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Dengue is a vector-borne disease transmitted by the Aedes genus mosquito. It
causes financial burdens on public health systems and considerable morbidity
and mortality. Tropical regions in the Americas and Asia are the areas most
affected by the virus. Fortaleza is a city with approximately 2.6 million inhabi-
tants in northeastern Brazil that, during the recent decades, has been suffering
from endemic dengue transmission, interspersed with larger epidemics. The
objective of this paper is to study the impact of human mobility in urban
areas on the spread of the dengue virus, and to test whether human mobility
data can be used to improve predictions of dengue virus transmission at
the neighbourhood level. We present two distinct forecasting systems for
dengue transmission in Fortaleza: the first using artificial neural network
methods and the second developed using a mechanistic model of disease
transmission. We then present enhanced versions of the two forecasting sys-
tems that incorporate bus transportation data cataloguing movement among
119 neighbourhoods in Fortaleza. Each forecasting systemwas used to perform
retrospective forecasts for historical dengue outbreaks from 2007 to 2015.
Results show that both artificial neural networks and mechanistic models
can accurately forecast dengue cases, and that the inclusion of human mobility
data substantially improves the performance of both forecasting systems.
While the mechanistic models perform better in capturing seasons with
large-scale outbreaks, the neural networks more accurately forecast outbreak
peak timing, peak intensity and annual dengue time series. These results
have two practical implications: they support the creation of public policies
from the use of the models created here to combat the disease and help to
understand the impact of urban mobility on the epidemic in large cities.
1. Introduction
Dengue (DENV) is an arbovirus transmitted by the Aedes genus mosquito with
four serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) and is present all
over the world. It is estimated there are 390 million dengue cases per year [1]
with 40% of the world population living in an area of risk [2]. Tropical regions
are most affected by the virus, and the highest risk of transmission occurs in
the Americas and Asia. DENV causes various symptoms including fever, head-
ache, nausea and vomiting, and in its most severe form, dengue haemorrhagic
fever, may lead to death [3].

Fortaleza is the fifth most populous city in Brazil with a population of
approximately 2 600 000 inhabitants [4] and an area of 314 930 km2. In 1994,
the serotype DENV-2 was introduced into Fortaleza and caused a large
epidemic of dengue. Since then several additional dengue epidemics have
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occurred in the city [5,6]. In Brazil, the dominant vector of
dengue is Aedes aegypti. In areas with high levels of dengue
transmission, public officials visit households during the
mosquito breeding season to search for mosquito larvae
and to apply larvicide; however, these vector control methods
have had limited success [7–10].

As a means of helping combat dengue virus transmission,
a number of forecasting systems have been proposed with the
aim of predicting dengue epidemics in urban areas at different
geographic levels [11–17]. One class of disease forecasting
method uses machine learning models. In [18], the authors
proposed an XGBoost model to classify dengue outbreaks
using five climate variables—temperature, rainfall, humidity,
air pressure and wind speed. In [19], a support vector machine
model was trained to forecast morbidity rates in three pro-
vinces in Thailand based on dengue cases, weather and
mosquito data. The research in [20] proposed a three-layer
neural network model to forecast dengue outbreaks at the dis-
trict level based on dengue history and rainfall data. The
authors compared the neural network with a nonlinear
regression model and found that the neural network model
resulted in a much smaller mean square error (MSE). A
second class of disease forecasting system uses mechanistic
models coupled with data assimilation methods [21–23].
These systems represent disease transmission mathematically
as an initial value problem and optimize simulation and fore-
cast using observations and data assimilation. Several of these
systems have been deployed to predict dengue [24,25].

Although the movement capabilities of Aedes aegypti in
urban areas are small, around 25m [26], the transmission of
dengue virus across long distances occurs with the move-
ment of infected humans. As a consequence, the impact of
human mobility on dengue transmission has been studied
on a number of scales: residential [27–30], city block [31], dis-
trict [32,33], municipal [34–36] and state [37]. Displacement
patterns can support the prediction of the next site where
the epidemic will spread, which can be useful in planning
mosquito control efforts. Thus, anticipating which sites are
more likely to have a large-scale epidemic results in more
efficient prevention policies.

The use of human mobility data to improve the accuracy
of predicting dengue incidence is recent. An example is [38],
which used LASSO regression [39] with the objective of
classifying neighbourhoods at high or low risk with respect
to the incidence of dengue in Singapore. Human mobility
was analysed through activity data obtained from a mobile
phone network and incorporated into the model to predict
dengue cases up to 12 weeks ahead. In another study using
mobile data, mechanistic models were developed to predict
dengue cases [40].

For this study, our primary objective is to evaluate three
different types of forecast models and compare their capacity
to capture the nonlinear relationships between human mobi-
lity and disease characteristics and to make accurate early
epidemic predictions. We developed two dengue forecasting
systems using distinct methods: a multi-layered neural net-
work architecture and a mechanistic disease transmission
model coupled with the ensemble adjustment Kalman filter
(EAKF). We also used an autoregressive integrated moving
average (ARIMA) model as baseline. These systems use his-
torical time series of dengue incidence as input. We then
quantified the effect of human mobility data on each forecast-
ing system by producing forecasts with and without public
transportation passenger mobility data. These systems use a
space–time graph describing the movement of people within
Fortaleza in addition to historical dengue incidence data.

Forecasts were evaluated for their ability to differentiate
periods with and without large-scale epidemics, for detecting
peak intensity as well as the date of peak incidence, and for
predicting the dengue incidence time series for the entire
year. In general, both the neural network approach and
mechanistic models obtained improved results when using
the mobility data, providing evidence that movement pat-
terns have the potential to indicate the emergence of
epidemics. In particular, with the use of mobility information,
the neural network was able to predict the intensity and
timing of dengue peak incidence and timing further in
advance, which can be important and helpful for planning
the fight against the spread of dengue.
2. Material and methods
2.1. Data
In order to develop a predictive model of dengue and to study
the impact of human mobility on dengue virus transmission,
two datasets from the city of Fortaleza were used: a dataset of
dengue confirmed cases and a dataset describing human mobi-
lity by public transportation (datasets and codes available at
https://github.com/rafaellpontes/dengue˙mobility˙paper).

Since 2007, the Municipal Health Department of Fortaleza
has monitored dengue incidence through the reporting of
dengue cases diagnosed in hospitals or primary health care
units in the public health network. The records are stored with
the patient’s home address and the date of diagnosis, allowing
for the aggregation and identification of weekly cases for the
119 neighbourhoods of the city. The data are available on the Sis-
tema de Monitoramento Diário de Agravos—SIMDA (Daily
Disease Occurrence Monitoring System) [41]. From SIMDA we
extracted data from 2007 to 2015: a total of 174 954 dengue
cases, as shown in figure 1.

In order to capture human movement in the city of Fortaleza,
bus transportation data from the public transportation system for
the year 2015 were used. In Fortaleza, the bus system is the most
widely used mode of transport encompassing, in 2015, 356 bus
lines, 2034 buses and 700 000 users, totaling an average of 1
million trips per day [42]. In this study, the mobility of people
in the city was represented by data produced in [43] giving the
origin and destination bus stops of users of the city bus
system. The origin is recorded from the electronic bus pass
used by the user at the time of boarding the bus. The destination
point is estimated by the second boarding made by the same user
on the same day. For example, for a user who boarded a bus at
stop BS1 in the morning and at the end of the day entered a bus at
stop BS2, it is assumed that there was a trip from the origin BS1 to
the destination BS2. If a user has boarded three buses in a day
using the stops BS1, BS2 and BS3, two trips are generated for
this user, the first trip starting at BS1 and finishing at BS2
and the second trip starting from BS2 and finishing at BS3.
Further details of the methodology can be seen in [43]. Overall,
the authors show, by exploring the journeys made by about
500 000 people a year and traversing 4783 geo-referenced bus
stops, that the data are not spatially biased and significantly rep-
resent the movement of the city’s population. Some studies have
used these data in recent years for various purposes such as
understanding crime and identifying traffic bottlenecks [44–48].
Here, we used the coordinates of each bus stop to spatially aggre-
gate bus data to the neighbourhood level. The daily bus data
were averaged over the course of a week. The resulting dataset
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Figure 2. The weekly flow of people across neighbourhoods. The yellow arrows drawn on the map highlight an example of flow between seven neighbourhoods.
flowrate4,5,1 represents the flow from neighbourhood 4 to neighbourhood 5 in week 1. The full model includes flow rates to and from each of the city’s 119
neighbourhoods for every week of the entire period.
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Figure 1. Time series of dengue cases in Fortaleza from 2007 to 2015.
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of weekly flow rates between each of the 119 neighbourhoods
served as the input for the geographically linked forecast sys-
tems. Human mobility between neighbourhoods was modelled
as a graph (figure 2) where the nodes are the neighbourhoods
and the weights of the edges are a flow rate (equation (2.1)) repre-
senting the flow of people (flowratei,k,w) from neighbourhood i to
neighbourhood k in week w, computed as:

flowratei,k,w ¼ count ( flowi,k,w)PTN
i¼0 count ( flowi,k,w)

: (2:1)

count (flowi,k,w) is the number of bus journeys from neighbour-
hood i to neighbourhood k in week w. TN is the total number
of neighbourhoods in the city.
2.2. Neural network models
We propose two recurrent neural network (RNN) [49] architec-
tures to determine the impact of public transportation on
forecasting the spread of the dengue virus: one, RNNi, which
considers dengue cases in each neighbourhood in isolation,
and a second, RNNc, which uses the bus transportation data to
link neighbourhoods. RNNs are a type of architecture that
learn the temporal dependence of a variable through the recur-
rent application of backpropagation through time (BTT).
Figure 3 illustrates the basic idea behind this concept.

The principle of this technique is that it is possible to calcu-
late the error gradient with respect to the network parameters
(e.g. U, V and W in figure 3) and then learn improved parameters
using stochastic gradient descent. Just as we sum up the errors,
we also sum up the gradients at each time step for one training.
To calculate these gradients, we use the chain rule of differen-
tiation which is the backpropagation algorithm when applied
backwards starting from the error.

Figure 3 shows prediction flow performed by the RNN
where each state S is impacted by the input X (in this instance,
cases of dengue) and by the previous state to achieve the predic-
tion Ŷ at a specific time. Specifically, in time-series learning the
use of backpropagation in RNNs makes it impossible to learn
very long time dependencies due to the vanishing gradient



Y

V V V V

U

unfold

U U U

S W
W W W

Yt–1

St–1 St
St+1

Yt+1Yt

X Xt–1 Xt+1Xt

Figure 3. Recurrent neural network temporal prediction flow. U, V and W are the network parameters. X and Y are model input and prediction, respectively. S is the
model state and t is time.

X

+X

tanh

tanh

s
s

s

X

ht–1

Ct–1 Ct

itft ot
ct

ht

ht

Xt

Figure 4. An LSTM unit has a chain structure that contains four neural net-
works and different blocks of memory called cells. The information is retained
by the cells and the memory manipulations are made through the input (it),
forget ( fi) and output (oi) gates. Long-term memory is usually called the cell
states on which information from previous intervals are stored.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200691

4

problem. This problem occurs when an RNN works with large
recurrences, such that during the process of backpropagation
the gradient becomes very small and the weights of the RNN
do not change.

Long short-term memory (LSTM) [50] is a type of RNN that
mitigates the vanishing gradient problem. LSTM solves this pro-
blem with an architecture that incorporates a cell memory and a
set of gates (input, output and forget gates) that regulate the
input and output of cell memory information. Figure 4 and the
following equations explain the LSTM unit S.

it ¼ s(Wixxt þWimmt�1 þWicct�1 þ bi), (2:2)

ft ¼ s(Wfxxt þWfmmt�1 þWfcct�1 þ bf ), (2:3)

ct ¼ ft � ct�1 þ it � g(Wcxxt þWcmmt�1 þ bc), (2:4)

ot ¼ s(Woxxt þWommt�1 þWocct�1 þ bo), (2:5)

mt ¼ ot � h(ct), (2:6)

and yt ¼ f(Wymmt þ by), (2:7)

where the Wix, Wic, Wfc and Woc are the weight matrices, b are the
vectors of bias (bi, bf, bc, bo and by), σ, the logistic sigmoid function
and i, f, o and c are respectively the input gate, forget gate, output
gate and cell activation vector. m the output vector, � is the
element-wise product of vectors, and g and h are the cell input
and cell output activation functions.

We first proposed an isolated architecture, RNNi, that pre-
dicts dengue cases for a specific neighbourhood based only on
its own past dengue case data using LSTM. This model was
developed for each of the 119 neighbourhoods of Fortaleza
using two inputs: a time series with the weekly number of
dengue cases for a neighbourhood (the entry window is five
weeks) and an index vector, ranging from 1 to 52, that labels
each of these five weeks. This vector feeds an embedding layer
that generates an output to be concatenated with dengue cases.
The concatenated data feed an LSTM that connects to an
output layer (dense layer) with a sigmoid activation function
and generates the prediction of the dengue cases for the follow-
ing week.

Dropout layers were introduced for avoiding overfitting.
Dropouts layers randomly force a given percentage of the pre-
vious layer’s neurons to be ignored during each training step
in order to avoid overfitting by a single path of neurons.
Figure 5 illustrates the architecture for the RNNi model with its
input and output data and layers. The dropout layers enable
the measurement of the variability of the forecasts. In order to
generate a probabilistic forecast, we used Monte Carlo dropout
(MC dropout) [51] to generate n = 100 realizations of predictions
by randomly assigning the probabilities of the dropouts (dropout
rate) existing after each layer.

The RNNi model should be capable of anticipating several
weeks ahead in order to provide actionable forecasts. There are
several strategies to address the problem of multi-step prediction,
such as (recursivity, direct, direct-recursivity and multi-output
strategy) [52,53]. Here, we used the recursive strategy. This strat-
egy performs the first prediction based on observed incidences,
but uses the predicted values recursively to predict the rest of
the time series.

The second architecture, RNNc, predicts dengue cases for all
neighbourhoods simultaneously using historical data of dengue as
in the isolated architecture, and human mobility (represented as
described in figure 2). A representation of each node was generated
using node embedding techniques and, together with the past
denguedata, used as input data for a hierarchical LSTMarchitecture.

The RNNc architecture uses a hierarchical structure, with the
RNNi model representing the lower level. This architecture cap-
tures humanmobility and its impact on dengue virus transmission.

The node embedding algorithm, Node2Vec [54,55], was used
to learn the characteristics of each node of the human mobility
graph. Node2Vec uses a neural network to capture the context
around the node. This is done by generating embeddings,
which are one-dimension-vectorial representations of the graph
nodes. In our case, each vector produced by Node2Vec is a
sequence of neighbourhoods of a predetermined length. This
sequence is produced by a weighted random walk to an adjacent
node. The basic idea behind random walk based embedding
techniques is to transform the graph into a collection of node
sequences in which the occurrence frequency of a node-context
pair measures the structural distance between them.

Several values for the size of the embedding have been
tested; size 15 was defined for the embedding of each neighbour-
hood. It was used as an input for the model together with the
weekly dengue cases of all the neighbourhoods as well as the
embedding representing the week (using the index vector pre-
viously described for the baseline). These three components
feed three LSTM layers that aim to capture the spatio-temporal
relation of the dengue cases. Thus, the RNNc model (figure 6)
predicts the weekly dengue cases for all the neighbourhoods
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simultaneously based on the incidence of neighbourhood-level
dengue data for the entire city and on human mobility data.

Cross-validation was applied to all 9 years of data available,
from 2007 to 2015. For each year to be predicted, 2 years were
used to evaluate the model (one epidemic year and the other
without an epidemic) and the rest of the data was used to train
the model. Table 1 shows for each test year the breakdown of
the years used to define the validation and training basis.
2.3. Mechanistic models
In order to further assess the impact of human mobility on
dengue forecasting, we performed a second set of comparisons.
We generated forecasts using a system developed with a mechan-
istic model, with and without the inclusion of human mobility
data. Due to the interpretability of mechanistic models,
process-based forecasting systems have been widely used in pre-
dicting infectious disease outbreaks [56–60], including dengue
[25], Ebola [61], influenza-like illness [62] and antibiotic-resistant
pathogens [63].

The local forecasting system, MECHi, makes use of incidence
data from each neighbourhood, and predicts the epidemic
curves independently for different locations. Due to a lack of
detailed mosquito data, we model the transmission of dengue
virus in each neighbourhood using a parsimonious susceptible–
exposed–infected–recovered (SEIR) model:

dS
dt

¼ �bSI
N

, (2:8)

dE
dt

¼ bSI
N

� E
Z
, (2:9)

and
dI
dt

¼ E
Z
� I
D
, (2:10)

where N, S, E and I are the number of total, susceptible, exposed
and infectious people, respectively; β is the transmission rate; Z
is the latency time; and D is the infectious period. For the
networked forecasting system, MECHc, we connect neighbour-
hoods by considering the mixing of the population due to bus
transportation. The transmission across 119 neighbourhoods is
described by a networked SEIR model [61]:

dSi
dt

¼ �Si
X

j

c jibjIj
N̂j

, (2:11)

dEi

dt
¼ Si

X

j

c jibjIj
N̂j

� Ei

Z
, (2:12)

and
dIi
dt

¼ Ei

Z
� Ii
D
: (2:13)
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Here Si, Ei and Ii are the number of susceptible, exposed and infec-
tious people in neighbourhood i; βi is the transmission rate in
location j; cji is the fraction of the population travelling from neigh-
bourhood i to j; and N̂j ¼

P
i c jiNi is the total population present in

location j. The humanmobility information cji is obtained from the
bus transportation data. In both models, the initial ranges of vari-
ables and parameters are set as follows: S∈ [0.3, 0.55]N, E∈ [0,
0.0005]N, I∈ [0, 0.0005]N, β∈ [0.3, 0.5], Z [ [3, 7] days,
D [ [3, 7] days, and N is set as the population in each
neighbourhood.

To estimate model variables and parameters using observed
incidence, we use a data assimilation algorithm—the EAKF [64].
Specifically, model state variables and parameters are iteratively
adjusted using observations from the season onset to the present,



Table 1. Data division for cross-validation. Validation data are used to
adjust the model parameters during the training phase, while the test data
are used to evaluate the final performance of the model.

test evaluation training

2007 2010, 2012 2008, 2011, 2012, 2013, 2014, 2015

2008 2010, 2012 2007, 2011, 2012, 2013, 2014, 2015

2009 2010, 2012 2007, 2008, 2011, 2012, 2013, 2014, 2015

2010 2007, 2012 2008, 2011, 2012, 2013, 2014, 2015

2011 2010, 2012 2007, 2008, 2012, 2013, 2014, 2015

2012 2007, 2015 2007, 2008, 2011, 2013, 2014, 2015

2013 2010, 2012 2007, 2008, 2011, 2012, 2014, 2015

2014 2010, 2012 2007, 2008, 2011, 2012, 2013, 2015

2015 2010, 2012 2007, 2008, 2011, 2012, 2013, 2014
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and the optimized model is integrated into the future to generate
forecasts. With the EAKF, the distribution of the model state is rep-
resented by an ensemble of state vectors. As a result, the forecast
system is able to generate probabilistic predictions. For our
implementation, we used 300 ensemble members. Similar
model-data assimilation frameworks have been successfully
applied to the forecast and inference of influenza [56–60],
dengue [25], Ebola [61], influenza-like illness [62] and antibiotic-
resistant pathogens [63]. In particular, a similar networked fore-
casting system has been recently used to predict the spatial
transmission of influenza in the USA [65]. In the electronic sup-
plementary material, there are forecast examples for the
mechanistic and neural network models.
2.4. Evaluation of retrospective forecast
To examine how many weeks in advance the models can predict
peaks of dengue cases, predictions were generated starting from
week 6 to week 25 of the year, which we consider to be the
dengue season. For each forecasting week, predictions were gener-
ated for the remainder of the year for each neighbourhood, with
three objectives: to classify years and neighbourhoods with and
without intense outbreaks, to predict the peak intensity and
peak timing, and to predict the entire time series of dengue
cases for intense outbreaks. Neighbourhoods with greater than
200 dengue cases in a year were classified as intense. In addition,
we tested the sensitivity to this threshold value. To measure the
classification of outbreaks as intense or not, we have used
precision and recall metrics as follows:

precision ¼ TP
TPþ FP

(2:14)

and

recall ¼ TP
TPþ FN

: (2:15)

where (TP) is true positive, (TN) is true negative, (FP) is false
positive and (FN) is false negative.

In order to evaluate the forecasts of peak intensity (PI) and peak
timing (PT), we calculated the mean absolute error (MAE) as the
difference between the actual and predicted PI and PT, respectively:

PI ¼
PK

k¼0 jyk � ŷkj
K

(2:16)

and

PT ¼
PK

k¼0 jrk � r̂kj
K

, (2:17)
where, for PI, y is the real number of dengue cases during the peak
week and ŷ is the predicted number of dengue cases during the peak
week. For PT, r is the index of the peak week of the real time series, r̂
the index of the peak week of the predicted time series, and K is the
total number of outbreaks with annual cases of infections higher
than 200. To measure the error of the time series prediction, root
mean square error (RMSE) was calculated between the real and pre-
dicted time series of dengue cases for each large outbreak. In general,
the time series of dengue cases in Fortaleza show few peaks in the
year. So themost important thing for a forecastingmodel is to ident-
ify the peak and its ups and downs. RMSE (see equation (2.18)) is
the most appropriate metric to capture this because the difference
between the predicted value for the real is raised to the power of
two before the average is retained. This causes great differences to
be highlighted as bad forecasts during critical periods when
incidence is high are penalized.

RMSE ¼
PW

w¼f (xw � x̂w)
2

W � f
: (2:18)

x is the total number of dengue cases in the real outbreak, x̂ is the
total number of dengue cases in the predicted outbreak, W is
the total number of weeks in the year and f is the forecasting
time, the week of the year that the forecasting was initiated.
RMSE is measured for each large outbreak and finally the average
of all outbreaks is calculated.

As a final comparison, the results of the RNNi and MECHi
models were compared with an ARIMA [66]. ARIMA is a
widely studied statistical univariate model for time-series
prediction and used in various domains. [67–69].

Through auto-correlation analysis (detailed in the auto-
correlation electronic supplementary material), we see that
the number of dengue cases has high correlation with previous
values, that is, with small lags. Thus, ARIMA was performed
for auto-correlation value 5 (AR (5)) and moving average value
1 (MA (1)).

We evaluated the probabilistic forecasts by computing their log
score, a commonly used forecast scoring method [24,70,71]. For
peak intensity, the log score of the prediction for an intense out-
break is the logarithmic value of the percentage of predictions
that falls within an interval of ±10 cases around the actual case
number. For peak timing, the log score is the logarithmic value
of the percentage of predictions that falls within an interval of ±1
week of the actual peak week, and for time-series prediction, the
average of logarithmic values of the percentage of predictions of
weekly dengue cases for the remaining weeks of the dengue
season that fall within ±10 cases of the observed cases. Each
measurement was averaged over theweekly forecasts for all intense
outbreaks in all neighbourhoods. By definition, a higher log score
indicates a better forecast performance. When the average percen-
tage of previsions is zero, the constant −5 is assumed by default
as a penalizing value.
3. Results
As a baseline, we compared the isolated mechanistic and RNN
forecasts with a standard ARIMA forecast, ARIMAi for local
forecast and ARIMAc (using ARIMAX) for forecasting consid-
ering all the neighbourhoods. Figure 7 shows the results of
precision and recall for years and neighbourhoods with and
without intense epidemics obtained from all the models. Pre-
cision and recall are evaluation metrics for classification
problems. In this case, precision measures the fraction of cor-
rect classification of intense epidemics, dengue cases .200,
from all the cases predicted as intense epidemics, and the
recall measures the correct classified intense epidemics from
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all intense epidemics that actually happened. The same holds
for non-epidemic classifications, dengue cases �200.

With the dengue epidemics classification problem, both
models obtained better performance when considering trans-
portation data (RNNc and MECHc). Although the MECHc
had less precision than the RNNc model, the mechanistic
model exhibited a higher recall in prediction times closer to
the beginning of the year, indicating that the MECHc model
better forecasts large outbreaks (high recall for dengue
cases >200). This implies that the networked MECHc model
tends to predict large outbreaks, but will overestimate some
small outbreaks. In general, both the RNNc and MECHc
can classify the dengue outbreak size with a satisfactory per-
formance. As for the model generated by ARIMAi, there is a
high recall for small outbreaks (figure 7b). This is because, in
these cases, there are no requirements for the model to cap-
ture important variations and thus the model ends up
performing well in periods when there was no peak in
dengue cases. However, when we analyse the recall of this
model in cases with large peaks (figure 7e), the results are
not good. The behaviour is particularly poor for the early
forecast time. The same behaviour is observed when analys-
ing the precision values. Since most of the predictions made
by ARIMAi were defined as periods without peak dengue
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cases, then the precision values are expected to be low for
periods with dengue cases ≤200 and for periods with
dengue cases >200 the high values given that few periods
were predicted as large outbreaks. The results for the
ARIMAc model are even worse than the results of ARIMAi,
indicating that when the complexity of the problem is
increased, models of the ARIMA type fail to present reason-
able results. The analysis regarding precision and recall can
be summarized in the f-score graphs, showing that the use
of transport data for both large and small outbreaks allowed
an improvement in the results of the RNNc and MECHc
models, when compared with data from large outbreaks,
which did not happen with the ARIMA models.

It is of practical interest to examine whether these models
can predict the timing and the intensity of outbreaks. Given
that our objective is to predict outbreak peaks, the next analysis
focuses on outbreaks in neighbourhoods with a total number
of dengue cases greater than 200, as outbreaks below this
threshold often did not have a clearly defined peak. Figure 8
shows the MAE of peak intensity and peak timing for years
and neighbourhoods with intense epidemics, dengue cases >
200. For both peak intensity and peak timing, the RNNi fore-
cast had greater MAE than the MECHi forecast during the
first half of the season. The addition of mobility data greatly
reduced MAE in the mechanistic forecast for both targets. For
the RNNc forecast, mobility data led to a small decrease in
MAE for peak intensity, and no clear advantage in peak
timing MAE. The RNNc had lower MAE than the MECHc
forecast for the peak intensity target, but the two methods
had similar MAE for the peak timing target. Even with results
similar to MECHi for peak intensity, ARIMAi and ARIMAc
presented the worst results for peak intensity and much
worse results for peak time.

Figure 9 shows the RMSE for the time-series predictions.
We again found that mobility improved the forecasts, leading
to a smaller RMSE in both the RNN and mechanistic forecasts
compared to the isolated forecasts. Comparing the linked ver-
sion of the two forecast methods shows that RNNc has smaller
RMSE than the MECHc forecasts. These results reinforce the
assumption presented in the classification evaluation: the
mechanistic models are inclined to overestimate small out-
breaks, but they better capture intense outbreaks. However,
when predicting the entire time series, parsimonious mechan-
istic models, with fewer parameters, are less flexible and thus
less capable of simulating nonlinear epidemic curves. The poor
results of RMSE for ARIMAc reinforce that the ARIMA
models are not capable of learning complex problems such
as the relationship between people flow and dengue cases.

Figure 10 shows the results of average log scores for peak
intensity, peak timing and the whole time-series prediction.
With this metric, which evaluates the accuracy of the probabil-
istic forecast, the effect of the mobility data was less
straightforward. Both types of models generally benefitted
from the mobility data in forecasting peak timing. However,
the inclusion of the mobility data led to lower log scores for
peak timing, and at certain times, for the time series of
future dengue incidence. For peak intensity, the mechanistic
model shows more consistent results presenting higher
values for both local and network prediction. The neural net-
work models clearly show better results for peak timing
prediction based on MAE and log score. This result also
holds for prediction of entire time series.

We tested the sensitivity of our analysis to the choice of 200
cases as the neighbourhood level epidemic threshold.We eval-
uated the models’ ability to predict dengue cases in a period
with dengue cases greater than 100 and greater than 300.
The results strengthen the findings of our main analysis: the
mechanistic model better predicts large epidemics, but over-
estimates periods when there are fewer dengue cases, and
the neural network model continues to better predict peak
timing in all analyses. The epidemic threshold analyse elec-
tronic supplementary material describes in more detail the
epidemic threshold analysis.

In order to understand the reasons the neural network
model obtained better results using vector representations
of the network of people flow in the prediction of the time
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series as a whole (figure 9) and in the prediction of
peak intensity of dengue cases (figure 8a), we decided to
investigate more deeply the spatio-temporal scenario.

Figure 11 shows the spatial distribution of RMSE for fore-
casts made using the RNNc model during epidemic years. In
these years, the RMSE for neighbourhoods in the west of the
city (left side) is lower. This region is made up of the most
populated neighbourhoods with the highest poverty indi-
cators. The figures presented in ‘appearance of dengue
electronic supplementary material’ indicate that the west of
the city is the region where dengue cases first appear in
peak years. This suggests that the use of human mobility
data is important for capturing the flow of the dengue
virus from the west to the east of the city. Figure 12 shows



royalsocietypublishing.org/journal/rsif
J.R.Soc.

11
that by using human mobility data there was reduced fore-
cast error in neighbourhoods in the east, particularly for
peak intensity and prediction of the time series as a whole.

The neighbourhoods with more accurate predictions are
located in the west of the city, the most populous region and
where the first cases of dengue occurred in peak years. This indi-
cates that the neural networkmodel performed better predicting
incidence during the early stage of an outbreak with a clear
growth trend. This outcome suggests a need to further
strengthen understanding of the spread of dengue via human
mobility data and better predict dengue cases in neighbour-
hoods other than those with such clear trends. At the same
time, in the RNNcmodel there was an improvement in the fore-
cast accuracy for neighbourhoods that were not in the western
region, indicating that the neural network model was able to
capture the spatio-temporal aspects of the dengue transmission.
Interface
17:20200691
4. Discussion and conclusion
In this paper, we proposed two distinct dengue forecasting sys-
tems and explored the use of human mobility data as a part of
these forecasting systems. The first forecast system employed
neural network architectures: one forecasting dengue cases
using only local historical dengue data and the other one,
embedding human mobility data, as well as past dengue data,
into a hierarchical architecture. The second type of forecast
system used a mechanistic model coupled with a data assimila-
tion system.We presented an isolated versionwhich using only
local historical dengue data and a linked version which also
incorporates human mobility data. Findings indicate that
inclusion of human mobility data improves forecast accuracy
for both the neural network and mechanistic models. Both
methods can classify outbreak intensity, although themechanis-
tic models better capture large outbreaks. However, for forecast
of the full dengue time series or identification of peak timing
and intensity, the neural network models were more accurate.
A comparison with a traditional ARIMAmethod was also per-
formed. The ARIMA forecasting approach, as expected,
produced less accurate forecasts because it was not able to cap-
ture the long-term dependency of historical dengue cases or the
complex nonlinear relationship that presented in the mobility
data.

Compared with mechanistic models, the neural networks,
which here have more parameters and a more complex struc-
ture, are better able to capture a broader range of nonlinear
transmission dynamics. This difference may explain why
the neural network outperforms the mechanistic models in
predicting dengue outbreak peak intensity and the incidence
time series. Also it is important to mention that despite the
good performance of the neural network forecasting systems,
neural networks have disadvantages that must be considered.
In particular, the neural network model requires a large
amount of data and effort to adjust its hyper-parameters to
prevent over-fitting. Thus, a high-performance computer is
needed to cover the computational cost in training the
models and to reduce the training time. To perform the
tests for the local neural network model, each model for
each neighbourhood was trained for 144min for each fore-
casting week. In total, there were 20 different forecasting
weeks, from week 6 to week 25, requiring 2880min (48 h)
to perform this test. However, it was less time consuming
to perform the tests for the RNNc (i.e. including human
mobility data). The architecture for this model allows for
the prediction of dengue cases for all the neighbourhoods
at once, thus reducing the training time to 3 h.

As with previous comparisons of different types forecast-
ing systems [62,70,72], we found that the neural network
system and the mechanistic system each outperformed the
other for certain forecast targets and evaluation metrics. This
indicates that a super-ensemble approach, in which forecasts
produced using different methods are combined into weighted
averages based on their historical performance, would be ben-
eficial. A super-ensemble approach can also benefit from the
ability of each system to consider different types of infor-
mation, e.g. spatial, temporal, etc., as well as representing
this information differently. For instance, one model can rep-
resent the spatial-dependency as a Node2Vec embedding
while another model can represent this by means of a graph
convolutional network [73]. Also, an ensemble might allow
the models to be considered as basic features of the time-
series and/or spatial properties. For example, an LSTM-
model without spatial or transport data might produce
better results for neighbourhoods with low movement.

The findings of this research open up new avenues for
understanding the impact of urban mobility on the epidemic
of diseases such as dengue in large cities as well as for under-
standing the adequacy and limitations of important forecast
tools coming from different contexts such as neural nets
and mechanistic models.
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