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Cross-site transportability of an explainable
artificial intelligence model for acute kidney
injury prediction
Xing Song 1, Alan S. L. Yu 2, John A. Kellum 3, Lemuel R. Waitman1, Michael E. Matheny 4,5,

Steven Q. Simpson6, Yong Hu 7✉ & Mei Liu 1✉

Artificial intelligence (AI) has demonstrated promise in predicting acute kidney injury (AKI),

however, clinical adoption of these models requires interpretability and transportability. Non-

interoperable data across hospitals is a major barrier to model transportability. Here, we

leverage the US PCORnet platform to develop an AKI prediction model and assess its

transportability across six independent health systems. Our work demonstrates that cross-

site performance deterioration is likely and reveals heterogeneity of risk factors across

populations to be the cause. Therefore, no matter how accurate an AI model is trained at the

source hospital, whether it can be adopted at target hospitals is an unanswered question. To

fill the research gap, we derive a method to predict the transportability of AI models which

can accelerate the adaptation process of external AI models in hospitals.
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Acute kidney injury (AKI) is a potentially life-threatening
clinical syndrome for which there is no effective treatment
other than supportive care and dialysis. AKI complicates

the course of treatment and worsens outcomes of significant
numbers of hospitalized-patients, i.e., 10–15% of all inpatients1

and more than 50% of the critical care patients2. In-hospital
mortality among patients with AKI is high, with as much as a
sevenfold increased mortality risk compared with patients with-
out AKI1. Patients who survive an episode of AKI are also at
increased risk for long-term adverse health outcomes such as the
development of cardiovascular disease or progression to chronic
kidney disease or end-stage renal disease3. Biomarkers to predict
risk, diagnosis, prognosis, and therapeutic responses in patients
with AKI are being identified and evaluated in clinical studies.
However, the only FDA-approved biomarker test, Nephrocheck
(Astute Medical, San Diego CA), is indicated for critically ill
patients, whereas substantial proportion of patients developing
AKI are cared for outside the intensive care units.

Recent availability of electronic health record (EHR) data and
advances in artificial intelligence (AI) have sparked growing
interest in machine learning-based risk prediction models for
healthcare4,5. The emerging applications of machine-learning
algorithms for prediction of patient outcomes using EHR data
have demonstrated promise in helping physicians to anticipate
future events at an expert level, and in some cases surpassing the
performance of clinicians6. Traditional machine learning-based
AKI prediction models have achieved an area under the receiver
operating characteristic curve (AUROC) ranging 0.71–0.80 in
derivation studies, 0.66–0.80 in internal validation studies, and
0.65–0.71 in external validation studies7–9. A recent study
reported in Nature10 by Google DeepMind applied deep learning
on EHR data for AKI prediction and showed that their model
could predict 55.8% of all inpatient episodes of AKI with lead
times up to 48 h. However, the deep learning model was trained
on medical records of mostly Caucasian male patients admitted to
the US Department of Veterans Affairs healthcare system, lacking
independent validation on a general population from other health
systems11. Koyner et al.8 developed and recently externally vali-
dated9 their AKI prediction model in patients treated at hospitals
in Illinois using gradient boosting machine, which achieved an
AUROC above 0.85 for AKI stage 2 prediction within 48 h.

Before prediction models can be implemented in clinical
practice, their transportability or ability to produce accurate
predictions on new sets of patients from different settings, e.g.,
clinical settings, geographical locations, or time periods, must be
validated12. Failure of a prediction model to transport well across
settings indicates that the model cannot be readily implemented
in clinical practice for new patients13. Model transportability is
often evaluated by independent validation using external data
resources, e.g., AKI patients from different health systems. Major
barriers to independent validation include patient heterogeneity,
clinical process variability, and EHR configuration and data
warehouse heterogeneity leading to non-interoperable databases
across hospitals. Prediction model performance can vary as a
result of changing outcome rates, shifting patient populations,
and evolving clinical practice14. Most available AKI prediction
models require considerable manual curation effort in pre-
selecting predictor variables; however, certain variables may be
only available to a single hospital or clinical unit that hinders the
transportability of a model across different settings.

To ensure data harmonization and consistency across health
systems, many healthcare institutions have transformed data
contained in their EHR into a common representation (ter-
minologies, vocabularies, coding schemes) as well as a common
format (common data model or CDM)15,16. In 2010, the United
States Congress authorized the creation of the non-profit Patient-

Centered Outcomes Research Institute (PCORI) who launched
PCORnet17 in 2014 to support the development of an ecosystem
for conducting patient-centered outcomes research faster using
EHR across hundreds of health systems in the US. In this study,
we utilized EHR data in the Greater Plains Collaborative (GPC)18,
a PCORnet Clinical Data Research Network consisting of twelve
independent health systems in nine US states, to build a scalable
and interpretable machine-learning model to continuously cal-
culate AKI risk within the next 48 h for all inpatients from their
admission to the hospital until discharge. The underlying learning
algorithm is gradient boosting with decision trees implemented in
a discrete-time survival framework (DS-GBT) that operates
sequentially over individual EHRs with independent right-
censoring (see Supplementary Fig. 1). GPC’s geographical reach
across nine central US states is advantageous for testing gen-
eralizability of research findings. We assessed the transportability
of the AKI prediction model on patients from six GPC sites and
examined risk factor patterns within and across populations.
Finally, we derived a statistical method to predict the transport-
ability of prediction models when transported from one hospital
(source) to another (target) without full disclosure of the target
hospital data, which can accelerate the adaptation process of
external AI models in hospitals.

Results
Development and validation of AKI prediction model in
source health system. From the source health system, we col-
lected a sample of 153,821 eligible inpatient encounters between 1
January 2010 and 31 December 2018 with various lengths of stay.
Each individual patient had a mean of 67 (SD= 46) clinical facts
per day with a total number of 1,064,619 encounter-days. After
automated data curation, the final dataset contained 38,920
unique variables with 142,167,783 distinct observations. Among
them, only 1933 unique variables (i.e., the common set) shared
across the six participating sites. Cohort identification and
automated data curation procedures are described in “Methods”.
We held-out inpatient encounters occurring after 1 January 2017
as the temporal validation set (27,603 encounters) and rando-
mized the remaining encounters between 1 January 2010 and 31
December 2016, across derivation (70%), calibration (15%), and
internal validation (15%) sets. The AKI prediction model was
trained and optimized using the derivation set and evaluated on
both internal and temporal validation sets.

Figure 1 illustrates the model performance, measured by
AUROC, in predicting inpatient risks of developing different
stages of AKI within the next 48 h using all collected predictor
variables or with all forms of serum creatinine (SCr) and blood
urea nitrogen (BUN) removed. Model performance across various
subgroups, i.e., stratified by baseline SCr, patient age at admission,
days since admission, and type of validation, is also shown in Fig. 1.
Temporal hold-out validation mimics the prospective evaluation of
the model on future unseen hospital encounters, which demon-
strated an overall AUROC of 0.76 [95% CI, 0.75–0.78] for any AKI
prediction within 48 h, 0.81 [95% CI, 0.76–0.86] for predicting at
least AKI stage 2 (moderate-to-severe AKI), and 0.87 [95% CI,
0.78–0.93] for predicting AKI stage 3 (severe AKI). The overall area
under the precision-recall curve (AUPRC) was 0.14 [95% CI,
0.08–0.23] for predicting moderate-to-severe AKI in 48 h, and
achieved 0.23 [95% CI, 0.08–0.42] for severe AKI prediction
(Supplementary Fig. 2). The model excluding SCr and BUN in all
forms showed a competitive AUROC of 0.75 [95% CI, 0.74–0.76]
for any AKI prediction, 0.82 [95% CI, 0.78–0.86] for predicting
moderate-to-severe AKI, and 0.85 [95% CI, 0.78–0.89] for severe
AKI prediction in 48 h. The model maintained a relatively robust
performance when evaluated on samples stratified by age group
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and baseline SCr. The model demonstrated improving perfor-
mance over time and was steadily accurate after day 3 since
admission, that is using data on and before day 4 to predict AKI in
the next 2 days resulted in better accuracy than using data on and
before day 2 to predict AKI in the next 2 days. The model for any
AKI prediction showed calibration with a Hosmer-Lemshow score
(HLS) of 42.8 (p= 0.01) for the temporal hold-out set, while it can
be significantly improved to an HLS < 30 (p > 0.02) after simple
recalibration (Supplementary Fig. 3). In Supplementary Figs. 4–6,
we also reported the model performance for predicting AKI risk in
24 h, which showed uniformly better performance than 48-h
prediction with temporal hold-out AUROC of 0.84 [95% CI,
0.82–0.84], 0.90 [95% CI, 0.88–0.93] for any AKI and moderate-to-
severe AKI, and 0.93 [95% CI, 0.89–0.96] for severe AKI
respectively. We also conducted experiments with the least absolute
shrinkage and selection operator (LASSO) model, which showed
significantly inferior performance compared with DS-GBT. The
temporal validated AUROC and AUPRC for 48-h prediction of
moderate-to-severe AKI using all features were 0.78 [95% CI,
0.73–0.84] and 0.06 [95% CI, 0.04–0.11] (Supplementary Fig. 7).

Clinical interpretation of the AKI prediction model in source
health system. Using bootstrapped Shapely Additive exPlanations
(SHAP) values, we looked inside the AKI prediction model by
evaluating the marginal effects of predictive features identified
by the model. We created a dashboard demonstrating the full list
of feature importance ranking and marginal effect plots derived

from our model (https://sxinger.shinyapps.io/AKI_shap_dashbd/).
Here, we illustrate the marginal effects of top 10 important fea-
tures from the DS-GBT model in predicting moderate-to-severe
(clinical significant)19 AKI in 48 h using all features (Fig. 2). The
model identified SCr (Creat SerPL-mCnc (2160-0)) and its change,
vancomycin exposure (Vancomycin Injectable Solution_cumula-
tive), minimal value (BP_SYSTOLIC_min, BP_DIASTOLIC_min)
and the hourly change of blood pressure (BP_SYSTOLIC_slope,
BP_DIASTOLIC_slope), age, body mass index (BMI), height (HT),
chest X-ray procedure (X-ray of chest, frontal view) as the top
predictors of AKI. In the model without SCr and BUN (Supple-
mentary Fig. 8), predictors identified emphasized on vancomycin
exposure, blood pressure change, age, BMI, height, chest x-ray,
and also identified piperacillin-tazobactam injection (J2543:
Injection, piperacillin sodium/tazobactam sodium), bilirubin (Bil-
lirub SerPI-mCnc (1975-2)), and anion gap (Anion Gap SerPI-sCnc
(33037-3)) as top 10 important factors.

Among the most important predictors identified from our study
cohort, SCr and its change, BMI, and presence of a chest X-ray
showed positive non-linear relationship with AKI risk. In particular,
elevated SCr of more than 0.5mg/dL increased the logarithmic odds
ratio of AKI stage 2 or 3 in 48 h by 4 (equivalent to an increase of
odds by exp(4)= 54 fold); exposure to vancomycin showed a
persistently increased odds by over exp(0.6)= 1.8 fold; BMI above 40
increased odds by exp(0.25)= 1.3 fold; a anion gap above 13 mEq/L
increased odds by exp(0.25)= 1.3 fold. Age, minimal blood pressure,
and blood pressure changes showed U-shape associations with
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Fig. 1 Model performance on the source health system data. Model performance on the source health system data illustrated by receiver operating
characteristic curves for predicting AKI events of any severity (a), at least stage 2 (b), or stage 3 (c) within the next 48-hours for various subgroups. “Int.
w/ all features” refers to internal validation of models, i.e., random train/test sample split, using all extracted EHR features; “Int. w/o Scr, BUN” refers to
internal validation of models that excludes SCr and BUN in all forms; “Tmp. Ext. w/ all features” refers to temporal validation of models, i.e., temporal hold-
out set, using all extracted EHR features; “Tmp. Ext. w/o Scr, BUN” refers to temporal validation of models excluding SCr and BUN in all forms.
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AKI ≥ 2. Chest X-ray procedure was associated with an increased
odds of exp(0.3)= 1.3 fold, while piperacillin-tazobactam injection
increased odds by exp(0.5)= 1.6 fold. Age younger than 40 or older
than 85 were identified to increase odds by exp(0.05)= 1.1 fold
(detailed explanation is available in discussion); a minimal systolic
blood pressure <75mmHg or >150mmHg both suggested an

increase of odds by exp(0.1)= 1.2 fold; while a systolic blood
pressure drop by more than 5mmHg/hour were shown to be
associated with increasing odds by at least exp(0.4)= 1.5 fold. At the
patient-encounter level, we designed another dashboard (https://
sxinger.shinyapps.io/AKI_ishap_dashbd/) to illuminate individua-
lized predictors of moderate-to-severe AKI risk by decomposing the
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Fig. 2 Marginal plots of the top 10 important variables for predicting moderate to severe AKI (at least AKI stage 2) in 48 h. Each panel demonstrates
marginal effects of each of the most impactful features ranked among the top 10 for predicting moderate-to-severe AKI in 48 h with SCr and BUN in the
model. The x-axis gives the raw values of each feature and the y-axis gives the logarithmic of estimate odds ratio (i.e., the SHAP value) for moderate-to-
severe AKI in 48 h when a feature takes certain value. Each dot represents the average SHAP value over bootstrapped samples with the error bars
suggesting a 95% bootstrapped interval. The ‘shaded area’ represents the 95% confidence band for the LOWESS smoother extrapolating across all the
dots. The full interactive dashboard can be found at: https://sxinger.shinyapps.io/AKI_shap_dashbd/.
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predicted logarithmic odds ratio into a summation of SHAP values,
where each value represents the individualized effect of a risk factor.

External validation of the AKI prediction model in target
health systems. We conducted external validation of the above
AKI prediction model built from a single health system on five
other health systems. Table 1 shows varied demographic profiles
across different healthcare systems (i.e., sites). With Site1 being
the reference source health system, Site4 showed a similar age
decomposition, while patients at Site2, Site3, and Site6 were sig-
nificantly older. Gender distribution of Site3 and Site6 were
similar to the reference site, while Site2 and Site4 biased towards
females and Site5 towards males. Although the dominating race
was Caucasian, the proportion varied significantly across sites.
Site2 and Site5 had significantly larger groups of African Amer-
icans and Asians respectively, while Site3 had a significantly
higher proportion of Native Americans. In addition, Site2 had a
significantly larger Hispanic population, while Site4 seemed to
not document the ethnicity information well. Furthermore, the 5
external validation sites had significantly lower rates of any AKI,
but Site2, Site3 and Site5 had significantly higher prevalence rates
of moderate-to-severe AKI (AKI stage 2 and 3).

Figure 3 shows the external validation performance in terms of
AUROC for predicting different stages of AKI in the next 48 h
using all variables versus model without SCr and BUN in any
forms. We compared the performance of direct transportation of
the AKI prediction model trained from the source site to target
sites without any adaptation (i.e., Transported Model) against
refitting the model on target site data (i.e., Refitted Model).
External validation performance of the transported model showed
large variations across sites with AUROC for predicting
moderate-to-severe AKI (i.e., at least stage 2) ranging from 0.68
[95% CI, 0.66–0.71] to 0.80 [95% CI, 0.77–0.82], and AUPRC
ranging from 0.09 [95% CI, 0.07–0.12] to 0.15 [95% CI,

0.12–0.19] (Supplementary Fig. 9). We observed significant
AUROC gain from refitting the same model using local data at
target sites. For example, for any AKI prediction, refitted model at
Site5 achieved an AUROC of 0.83 [95% CI, 0.81–0.85] (AUPRC
of 0.15 [95% CI, 0.13–0.17]), comparing to 0.71 [95% CI,
0.70–0.71] (AUPRC of 0.08 [95% CI, 0.08–0.09]) using the
transported model from the source system Site1. F-test between
Hosmer-Lemeshow Chi-square statistics suggested that calibra-
tion was more comparable for moderate-to-severe AKI (Supple-
mentary Fig. 10). For example, 3 out of 5 sites did not incur
significant calibration improvement (p > 0.1) for AKI-stage 3
prediction using all features; and 3 out of 5 sites did not show
significant calibration deterioration for predicting moderate-to-
severe AKI without SCr and BUN (Supplementary Fig. 10). Site5
was well-adjusted to the static model because the transported
model was not significantly worse-off than the refitted one for
predictions of all AKI stages (Supplementary Fig. 10). In
Supplementary Figs. 11–13, we also reported the external
validation results of models for predicting AKI risk in 24 h,
which showed uniformly better performance than 48-h predic-
tion, with transported and fitted AUROC ranging from 0.66 [95%
CI, 0.65–0.67] to 0.81 [95% CI, 0.81–0.82] and from 0.83 [95% CI,
0.82–0.83] to 0.89 [95% CI, 0.88–0.89] respectively, for any AKI
prediction. We also externally validated the LASSO model, which
significantly underperformed the DS-GBT model, with AUROC
for predicting moderate-to-severe AKI in 48 h (using all features)
ranging from 0.68 [95% CI, 0.66–0.69] to 0.71 [95% CI,
0.70–0.73], and AUPRC ranging from 0.02 [95% CI, 0.02–0.03]
to 0.1 [95% CI, 0.08–0.1] (Supplementary Fig. 14).

Source of performance heterogeneity. To better understand the
performance superiority of the refitted models over the trans-
ported model, we performed a qualitative analysis by looking into
the most important predictors selected by the refitted models at

Table 1 Demographic characteristics at different health systems.

Demographic Characteristics Site1 (reference) Site2 Site3 Site4 Site5 Site6

N 153,821 100,819 86,264 57,286 19,542 88,865
Age

18–25 7819 (5.1) 4879 (4.8) 4223 (4.9) 3193 (5.6) 1172 (6) 1978 (2.2)***

26–35 12,908 (8.4) 8344 (8.3) 7438 (8.6) 4819 (8.4) 2,007 (10.3) 3218 (3.6)***

36–45 15,533 (10.1) 10,401 (10.3) 8315 (9.6) 6150 (10.7) 2132 (10.9) 4724 (5.3)***

46–55 26,104 (17) 15,658 (15.5)** 13,566 (15.7)* 10,517 (18.4) 4184 (21.4)*** 9885 (11.1)***

56–65 36,433 (23.7) 22,373 (22.2)** 18,768 (21.8)*** 13,077 (22.8) 5940 (30.4)*** 15,564 (17.5)***

≥66 55,024 (35.8) 39,164 (38.8)*** 33,954 (39.4)*** 19,533 (34.1)** 4107 (21)*** 53,496 (60.2)***

Sex
Female 75,962 (49.4) 52,885 (52.5)*** 42,894 (49.7) 29,556 (51.6)*** 8655 (44.3)*** 43,748 (49.2)
Male 77,857 (50.6) 47,934 (47.5)*** 43,370 (50.3) 27,730 (48.4)*** 10,887 (55.7)*** 45,117 (50.8)

Race
White 114,312 (74.3) 64,839 (64.3)*** 70,741 (82)*** 50,499 (88.1)*** 14,505 (74.2) 81,282 (91.5)***

Black 24,046 (15.6) 21,195 (21)*** 9014 (10.4)*** 5069 (8.8)*** 3578 (18.3)** 362 (0.4)***

Asian 1,416 (0.9) 1,927 (1.9) 711 (0.8) 247 (0.4) 299 (1.5) 460 (0.5)
Native American 594 (0.4) 198 (0.2) 863 (1) 0 (0) 75 (0.4) 817 (0.9)
Other 13,338 (8.7) 5200 (5.2)*** 4716 (5.5)*** 294 (0.5)*** 998 (5.1)*** 433 (0.5)***

Unknown 115 (0.1) 7460 (7.4)*** 219 (0.3) 1180 (2.1)** 87 (0.4) 5511 (6.2)***

Hispanic
Yes 8531 (5.5) 11,636 (11.5)*** 4284 (5) 227 (0.4)*** 889 (4.5) 1001 (1.1)***

No 144,262 (93.8) 84,958 (84.3)*** 81,748 (94.8)*** 0 (0)*** 18,546 (94.9)*** 81,789 (92)***

Unknown 1028 (0.7) 4225 (4.2)*** 232 (0.3) 57,062 (99.6)*** 107 (0.5) 6075 (6.8)***

AKI stages
Non-AKI 129,230 (84.0) 85,644 (84.9)*** 73,172 (84.8)*** 51,513 (89.9)*** 16,579 (84.8)** 76,370 (85.9)***

Any AKI 23,267 (16.0) 15,175 (15.1)*** 13,092 (15.2)*** 5773 (10.1)*** 2963 (15.2)** 12,495 (14.1)***

AKI Stage ≥2 3216 (2.1) 2973 (2.9)*** 2551 (3.0)*** 1173 (2.0) 620 (3.2)*** 1416 (1.6)***

AKI Stage 3 1562 (1.0) 1655 (1.6)*** 1441 (1.7)*** 644 (1.1)* 366 (1.9)*** 577 (0.6)***

*p-value between 0.01 and 0.05; **p-value between 0.001 and 0.01; ***p-value < 0.001. All p-values were generated using Chi-square tests (two-sided).
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the external sites. Figure 4 shows how common vs specific fea-
tures were in relation to their importance rankings in the pre-
dictive models, with the y-axis being the percentage of sites that
selected certain features (i.e., 1.0= the most common feature
selected by all refitted models, 0.17 (1/6)= the most specific
feature deemed important by only one site) and x-axis showing
the importance feature ranking averaged across sites (i.e., the
closer it is to 1, the more important the feature is).

There are many more site-specific and important features,
especially from medication and lab test categories. For example,
cumulative exposure of Vancomycin Injectable Solution and
Piperacillin 4000 MG / tazobactam 500 MG Injection were two
medication representations that were highly predictive of AKI but
were only specific to one site. A group of glucose-related labs, i.e.,
Glucose Blood Manual Strip, Glucose Blood Strip Auto and
Glucose Serum were shown to be predictive but only specific to
one or two sites. Other labs, such as Osmolality in Serum and
Anion Gap3 in Serum, were also highly predictive for only one
site; CO2 in Serum, Vancomycin Trough in Serum, Albumin in
Serum by Bromocresol green (BCG) dye binding method, and
Prothrombin time were predictive at two sites. The most common
and predictive features across all six sites were Serum Creatinine,
Height, BMI, Age, INR PPP and Hgb in Blood, while the second
most common and predictive features include a variety of blood
pressure summaries, Serum Bilirubin, Serum Chloride, Serum
Potassium, and Serum Phosphate.

Among the common set of important features, we analyzed their
marginal effects on the likelihood of AKI and observed variations.
SHAP value extrapolations of the top 4 commonly important
variables in predicting at least AKI stage 2 within 48 h across all
6 sites are illustrated in Supplementary Fig. 15. For the model with all
features (15a.), age, BMI, SCr and SCr changes showed relative
consistent associations with AKI risks. However, there were notice-
able variations on the strength of such associations across sites. For
example, Site3 data showed no significant relationship between age
and log odds of moderate-to-severe AKI events, while all the other

sites suggested non-positive associations, which means that the
moderate-to-severe AKI risks among younger hospitalized patients
are relatively higher than the older population. On the contrary, the
effect of age is showing a positive association with any AKI prediction
in 48 h (Supplementary Figs. 16 and 17). For the model excluding
SCr and BUN (15b.), there was a major disagreement in the marginal
effects of blood hemoglobin (LOINC:718-7). Site1 data demonstrated
a negative association between blood hemoglobin and AKI risk,
Site4 suggested the opposite, while the remaining sites did not
identify significant effects from blood hemoglobin.

A metric for evaluating model transportability. Prediction
performance discrepancy between the transported and refitted
models may be caused by population and feature space differ-
ences, however very few studies measured the feature space dif-
ferences to estimate potential performance variation when models
are transported from one hospital to another. Here, we developed
a metric measuring the joint distribution of features space, coined
as the adjusted maximum mean discrepancy (adjMMD), to
explain the model performance variabilities (See details in
“Methods”). adjMMD is a modified version of the classic MMD
metric, which has been a widely adopted test statistic for mea-
suring data distribution shift between source and target data in
transfer learning20. Supplementary Figs. 20 and 21 demonstrate
the anticipated properties of adjMMD with respect to the number
of top-ranking variables: (a) the metric increased significantly
when an important variable is completely missing (e.g., the sec-
ond most important variable in our source model was a specific
RxNorm code for Vancomycin Injectable Solution, which was
completely missing from all external validation sites due to dif-
ferences in medication representation in the RxNorm hierarchy,
that accounted for the sudden jump of adjMMD); (b) the metric
recovered, reflected by the gradual decreasing of adjMMD, when
better distribution matching occurred after additional variables
were included (e.g., the third most important variable, BMI, was
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Fig. 3 External validation of the AKI prediction model. a–c Comparison of model performance illustrated by receiver operating characteristic curves for
transported model vs refitted model in 48-h AKI predictions on external validation site data.
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well populated in all of the validation sites with similar dis-
tributions as the source site).

More importantly, we demonstrate that adjMMD can be used
to infer model performance deteriorations (i.e., drop of AUROC
or ΔAUC). In order to improve the practicality of adjMMD such
that target sites would not need to collect all variables to make a
quick inference about model transportability, we further devel-
oped a simple procedure to identify a sufficiently small feature set
(minimal feature set) required to accurately infer the AUROC
variation based on Pearson correlation coefficient and regression.
Figure 5 shows the results of this procedure for models predicting
moderate-to-severe AKI using all features. Figure 5a shows that
the Pearson correlation coefficient between adjMMD and ΔAUC
rose drastically to 0.95 when top 13 variables were included,
gradually dropping afterwards and converging slowly to 0.91
when more variables were considered. In other words, by
calculating adjMMD using only the top-13 important variables
selected by the source model against the target hospital data, we
can accurately predict the performance change on data from any
target hospitals. The performance change can be simply
calculated using the simple linear equation y=−0.018+ 0.344x
(Fig. 5b.), with x denoting adjMMD and y the ΔAUC. It indicates
that every 0.1 unit increase in the adjMMD would potentially lead
to 0.0344 decrease in the target AUROC, or equivalently, an
expected AUROC of 0.77 (= 0.81− 0.344 × 0.1) when transport-
ing the established KUMC model to a new site for 48-h prediction
of moderate-to-severe AKI. For the model in predicting
moderate-to-severe AKI with SCr and BUN removed, we applied
the same procedure and identified a sufficiently small set of 33
features for predicting the transportability of the corresponding

model with the equation y=−0.028+ 0.367x (Supplementary
Fig. 22).

We further tested the robustness of adjMMD with the
following three sets of experiments for 48-h prediction of
moderate-to-severe AKI: (1) using each one of the other six sites
as derivation site and iteratively evaluating the correlations
between adjMMD and ΔAUC (6 models); (2) conducted the same
experiments using LASSO model (6 models); (3) conducted the
same experiments with a limited version of GBT (limited-GBT)
model using only the common set features (6 models). Panel A. of
Supplementary Fig. 23 depicts the Pearson correlations between
adjMMD and ΔAUC with increasing number of important
variables included. It showed similar trend as in Fig. 5a, that is:
(a) the more variables included, the stronger correlation between
adjMMD and ΔAUC which eventually converged. Among the 18
models, 16 achieved a Pearson correlation above 0.9. (b) There
exists a minimal feature set that can achieve optimal or sub-
optimal Pearson correlation between adjMMD and ΔAUC for
each model. However, minimal feature set size may vary, leading
to variant slopes of the fitted regression lines between expected
ΔAUC and adjMMD as demonstrated in Panel B. Nonetheless, all
linear associations were significantly positive, confirmed by fitting
a mixed-effect model: ΔAUC, y=−0.014+ 0.257x with a 95% CI
for the slope to be [0.08, 0.44]. This mixed-effect model
accounted for random effects from model and derivation site
difference (more details are described in Method). We also
performed two validation tests: (a) sample-agnostic tests, where
we derived the linear equation from the same derivation site
(same site/sample) and evaluated how well it fits to the other sites
(different site/sample); and (b) model-agnostic tests, where we
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Fig. 4 Feature selection disparities across sites (48-h predictions for at least AKI stage 2). The figure demonstrates feature importance disparities for
the models trained on source data as well as refitted models at each validation site, using all features. Each dot corresponds to one of the most important
features ranked among the top-100 by at least one of the six models; y-axis measures the proportions of sites that identified the feature as top-100, or
“commonality across sites”; x-axis measures the median of variable importance rankings measured as “soft ranking” (the closer it is to 1, the higher the
feature ranks), which is also color coded by the interquartile range (IQR) of the ranks across sites (the higher the IQR is, the more disagreement across
sites on the importance of that feature). Top-100 is an arbitrary cutoff we used to analyze the most important features to illustrate heterogeneity. We also
reported similar feature disparity figures for models predicting moderate-to-severe AKI prediction without SCr and BUN (Supplementary Fig. 18), as well as
models predicting any AKI (Supplementary Figs. 16 and 19).
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derived the linear equation from the same model (same model)
and evaluated how well it fits to the other models (different
model). Supplementary Fig. 24 showed that there were no
significant differences in residuals sum of square (RSS) between
each comparison groups, with p-value= 0.66 for the sample-
agnostic test and p-value= 0.57 for the model-agnostic test.

Discussion
The DS-GBT model for predicting the development of AKI across
all hospitalized patients with a lead time of 48 h was developed
and validated using the PCORnet infrastructure and leveraged all
key data elements currently available and well populated in the
CDM tables, which required minimal effort in transporting the
model to other PCORnet sites (PCORnet currently represents
more than 68 million patients in the United States). With internal
and temporal validated AUROC of 0.84 and 0.81 respectively for
predicting moderate-to-severe AKI (0.78 and 0.76 for any AKI),
as well as an externally validated AUROC of 0.7 for the combined
dataset of all external sites and 0.8 for the best site (0.69 for the
combined set and 0.75 for the best external site on any AKI
prediction), the experiments have shown the validity of our
prediction model. Compared to the state-of-the art work by
Koyner et al.8,9, our model achieved better performance for any
AKI prediction and competitive results for moderate-to-severe
AKI prediction, but with much-reduced data pre-selection and
processing effort as a result of CDM utilization. It is still unclear
to us how the Google DeepMind model10 would perform on a
more general hospitalized population. Our focus here is to
develop explainable or “white-box” AKI prediction models that
can be efficiently transported across hospitals.

Clinical interpretability of machine-learning models is utmost
important in clinical practice because it may be difficult or
impossible to detect subtle shortcomings of the accuracy-driven
black-box models21. We have improved transparency of the

model by demonstrating both the feature importance ranking and
SHAP-value-based marginal plots via an interactive dashboard,
which enables knowledge discovery. It is worth noting that the
majority of the marginal effects derived from our models are
nonlinear, and some are not even monotonic. In addition to the
known positive associations with SCr, BMI and vancomycin
exposure identified by the model, we observed many non-
conventional positive associations. The positive effect of chest
X-ray procedure on AKI risk may be a latent indicator of patient’s
overall disease severity, as it is shown to be highly correlated with
ICU admission (OR= 3.4, p-value < 0.001), intubation (OR=
3.0, p-value < 0.001), and pneumonia diagnosis (OR= 2.7,
p-value < 0.001). The non-positive association identified between
age and moderate-to-severe AKI and the positive monotonic
relationship between age and any AKI may imply that younger
patients (more specifically, younger than 55 years old) who are
staying at the hospital for two days or more were at higher risk for
more severe kidney injury. This relationship is also in line with
the univariate U-shape associations between age and AKI stage
across health systems (Supplementary Fig. 25), such that the AKI
stage 1 patients are consistently older than patients developing
AKI stages 2 and 3. When examining the distributions of patients’
diagnoses present on admission (POA), we observed different
patterns of reasons for admission among younger patients
developing AKI 1 and AKI ≥ 2. Among the top 10 reasons for
admission among patients younger than 35, 45 or 55 years old,
there were a disproportionally higher number of patients
admitted for other aftercares (usually due to auto injuries), car-
diac dysrhythmias, hypertension with complications, other nervous
system disorders, diseases of white blood cells, and other nutri-
tional/endocrine/metabolic disorders, among AKI ≥ 2 than AKI
stage 1 or non-AKI (Supplementary Fig. 26). Some of these
conditions (e.g., diseases of white blood cells, and other metabolic
disorders) may suggest auto-immune spike among younger
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Fig. 5 Correlation Between adjMMD and Prediction Performance (AUC) for predicting moderate-to-severe AKI in 48 h). It shows full details on how
adjMMD can be used to infer the prediction performance drop. Panel a on the right illustrates the Pearson Correlation Coefficient between adjMMD value
and AUC drop as a function of the number of variables included (e.g., the first red circle with a label of “1, 0.15” suggests that if only the most important
variable is considered, the correlation between adjMMD and AUC drop is 0.15). b, c, d on the left demonstrate the simple regression lines between
adjMMD and AUC drop with 95% confidence band shaded. Take d as an example, when only the most important variables (Create SerPL-mCnc (2160-0)
change, or SCr change) are considered, the adjMMD is barely predictive of ΔAUC. The more features are included in the adjMMD measure, the better it is
at anticipating AUROC deterioration. Experimental results suggest that when top 13 important features are included for predicting moderate-to-severe AKI
in 48 h, the strength of association between adjMMD and ΔAUC reaches an optimal value of 0.95 measured by Pearson correlation coefficient.
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patients who are more likely to have intrinsic AKI. The U-shape
association between minimal blood pressure (BP_Systolic_min)
and blood pressure change per hour (BP_systolic_slope, BP_
diastolic_slope) suggests two subtypes of mechanisms relating
blood pressure to AKI risk: both hypertension and hypotension22

(or drastic decrease of blood pressure) are risk factors of AKI.
The PCORnet CDM infrastructure offers an important plat-

form for testing model transportability at a lower cost. Experi-
ments showed that the refitted models on local data generally
resulted in better accuracy than directly applying the transported
model. It draws our attention on a data transformation problem
that there is a lack of consensus standard for mapping local
concepts to common terminology. The CDM may have stan-
dardized the language for representing clinical elements, but not
necessarily harmonized the vocabulary used in different clinical
settings. For example, there are two types of glucose labs identi-
fied to be important at different sites, one is serum glucose
(LOINC: 2345-7) and the other is glucose in blood by automated
test strip (LOINC: 2340-8). As discussed in our previous work,
one needs to be cognizant that clinical data may be encoded at
different levels of granularities such as National Drug Codes for
specific brands and formulations versus high-level representation
of ingredient or routed drug available in RxNorm23. In this study,
we further confirmed the importance of representing medical
concepts at appropriate granularity level. Take vancomycin as an
example, all six sites used different sets of RxNorm (at different
granularity level) to encode vancomycin injectable solution, while
only the abstraction used at the training site seemed to generate a
signal strong enough to be recognized by the model. Demystify-
ing the prediction models not only helped us understand the
models better, but also enabled further diagnoses of the source of
heterogeneity besides the case-mix and demographic differences
that were more straightforward to understand. For example, as
shown in Supplementary Fig. 27, we observed that the association
between hemoglobin in blood (Hgb Bld-mCnc (718-7)) and
moderate-to-severe AKI risk were opposite between Site1 (posi-
tive) and Site4 (negative). As we further investigated, we dis-
covered that this opposite association was potentially caused by
the fact that the hemoglobin levels recorded at Site4 were sys-
tematically higher than Site1 among moderate-to-severe AKI
cases, while there was no significant distribution difference for
AKI stage 1 cases.

Our experimental results demonstrated that performance
deterioration of the transported model is likely due to differences
in population factors and differences in data vocabulary and
documentation. Building a truly generalizable model requires
truly representative data, which is almost infeasible with health-
care data siloed at individual hospitals and sharing of data
hampered by privacy concerns. If performance variation is
inevitable, then we need to be prepared and proactive. A solution
we proposed in this study is adjMMD, which can be used as the
precursor for inferring the effectiveness of a prediction model
when transported to other hospitals. This metric not only pro-
vides statistical evidence for deciding whether direct model
transportation would be sufficient, the dynamic of adjMMD also
offers a path to discover potential sources of data heterogeneity
contributing to model performance drop. We envision that
adjMMD could be used as an informative tool to accelerate the
external validation process and adaptation of external machine-
learning models. The sample- and model-agnostic tests demon-
strated that adjMMD can be used as a robust indicator of per-
formance change over varying training sets, models, and feature
spaces. From an implementation perspective, with multi-center
testing data, one can develop such an auxiliary linear equation
between adjMMD and ΔAUC by following the experimental
procedures described in this study to inform the transportability

of any established model to future sites. Hospitals across the US
and globally have different data/informatics infrastructure
maturity and AI capability24. When a prediction model is trans-
ported to a hospital with less mature clinical data warehouse (i.e.,
insufficient amount of quality data for building and validating an
independent model), users can use the adjMMD score to decide if
the externally trained model can be used in the clinic as is with
acceptable performance. Alternatively, if the target hospital is
mature in both data and AI capability, adjMMD can then be used
to decide if the model needs to be updated with varying effort
ranging from simple recalibration to model refitting on local data
and even full model revision with the incorporation of new
predictors.

It is anticipated that earlier identification of patients at high
risk of developing AKI will be coupled to earlier interventions
that might improve clinical outcomes. While there are currently
no specific interventions that can prevent AKI, there are general
measures such as optimizing fluid and hemodynamic status,
avoiding nephrotoxic exposures, and delaying procedures such as
surgery. There is some evidence that implementation of “care
bundles” consisting of such measures, if implemented early (e.g.,
in response to an electronic alert), is associated with improved
outcomes, including improved recovery from AKI, shorter length
of stay, and/or reduced mortality25–27.

There are several limitations to our study. First, the definition
of AKI depended on SCr changes in reference to patients’ baseline
SCr, which is not always observable (2/3 of AKI are community
acquired28). For patients without any SCr observed within 7 days
prior to admission, we had to use their admission SCr as the
baseline, which may underestimate the true AKI incidence. Sec-
ond, since patients were censored at 7 days, our model was not
validated in those who had a length of stay >7 days. Third, we
used CPT billing codes to capture procedures performed during a
hospital stay because PCORnet CDM currently does not collect
procedure orders that are available in real time in the EMR.
Fourth, although PCORnet CDM has evolved over time by
incorporating more data elements, it is still missing many key
variables such as heart rate, oxygen saturation, and Braden scale
score, which have been shown to be important AKI risk factors8.
Lastly, although patient and data heterogeneity are the reality,
advanced data harmonization techniques may mitigate the pro-
blem. Other potential algorithmic solution to improve model
transportability also include statistical model updating methods14

and transfer learning, an emerging learning paradigm in machine
learning.

Methods
Data source. The clinical data assembled for this study were collected by the
Greater Plain Collaborative (GPC), a Patient-Centered Outcome Research Network
(PCORnet) Clinical Data Research Network (CDRN) including twelve healthcare
systems in nine states18. PCORnet developed the CDM to support federated
research networks by centering its schema on the patient entity, and enforcing data
mapping to controlled vocabularies such as Current Procedural Terminology
(CPT), SNOMED CT, Healthcare Common Procedure Coding System (HCPCS),
the ICD versions 9 and 10, Logical Observation Identifiers Names and Codes
(LOINC), and RxNorm15. Using the CDM at all GPC institutions/sites that pass
quarterly data quality assessments allows efficient query and analysis execution
across different instances of the data model29. For this study, six participating GPC
sites included the University of Kansas Medical Center, University of Texas
Southwestern, University of Nebraska Medical Center, University of Missouri,
Medical College of Wisconsin, and Marshfield Clinic Research Institute. CDM data
provided by each site were de-identified to meet the Health Insurance Portability
and Accountability Act of 1996 (HIPAA) ‘Safe Harbor’ criteria. This study was
determined not to be human subject research by the institutional review board of
the GPC consortium because it only involved the collection of existing and de-
identified patient medical data.

We developed a data extraction package specific to PCORnet CDM and
extracted data comprising all patients aged between 18 and 90 who were
hospitalized for at least 2 days with at least two SCr records from the beginning of
2010 to the end of 2018. Patients were excluded if they had evidence of severe
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kidney dysfunction at or before admission, that is (a) estimated glomerular
filtration rate <15 mL/min/1.73 m2, or (b) has undergone any dialysis procedure or
renal transplantation (RRT) prior to the visit, or (c) required RRT within 48 h of
their first documented SCr measurement. Burn patients were also excluded since
SCr becomes a less reliable tool in assessing renal function during hypermetabolic
phase30. Patient inclusion and exclusion procedures are summarized in
Supplementary Fig. 28.

Data processing. For each patient in the data set, we collected all variables that are
currently populated in the PCORnet CDM schema over both source and target
sites, which includes: general demographic details (i.e., age, gender, and race), all
structured clinical variables that are currently supported by PCORnet CDM Ver-
sion 4, including diagnoses (ICD-9 and ICD-10 codes), procedures (ICD and CPT
codes), lab tests (LOINC codes), medications (RXNORM and NDC codes), as well
as selected vital signs (e.g., blood pressure, height, weight, BMI)29. All variables are
time-stamped and every patient in the dataset was represented by a sequence of
clinical events construed by clinical observation vectors aggregated on daily basis
(Extended Fig. 1), so that the feature set formed by data prior to or on day t could
be used to predict AKI within [t+ 1, t+ 2] days for 48-h prediction (or within the
next day for 24-h prediction).

The initial feature set contained more than 30,000 distinct features. We
performed an automated curation process as follows: (1) systematically identified
extreme values of numerical variables (e.g., lab test results and vital signs) that are
beyond 1st and 99th percentile as outliers and removed them; (2) performed one-
hot-coding on categorical variables (e.g., diagnosis and procedure codes) to convert
them into binary representations; (3) used the cumulative-exposure-days of
medications as predictors instead of a binary indicator for the sheer existence of
that medication; (4) when repeated measurements presented within the certain
time interval, we chose the most recent value; (5) when measurements are missing
for a certain time interval, we performed a common sampling practice called
sample-and-hold which carried the earlier available observation over; (6)
introduced additional features such as lab value changes since last observation or
daily blood pressure trends, which have been shown to be predictive of AKI8.

Experimental design. For each of the six prediction tasks (24 or 48-h prediction of
the 3 AKI stages), we repeated the following steps for model training, validating/
transporting, model refitting, and post-analysis: (a) we first split both source and
target data into derivation, calibration, internal validation and temporal validation
sets, with calibration and internal validation being 15% of randomly held-out
inpatient encounters occurred between 1 January 2010 and 31 December 2016 and
temporal validation occurred after 1 January 2017; (b) at the training stage, we
tuned a set of hyperparameters (learning rate, number of trees, depth of trees,
sample rates, and number of cases in leave notes) with Bayesian optimization
approach using fivefold cross validation and retrained a final reference model using
all training data (source); (c) at the validation stage, we re-calibrated the model on
the calibration source data set and then evaluated the model performance on both
the internal and temporal validation sets within source data, as well as the external
validation set within target data; (d) at the refitting stage, we iteratively repeated (a)
through (c) with models developed on training data from each target site and
validated on corresponding validation sets; (e) finally, at the post-analysis stage, we
evaluated the adjMMD and formed a simple analytic set of adjMMD and ΔAUC
(i.e. the difference between AUROC of internal temporal validation set and
external validation sets), which were used to derive the simple linear regression
equation to infer ΔAUC with observed adjMMD.

AKI definition. According to the Kidney Disease Improving Global Outcomes
(KDIGO) clinical practice guideline for AKI, we staged AKI for severity based on
the SCr-based criteria31. We did not use urine output to define AKI because it was
not recorded in most of the sites in the GPC network and is less likely to be
accurate outside the critical care environment. KDIGO accepts two SCr-based
definitions of AKI of any severity (‘any AKI’): (1) an increase in SCr of 0.3 mg/dL
(26.5 μmol/L) within 48 h or (2) an increase in SCr of 1.5 times the baseline
creatinine level of a patient, known or presumed to have occurred within the
previous 7 days. This study defined baseline creatinine as the most recent SCr when
previous measurements were available, or admission SCr value when past mea-
surements were not available. Moderate AKI (‘AKI stage 2’) is defined as an
increase in SCr of 2.0 to 2.9 times the baseline within the previous 7 days. The
most severe AKI (‘AKI stage 3’) is defined as either an increase in SCr to 4 mg/dL
(353.5 μmol/L) after an acute increase of at least 0.3 mg/dL within 48 h, or an
increase in SCr of more than three times the baseline within the previous 7 days, or
an initiation of renal replacement therapy.

To realize a discrete-time survival framework32, the AKI stages were computed
at times at which there was a SCr measurement present in the sequence, and then
copied forward in time until the next SCr measurement, at which time the ground-
truth AKI state was updated accordingly. Independent right-censoring was
achieved by fixing a maximum follow-up period at τ (we chose τ= 7 based on
expert knowledge), to reduce the further impact on data imbalance resulting from
the right skewedness of AKI onset times.

Learning algorithm. We chose Gradient Boosting Tree-based Machines (GBT) as
the learning model and then combined it with a discrete-time survival framework
using independent censoring. GBT is a family of machine-learning techniques that
have shown considerable success in a wide range of practical applications. We
chose GBT as the base learner not only for its robustness against high-
dimensionality and collinearity, but also because it embeds feature selection scheme
within the process of model development, making its output explainable. To better
control overfitting, we tuned the hyper-parameters (depth of trees: 2–10; learning
rate: 0.01–0.1; minimal child weight: 1–10; the number of trees is determined by
early stopping, i.e., if the holdout area-under-receiver-operating-curve had not
been improved for 100 rounds, then we stopped adding trees) within training set
using 10-fold cross validations. It simulates a discrete-time survival framework by
separating the full course of patient’s stay history into L non-overlapping daily
windows, L= 1Δt, 2Δt,…T, where T is pre-set to total length of stay or an arbitrary
censor point (e.g., 7 days since admission) and Δt can be chosen based on clinical
needs (e.g., Δt= 1 is for 1-day (24 h), Δt= 2 is for or 2-day (48 h) prediction, etc.).
We would use all available variables up to time t − 1 to predict AKI risk of various
stages in t. Timestamped indicators were created to implicitly associate events that
occur within the same time window.

Missing values were handled in the following fashion: for categorical data, a
value of 0 was set for missing; while for numerical data, a missing value split was
always accounted for and the “best” imputation value can be adaptively learned
based on improvement in training AUROC, at each tree node within the ensemble.
For example, if a variable X takes values [0,1,2,3,NA, NA], where “NA” stands for
missing, the following two decisions will be made automatically at each split for
each tree: (1) should we split based on “missing or not”; (2) if we split based on
values, e.g., >1 or ≤1, should we merge the missing cases with the bin of >1 or ≤1.
However, if available values of certain variable exist in the earlier time window,
they will be carried over for predictions in the future.

Evaluations. We used the area under the receiver operator curve (AUROC) and
area under the precision-recall curve (AUPRC) to compare the overall prediction
performance, with the latter known to be more robust to imbalanced datasets. We
also validated our model over a variety of sub-cohorts, stratified by age group, by
baseline SCr level, and by days since admission, on both source and target cohorts.
In addition, we characterized calibration by Hosmer-Lemeshow (HL) Chi-squared
score and used F scores to compare the HL scores between transported and refitted
models. Feature importance was ranked based on “gain”, the cumulative
improvement in AUROC attributed to the features across all trees within the
gradient boosting tree model. To focus more on the most impactful features (i.e.,
variable ranked among top 100) without losing information on the weaker features,
we assigned a “soft” membership of a feature as how high up the rank is relative to
top s (s= 100) by applying an exponentially decreasing function to the original
ranks (r), i.e., f(r)= exp{−r/s}. We used SHAP values to evaluate the marginal
effects of the shared top important variables of interests33. Specifically, the SHAP
values evaluated how the logarithmic odds ratio changed by including a factor of
certain values for each individual patient. The SHAP values not only captured the
global patterns of effects of each factor but also demonstrated the patient-level
variations of the effects. We also estimated 95% bootstrapped confidence intervals
of SHAP values for each selected feature based on 100 bootstrapped samples.

Adjusted maximum mean discrepancy (adjMMD). MMD has been widely used
in transfer learning studies for maximizing the similarity among distributions of
different domains34,35. Here we used MMD to measure the similarities of dis-
tributions for the same feature between training and validation sites. More speci-
fically, let Xf gK1 be K random variables selected by the training model with their

corresponding weights wf gKi proportional to their “gains”, where Xk ¼
x1; ¼ ; xnk

h i
which are independent identical distributed (i.i.d.) samples collected

from an underlying distribution P. After we collect data from a validation site, we

can observe the corresponding k variables .., where ~Xk ¼ ~x1; ¼ ; ~xmk

h i
which are

independent identical distributed (i.i.d.) samples collected from an underlying
distribution ~P. It is intuitive to assume that X and ~X are defined on the same
topological space XK . Then for each k, an unbiased estimator of individual MMD
is defined as:

dMMDk ¼
1

nkðnk � 1Þ
Xnk
j¼1

Xnk
i≠j

κðxi; xjÞ þ
1

mkðmk � 1Þ
Xmk

j¼1

Xmk

i≠j

κð~xi; ~xjÞ

� 2
1

nkmk

Xmk

j¼1

Xnk
i¼1

κðxi; ~xjÞ
ð1Þ

where κ (x, y) is the kernel function with Gaussian kernel being the common choice.
However, the classic MMD calculation does not account for the effect from

missing variables and is not even calculatable when certain continuous variable is
completely missing. Thus, we made an adjustment to the metric to (1) enable the
MMD calculation when a continuous variable is missing completely; (2) penalize the
“missingness” harder than distribution discrepancies. To achieve that, we intentionally
imputed the “missingness” with values that could make the ~P estimation significantly
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deviate from P, i.e., a single or range of values that is very unlikely to be observed
under P. For example, we chose to randomly sample values that is less than �Xk �
z0:99s=

ffiffiffiffiffi
nk

p
or greater than �Xk þ z0:99s=

ffiffiffiffiffi
nk

p
, where z0.99 denotes the 99th percentile

value under a standard normal distribution. Or more generally, we used kernel
density estimation and sample values from the bottom and top 1 percentile of the
approximated underlying distribution which could not necessarily be normal.

To demonstrate the robustness of adjMMD, we repeated the experimental steps
(described in Experimental Design) (a) through (e) but using LASSO and limited-
GBM models on one prediction task (48-h prediction of moderate-to-severe AKI),
and further generalized the linear regression model by fitting a mixed-effect model
with random slopes at different derivation site level among data generated from
multiple derivation sites and models. More specifically,

yijk ¼ β0ij þ β1ijxijk þ ϵijk;

β0ij ¼ β0 þ ϵ0j; β1ij ¼ β1 þ ϵ1i þ ϵ1j

ϵijk � N 0; σIð Þ; ϵ0ij � N 0; σ iIð Þ; ϵ1i � N 0; σ1iIð Þ; ϵ1j � Nð0; σ1jIÞ
ð2Þ

where the fixed effects and β̂1 estimate the expected change of ΔAUC with a unit
change in adjMMD, and σ̂1i; σ̂1j estimates the expected variations of β1 due to
varying derivation site and models. (2) can be fitted by maximizing restricted
maximum likelihood with all pairs of adjMMD and ΔAUC generated from the
experiments. The sample-agnostic test was performed by deriving similar linear
equation as in (2) but only using data generated from one derivation site (could be
across different models to account for potential variations) and validating it on the
remaining sites. The model-agnostic test, on the other hand, was performed by
deriving a similar linear equation as in (2) but only using data generated from one
model (could be across different sites to account for potential variations) and
validating it on the other models.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The clinical data used for training and validation in this study is not publicly available
and restrictions apply to its use. The de-identified multi-center CDM datasets are
managed in an Oracle database on a secure server, and may be available from the Greater
Plains Collaborative clinical data network, subjective to individual institution’s and
network-wide data governance and ethical approvals.

Code availability
We developed generic SQL codes against PCORnet CDM to extract data from Oracle
database (12c) where multi-center dataset is stored, and open-source R libraries (e.g.
xgboost) to conduct our experiments. Implementation details and code are available at
https://github.com/kumc-bmi/AKI_CDM to allow independent replication.
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