 0.63 and 0.98, depending on the analysed
platform and coverage. In their unpublished report deposited
in the bioRxiv preprint server (2019), Singh and Bhatia
applied a series of dense layers to classify data originated
from the IonTorrent technology, obtaining a high F1 score
of 0.94. The authors circumvented the rare nature of
incorrect SNP calls by evaluating only subsets of correct and
incorrect variants of equal size.

The experience gained from our analysis of the data is that
for a rare event classification problem, like incorrect SNP
detection in NGS data, a more parsimonious network, which
is less adapted to the specificity of a training data set, is a
better, i.e. more robust, option.

Availability of data and material The data set is available upon request to
bernt.guldbrandtsen@itw.uni-bonn.de.

Authors’ contributions K.K. performed computations involving deep
learning and network diagnostics and co-designed network architecture.
M.M. built and ran the variant detection pipeline. T.S. edited raw variant
data. B.C. participated in network computations and co-designed network
architecture. B.G. provided and edited raw data as well as participated in
designing the variant detection pipeline. J.S. provided the idea for the
study. All authors contributed to the writing of the manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethics approval This study is entirely based on in silico data and there-
fore ethics issues do not apply.

Consent to participate Not applicable.

�Fig. 5 Classification of validation data by the different algorithms, based
on the probability cutoff thresholds estimated for the F1 or SUMSS
metrics. The numbers above columns represent TP—percentages of true
positive results, TN—percentages of true negative results, F1—values of
the F1 metric

615J Appl Genetics (2020) 61:607–616

http://www.h2o.ai

Consent for publication Not applicable.

Code availability Keras code and the trained network are available upon
request from the corresponding author.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes weremade. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abadi M, Agarwal A, Barham P et al. (2015) TensorFlow: large-scale
machine learning on heterogeneous systems. tensorflow.org

Abnizova I, Boekhorst R, Orlov YL (2017) Generation, computational
errors and biases in short read next sequencing. J Proteomics
Bioinform 10:1. https://doi.org/10.4172/jpb.1000420

Chollet F (2015) Keras. github.com/fchollet/keras
Durtschi J, Margraf RL, Coonrod EM et al (2013) VarBin, a novel meth-

od for classifying true and false positive variants in NGS data. BMC
Bioinformatics 14:S2. https://doi.org/10.1186/1471-2105-14-S13-
S2

Frühwirth-Schnatter S, Wagner H (2008) Marginal likelihoods for non-
Gaussian models using auxiliary mixture sampling. Comput Stat
Data An 52:4608–4624. https://doi.org/10.1016/j.csda.2008.03.028

Garrison E, Marth G (2012) Haplotype-based variant detection from
short-read sequencing arXiv 1207.3907

Gupta G, Saini S (2020) DAVI: deep learning-based tool for alignment
and single nucleotide variant identification.Mach Learn Sci Technol
1:025013. https://doi.org/10.1101/778647

Heydari M,Miclotte G, Demeester P et al (2017) Evaluation of the impact
of Illumina error correction tools on de novo genome assembly.
BMC Bioinformatics 18(1):374. https://doi.org/10.1186/s12859-
017-1784-8

Horner DS, Pavesi G, Castrignanò T et al (2010) Bioinformatics ap-
proaches for genomics and post genomics applications of next-
generation sequencing. Brief Bioinform 11(2):181–197. https://
doi.org/10.1093/bib/bbp046

Hwang S, Kim E, Lee I et al (2015) Systematic comparison of variant
calling pipelines using gold standard personal exome variants. Sci
Rep 5:17875. https://doi.org/10.1038/srep17875

Jiang T, Gradus JL, Rosellini AJ (2020) Supervised machine learning: a
brief primer. Behav Ther 51(5):675–687. https://doi.org/10.1016/j.
beth.2020.05.002

KingG, Zeng L (2001a) Logistic regression in rare events data. Polit Anal
9:137–163. https://doi.org/10.1093/oxfordjournals.pan.a004868

King G, Zeng L (2001b) Explaining rare events in international relations.
I n t O r g a n 5 5 : 6 9 3 – 7 1 5 . h t t p s : / / d o i . o r g / 1 0 . 1 1 6 2 /
00208180152507597

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization
arXiv 1412.6980

Laurie S, Fernandez-Callejo M, Marco-Sola S et al (2016) From wet-lab
to variations: concordance and speed of bioinformatics pipelines for
whole genome and whole exome sequencing. HumMutat 37:1263–
1271. https://doi.org/10.1002/humu.23114

Li H, Durbin R (2009) Fast and accurate short read alignment with
burrows-wheeler transform. Bioinformatics 25:1754–1760. https://
doi.org/10.1093/bioinformatics/btp324

Li H, Handsaker B,Wysoker A et al (2009) The sequence alignment/map
format and SAMtools. Bioinformatics 25:2078–2079. https://doi.
org/10.1093/bioinformatics/btp352

MaX, Shao Y, Tian L et al (2019) Analysis of error profiles in deep next-
generation sequencing data. Genome Biol 20:50. https://doi.org/10.
1186/s13059-019-1659-6

McKenna A, Hanna M, Banks E et al (2010) The genome analysis
toolkit: a MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res 20:1297–1303. https://doi.
org/10.1101/gr.107524.110

Nicolazzi EL, Caprera A, Nazzicari N et al (2015) SNPchiMp v.3: inte-
grating and standardizing single nucleotide polymorphism data for
livestock species. BMC Genomics 16:283. https://doi.org/10.1186/
s12864-015-1497-1

Pérez-Enciso M, Zingaretti LM (2019) A guide on deep learning for
complex trait genomic prediction. Genes 10:553. https://doi.org/
10.3390/genes10070553

Pfeiffer F, Gröber C, Blank M et al (2018) Systematic evaluation of error
rates and causes in short samples in next-generation sequencing. Sci
Rep 8:10950. https://doi.org/10.1038/s41598-018-29325-6

Ravasio V, Ritelli M, Legati A et al (2018) GARFIELD-NGS: genomic
vARiants FIltering by dEep Learning moDels in NGS.
Bioinformatics 34(17):3038–3040. https://doi.org/10.1093/
bioinformatics/bty303

Shringarpure SS, Mathias RA, Hernandez RD et al (2017) Using geno-
type array data to comparemulti- and single-sample variant calls and
improve variant call sets from deep coverage whole-genome se-
quencing data. Bioinformatics 33(8):1147–1153. https://doi.org/10.
1093/bioinformatics/btw786

Singh A, Bhatia P (2019) Intelli-NGS: intelligent NGS, a deep neural
network-based artificial intelligence to delineate good and bad var-
iant calls from IonTorrent sequencer data. bioRxiv:12.17.879403.
https://doi.org/10.1101/2019.12.17.879403

Sweeting MJ, Sutton AJ, Lambert PC (2004) What to add to nothing?
Use and avoidance of continuity corrections in meta-analysis of
sparse data. Stat Med 23(9):1351–1375. https://doi.org/10.1002/
sim.1761

Thiele C, Hirschfeld G (2020) Cutpointr: improved estimation and vali-
dation of optimal cutpoints in R arXiv 2002.09209

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

616 J Appl Genetics (2020) 61:607–616

https://doi.org/
http://tensorflow.org
https://doi.org/10.4172/jpb.1000420
http://github.com/fchollet/keras
https://doi.org/10.1186/1471-2105-14-S13-S2
https://doi.org/10.1186/1471-2105-14-S13-S2
https://doi.org/10.1016/j.csda.2008.03.028
https://doi.org/10.1101/778647
https://doi.org/10.1186/s12859-017-1784-8
https://doi.org/10.1186/s12859-017-1784-8
https://doi.org/10.1093/bib/bbp046
https://doi.org/10.1093/bib/bbp046
https://doi.org/10.1038/srep17875
https://doi.org/10.1016/j.beth.2020.05.002
https://doi.org/10.1016/j.beth.2020.05.002
https://doi.org/10.1093/oxfordjournals.pan.a004868
https://doi.org/10.1162/00208180152507597
https://doi.org/10.1162/00208180152507597
https://doi.org/10.1002/humu.23114
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1186/s13059-019-1659-6
https://doi.org/10.1186/s13059-019-1659-6
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1186/s12864-015-1497-1
https://doi.org/10.1186/s12864-015-1497-1
https://doi.org/10.3390/genes10070553
https://doi.org/10.3390/genes10070553
https://doi.org/10.1038/s41598-018-29325-6
https://doi.org/10.1093/bioinformatics/bty303
https://doi.org/10.1093/bioinformatics/bty303
https://doi.org/10.1093/bioinformatics/btw786
https://doi.org/10.1093/bioinformatics/btw786
https://doi.org/10.1101/2019.12.17.879403
https://doi.org/10.1002/sim.1761
https://doi.org/10.1002/sim.1761

	The...
	Abstract
	Introduction
	Materials and methods
	Datasets
	SNP calling
	Correct and incorrect SNP definition
	Explanatory variables
	Deep learning algorithms
	Classification quality metrics
	The estimation of probability cutoff

	Results
	Data sets
	Probabilities of SNP being incorrect, based on training data
	Model optimisation
	Classification of training data
	Classification of validation data

	Discussion and conclusions
	References

