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A challenging and outstanding problem in interdisciplinary research is to
understand the interplay between transients and stochasticity in high-
dimensional dynamical systems. Focusing on the tipping-point dynamics
in complex mutualistic networks in ecology constructed from empirical
data, we investigate the phenomena of noise-induced collapse and noise-
induced recovery. Two types of noise are studied: environmental (Gaussian
white) noise and state-dependent demographic noise. The dynamical
mechanism responsible for both phenomena is a transition from one stable
steady state to another driven by stochastic forcing, mediated by an unstable
steady state. Exploiting a generic and effective two-dimensional reduced
model for real-world mutualistic networks, we find that the average
transient lifetime scales algebraically with the noise amplitude, for both
environmental and demographic noise. We develop a physical understand-
ing of the scaling laws through an analysis of the mean first passage time
from one steady state to another. The phenomena of noise-induced collapse
and recovery and the associated scaling laws have implications for
managing high-dimensional ecological systems.
1. Introduction
In ecology, to predict the state of the system in the future is critical to sustain-
able ecosystem management [1]. Long-term prediction is also of paramount
importance to fields such as epidemiology and climate science. In the real
world, the ability to predict the future of the system is often hindered by a
number of factors, among which transients, stochasticity and high dimensionality
stand out as some of the most daunting challenges. To understand the complex
interplay among the three factors is of fundamental importance to ecology and
related fields, but this has remained an outstanding problem in inter-
disciplinary research. The purpose of this paper is to present a case study to
gain significant insights into the interplay among transients, stochasticity and
high dimensionality. In particular, using complex, high-dimensional ecological
networks as a paradigmatic model, we investigate the phenomenon of noise-
induced transients associated with tipping-point dynamics and uncover the
scaling laws characterizing the dependence of the average transient lifetime
on the noise amplitude.

1.1. Transients in ecological systems
Transient behaviours are ubiquitous in chaotic systems [2,3], and their impor-
tance to ecology has been increasingly recognized [4–10]. In ecological systems,
the phenomenon of ‘regime shift’, where a qualitative change in the dynamical
state occurs suddenly with no warning [11–13], is particularly devastating
because, (i) any understanding of the system based on observations made
before the regime shift would become irrelevant, (ii) its time of occurrence is
highly unpredictable, and (iii) it often results in population collapse and species
extinction. On the dynamical origin of regime shift, the traditional view is that it is
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due to parameter drifting, but it has been proposed that regime
shift can be the consequence of transient dynamics without
requiring any parameter change [9,10].

1.2. Stochasticity in ecological systems
In the real-world ecological environment, the population
dynamics are under inevitable and constant influences of
random disturbances. It has been known for a long time
that stochasticity can affect species abundance in terms of its
size, dynamics and resilience [9,14–28]. As different species
in an ecosystem interact with each other through a compli-
cated pattern, the extinction of one species as caused by
stochasticity can lead to the extinction of other species that
are linked to it. Likewise, external perturbations leading to
improved environmental conditions can make certain species
recover their abundance from near zero values which, in turn,
can lead to the recovery of mutually interacting species [29].

There are two main types of stochastic perturbations in
ecological systems: those due to changes in the environmental
conditions (external) and those caused by variations in the
populations themselves (internal). Environmental stochasti-
city has a direct impact on the birth rate and mortality of the
species and can be modelled as additive Gaussian white
noise [30,31], while internal stochasticity is due to the inherent
uncertainties related to individual reproduction, growth,
death, competition and migration within the species and is
thus demographic [21,32–34], representing correlated or
‘coloured’ noises. Mathematically, a demographic stochastic
process can be modelled as a type of multiplicative noise
with strength proportional to the square root of the fluctuating
abundance. In the present work, both types of stochasticity are
studied.

1.3. High dimensionality of ecological systems
Ecosystems are typically high-dimensional and complex. To be
concrete, we shall focus on mutualistic interaction networks
[29,35–44]. In general, mutualism is referred to as a close, inter-
dependent, mutually beneficial relationship between two
species. Mutualistic interactions are one of the most important
interspecific relationships in ecosystems. For instance, the
corals and the single-celled zooxanthellae that form huge coral
reefs are in a mutualistic relationship, where the zooxanthellae
provide nutrients to their host and in return receive essential
nourishment in a process associated with reef-building corals.
On land, mutualistic interactions are fundamental to species
diversity, such as the network of pollinators and plants. Because
of the typically large number of species involved in the
mutualistic interactions, the underlying networked system is a
high-dimensional nonlinear dynamical system.

1.4. Methods and results of this paper
In this paper, employing complexmutualistic networks subject
to environmental and demographic noises, we set out to unveil
and decipher the interplay among transients, stochasticity and
high dimensionality. While this setting naturally has the
elements of high dimensionality and stochasticity, where do
transients come from? To generate transient dynamics, we
focus on the parameter regime where the networked system
exhibits a tipping point [13,38,42,43,45–57]. Especially, as a
bifurcation parameter changes, the system can exhibit a tran-
sition from a survival state to an extinction state, or vice
versa. To be concrete, we choose the normalized species
decay rate κ as the bifurcation parameter. For a collapse leading
to species extinction, e.g. caused by continuous deterioration of
the environment so that the value of κ keeps increasing (the for-
ward direction), the system remains in the survival state for
k , k0c and becomes extinct for k . k0c, where k0c is the critical
point. Similarly, for the recovery process triggered by continu-
ously improving the environment so that the value of κ keeps
decreasing (the backward direction), the system is in an extinc-
tion state for k . k0r but the species abundances are recovered
for k , k0r, where k0r is the critical point. Note that the critical
points k0c and k0r are often different, due to the emergence of
a hysteresis loop. Stochasticity can change this deterministic
picture: in the forward direction, even for k , k0c, a transition
from the survival state to extinction can occur, whereas in the
backward direction, the system can transition to a survival
state from an extinction state even for k . k0r . These noise-
induced transitions, of course, do not occur instantaneously
but rather requires some time to complete, leading to transi-
ents. The setting of our study is thus adequately suited
for addressing the intricate interplay among transients,
stochasticity and high dimensionality in ecological systems.

Our main results are as follows. Firstly, using the full,
high-dimensional empirical mutualistic networks constructed
from data from four geographical regions subject to stochastic
influences as modelled by environmental and demographic
noises, we demonstrate the phenomena of noise-induced col-
lapse and recovery. Secondly, we search for any possible
scaling relation between the average transient time and the
noise amplitude. To render the task computationally feasible,
we take advantage of an effective 2D model that was pre-
viously derived and demonstrated to capture the essential
dynamical behaviours associated with tipping point tran-
sitions in mutualistic networks [42]. Extensive numerical
simulations indicate that the scaling relation is algebraic for
both types of noise. Thirdly, exploiting the basic, saddle-
node bifurcation based nonlinear dynamical picture under-
lying the two noise-induced transition phenomena, we
argue that the average transient lifetime is essentially the
mean first passage time from one steady state to another
driven by noise. We obtain formulae for this time and demon-
strate that the formulae give the algebraic scaling as observed
from direct numerical simulations.

The uncovered phenomena of noise-induced collapse
and recovery and the associated algebraic scaling law of the
average transient lifetime with the noise amplitude represent
a quantitative characterization of the interplay between sto-
chasticity and transients in high-dimensional ecological
systems. In addition, our analysis reveals that demographic
noise plays a dominant role in causing a system to collapse,
while environmental noise is key to species recovery. These
results have implications to managing high-dimensional
ecosystems. For example, in order to prevent a healthy
system from collapsing to extinction, reducing demographic
noise would be effective. On the contrary, if the system is
already in extinction, supplying an appropriate level of
environmental noise could facilitate recovery.
2. Model of stochastic mutualistic networks
We extend the deterministic model [38–42] for complex
mutualistic networks of plant and pollinator species to include
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environmental white and demographic noises [29]:

dXi

dt
¼ a(X)

i Xi � k(X)i Xi �
XSX
j¼1

b(X)
ij XiXj

þ
PSY

k¼1 g
(X)
ik Yk

1þ h
PSY

k¼1 g
(X)
ik Yk

Xi þ mX þ
ffiffiffiffiffiffiffiffiffiffiffiffi
V(Xi)

p
dBi(t) (2:1)

and

dYi

dt
¼ a(Y)
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XSY
j¼1

b(Y)
ij YiYj þ

PSX
k¼1 g

(Y)
ik Xk

1þ h
PSX

k¼1 g
(Y)
ik Xk

Yi þ mY

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
U(Yi)

p
dBi(t),

(2:2)

where Xi and Yi are the abundances of the ith pollinator and
ith plant, respectively, a(X)

i and a(Y)
i are the intrinsic growth

rates in the absence of intraspecific competition and any
mutualistic effect, βii and βij (i≠ j) are parameters quantifying
intraspecific and interspecific competitions, respectively, and
the parameters mX ⪆ 0 and mY ⪆ 0 characterize species
migration. For the pollinator–plant system, intraspecific com-
petition is typically stronger than interspecific competition
[38,39]: βii≫ βij. The saturation effect is taken into account by
the constant h, which is the half-saturation density of the Hol-
ling type-II functional response [58]. The beneficial effect of the
interactions on the population growth saturates when the
mutualistic partners have high abundance. The parameters
g(X)ik and g(Y)ik are the strengths of the mutualistic interactions,
which depend on the degree of the node as

gij ¼ aij
g

(ki)
r , (2:3)

where γ is the normalized strength and aij’s are the elements of
the network adjacency matrix: aij = 1 if there is an interaction
between pollinator i and plant j; otherwise aij = 0. The par-
ameter ki is the number of mutualistic links associated with
species i, and ρ determines the strength of the trade-off
between the interaction strength and the number of inter-
actions. If there is no trade-off (i.e. ρ = 0), the network
topology has no effect on the strength of the mutualistic inter-
actions. In contrast, a full trade-off (ρ = 1) means that the
interaction strength is weighed by the nodal degree so the net-
work topology affects the species gain from the interactions.
To make a numerical study of the collapse and recovery
processes in the presence of different types of stochastic pro-
cesses feasible, we choose k(X)i ; k, the pollinator decay rate,
as the bifurcation parameter while fixing the values of the
other parameters as reported in the literature [38–42].

We consider three cases of stochastic influences: environ-
mental noise (EN) only, demographic noise (DN) only and
simultaneous presence of both types of noise (EDN). The pro-
cess dBi(t) in equations (2.1) and (2.2) is a Brownian motion
obeying the normal distribution with zero mean and variance
dt. For EN, the noise strength terms are constants:

V(Xi) ¼ s2 and U(Yi) ¼ s2, (2:4)

with σ being the noise amplitude. DN is modelled as
[21,34,59]

V(Xi) ¼ z2Xi and U(Yi) ¼ z2Yi (2:5)
with noise amplitude ζ. For EDN, we have

V(Xi) ¼ s2 þ z2Xi and U(Yi) ¼ s2 þ z2Yi: (2:6)

We simulate the stochastic dynamics of four empirical
pollinator–plant mutualistic networks (available from the
Web of Life database (http://www.web-of-life.es)). Network
A is from Hicking, Norfolk, UK (SX = 61 and SY = 17 with the
number of mutualistic links L = 146), where SX and SY are the
numbers of pollinator and plant species, respectively. Net-
work B is from Tenerife, Canary Islands (SX = 38, SY = 11
and L = 106). Network C is from North Carolina, USA
(SX = 44, SY = 13 and L = 143). Network D is from Hestehaven,
Denmark (SX = 42, SY = 8 and L = 79). A graphic represen-
tation of the adjacency matrices for the four networks
provides a better visualization of the structure of the mutua-
listic interactions [42], including nestedness that is often
associated with the intrinsic ability of pollinators to overcome
harsh conditions.
3. Numerical results
3.1. Noise-induced collapse and recovery processes
An increase in the pollinator decay rate κ, the bifurcation
parameter, can be viewed as a consequence of the deterioration
of the environment. Due to the mutualistic interactions, plants
are affected by the decay of pollinators, albeit indirectly. We
present the simulation results from network A here, while
leaving thosewith networks B–D in the electronic supplemen-
tary material. For EN, the stochastic system is integrated using
a standard second-ordermethod [60].WhenDN is present, we
use a previously developed integration method for
multiplicative noises [59,61].

A tipping point transition of the collapse type occurs
when the system switches from a high to a low-abundance
steady state as κ increases through a critical point, and
noise can affect this transition by advancing its occurrence.
Figure 1a shows such a transition in the absence of noise,
where the transition point is κc≈ 1.8. For κ < κc, the system
is in the high-abundance steady state. For κ > κc, the system
approaches asymptotically an extinction state in which most
species abundances are near zero. Similar transitions occur
when noise is present, as shown in figure 1b–d for EN, DN
and EDN, respectively. The value of the critical transition
point for the EN case is κc≈ 1.7, while that for the DN or
EDN case is κc≈ 1.4, indicating that environmental noise
has caused the transition to occur at a slightly smaller value
of the bifurcation parameter as compared with the determi-
nistic case, but demographic noise has a more devastating
effect, as it causes the transition to occur at a markedly smal-
ler value of κ. Qualitatively, this can be understood by noting
that when the system is in the high abundance state, the
corresponding stochastic perturbation is stronger due to the
dependence of the noise term on the abundance.

When the system is in an extinction state where the species
abundance is near zero, noise can induce an ‘early’ recovery of
the species, a phenomenon that was reported recently [29] but
mainly for the case of EN.Dynamically, this occurswhen noise
induces a state transition of the system from a low to a high
abundance state—a process that is opposite to noise-induced
collapse. Representative results are shown in figure 2, where
the panels (a–d ) correspond to the deterministic case and the
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Figure 1. Noise-induced collapse through a tipping point transition. (a–d ) Species abundances versus the normalized decay rate κ for networks A in the absence of
noise, with EN, DN and EDN, respectively. The red and blue curves represent the pollinator and plant abundances. The collapse tipping points for the four cases in
(a–d ) are approximately κc≈ 1.8, 1.7, 1.4 and 1.4, respectively. Other parameter values are a(X)

i ¼ a(Y )
i ¼ 0:3, b(X )

ii ¼ b(Y )
ii ¼ 1, γ = 1, h = 0.2, ρ = 0.5,

μX = 10−4 and μY = 10−4. In (b,d ), the environmental noise amplitude is σ = 0.1. In (c,d ), the demographic noise amplitude is ζ = 0.25. The time duration
of each simulation run is T = 400, which is long enough to allow the species abundances to switch to the lower stable state after a transient. The initial conditions
are randomly chosen from the basin of the high-abundance steady state.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200645

4

three cases with EN, DN and EDN, respectively. In terms of
the bifurcation parameter, the recovery point for cases (a)
and (c) is κc≈ 1.2 while that for cases (b,d ) is κc≈ 1.5. Since
case (c) involves DN only and cases (b,d ) have EN, we see
that DN has little effect on the recovery point. This is reason-
able because, prior to the recovery, the system is in the low
steady state with near zero abundance, so the stochastic per-
turbation due to DN is insignificant. The results in figure 2
indicate that EN can be beneficial to species recovery, as it
prompts the transition to occur ‘earlier’ as the bifurcation
parameter decreases from a value in the extinction regime [29].

Comparing the results in figures 1 and 2, we see that the
value of the species recovery point is generally smaller than
that for the collapse tipping point. This indicates that, once
the system is in extinction, the environment needs to be
more suited for the species than that at the collapse for
recovery to occur [43].
3.2. Noise-induced transients and scaling
The phenomena of noise-induced collapse and recovery both
involve the transition from one steady state to another, which
takes time to complete, leading to a transient behaviour. The
average transient time τ depends on the type of noise and
its amplitude.

To make it feasible to numerically calculate and mathe-
matically derive the noise scaling law of the average
transient time, we exploit the effective 2D reduced model
that has been demonstrated [42] to generate the dynamical
behaviours associated with the tipping point transition in
the full mutualistic networked system. The 2D model not
only captures the essential behaviour of empirical mutualistic
networks from different regions and climate across the Earth,
but it also predicts correctly the onset of the tipping point in all
59 available network data from pollinator–plant habitats, even
in presence of noise. Beingmuch less complicated than the full
networkmodel, the reduced system can be used as a paradigm
to gain insights into mutualism.

Under noise, the 2D model is written as

dx
dt

¼ ax� kx� bx2 þ hgxiy
1þ hhgxiy

xþ mþ
ffiffiffiffiffiffiffiffi
v(x)

p
dBt (3:1)

and

dy
dt

¼ ay� by2 þ hgyix
1þ hhgyix

yþ mþ
ffiffiffiffiffiffiffiffiffi
u(x)

p
dBt, (3:2)

where x and y are the effective or average abundances of
pollinators and plants, respectively, α is the effective growth
rate in the reduced model, β stands for the combined effects of
intraspecific and interspecific competitions, κ is the bifurcation
parameter that accounts for the decay rate of the pollinator
and μ represents the migration effect of the species. The two
effective mutualistic interaction parameters, 〈γx〉 and 〈γy〉, are
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Figure 2. Noise-induced recovery process. (a–d ) Species abundances versus the bifurcation parameter as its value continuously decreases from that in the extinction
state for the four cases of absence of noise, EN, DN and EDN, respectively. The red and blue curves represent the pollinator and plant abundances, respectively. The
recovery points for the four cases are approximately 1.2, 1.5, 1.2 and 1.5, respectively. Other parameter values are a(X)

i ¼ a(Y )
i ¼ 0:3, b(X)

ii ¼ b(Y )
ii ¼ 1, γ = 1,

h = 0.2, ρ = 0.5, μX = 10−4 and μY = 10−4. In (b,d ), the environmental noise amplitude is σ = 0.1. In (c,d ), the demographic noise amplitude is ζ = 0.025. The
time duration of each simulation run is T = 400, which is sufficient for the transition from a low to a high abundance state to complete. The initial conditions are
randomly chosen from the basin of the low abundance steady state.
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obtained [42] through properly weighed averages of the quan-
tities g(X)ik and g(Y)ik based on the empirical complex networks,
equations (2.1) and (2.2). The terms in equations (3.1) and (3.2)
that involve the Brownian motion dynamics dB(t) represent
the stochastic perturbations. For EN, we have v(x) = σ2 and
u(y) = σ2. For DN, we have v(x) = ζ2x and u(y) = ζ2y. For EDN,
we have v(x) = σ2 + ζ2x and u(y) = σ2 + ζ2y.

Suppose the system is in the high abundance state, i.e.,
the value of κ is smaller than that associated with the
deterministic tipping point of collapse. The presence of
noise can induce a transition to the low abundance state.
Figure 3a shows, for EN, the average transient time τ required
for the collapse transition to complete versus the noise ampli-
tude σ on a logarithmic scale. As σ increases, τ decreases, and
the scaling relation is algebraic:

t � s�p, (3:3)

with the scaling exponent p≈ 2.45. Likewise, when the
system is in the low abundance state, noise can induce a tran-
sition to the high abundance state and the scaling of the
average transient time with the noise amplitude is also alge-
braic, as exemplified in figure 3b, where p≈ 2.40. Similar
algebraic scaling relations have been obtained with DN:

t � z�q, (3:4)

as shown in figure 4a and 4b for the processes of noise-
induced collapse and recovery, respectively.
3.3. Loss of mutualism induced by demographic noise
If the amplitude of stochastic processes of the DN type are
sufficiently large, they can have a devastating effect on the
system: loss of mutualism. Dynamically, this occurs when
the basins of the high and low abundance steady states over-
lap so significantly that these states can no longer be
distinguished from each other. A consequence is that the
movements of the individual species populations are effec-
tively independent stochastic processes, as the mutualistic
interactions are completely overwhelmed by the noise. An
example is shown in figure 5, where the variations in the
species abundances as the bifurcation parameter κ increases
are displayed for six values of ζ, the amplitude of DN. It
can be seen that, for ζ < ζc, where zc ⪅ 5:0, there is still mutu-
alism but it is completely lost for ζ > ζc. This phenomenon of
loss of mutualism also occurs during the species recovery
process, i.e. as κ decreases continuously from a relatively
high value for which the deterministic system is in the low
abundance steady state, as shown in figure 6 for six values
of ζ. The critical value ζc obtained from the recovery (‘back-
ward’) process is approximately the same as that from the
collapse (‘forward’) process in figure 5.

Large environmental noise, analogous to demographic
noise, can cause the survival and extinction basins of attrac-
tion to overlap, resulting in the loss of mutualism. The
mathematical reason is that the environmental and demo-
graphic noise amplitudes enter the system equations on an
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equal footing. Extraordinarily strong environmental noise in
which the stochastic terms are much larger than the others,
including the mutualistic interaction terms, may be unrealis-
tic. The situation with demographic noise is somewhat
different because its amplitude is inversely proportional to
the habitat size, so effectively large fluctuations can arise in
small habitats, implying that such a system is more vulner-
able to collapse. By the same token, from the point of view
of recovery, small population clusters corresponding to
larger noise strength are advantageous for the population
to cross over the unstable equilibrium to recover.
4. Physical theory for the scaling law of average
transient time

We develop a physical theory to understand the algebraic
scaling law of the average transient time for the phenomena
of noise-induced collapse and recovery. We base our
analysis of the stochastic tipping point dynamics on the effec-
tive 2D reduced model [42] for mutualistic networks. Figure 7
schematically illustrates the deterministic as well as the noise-
induced collapse and recovery processes. In the deterministic
case, these processes are the result of saddle-node bifurcations,
where the collapse tipping point is due to a reverse saddle-
node bifurcation and recovery is the result of a forward
saddle-node bifurcation. For κ to the left of the forward
saddle-node bifurcation point, the system possesses only one
stable equilibrium corresponding to the high abundance
steady state. For κ to the right of the reverse saddle node bifur-
cation point, there is only the low abundance equilibrium,
corresponding to extinction. However, for κ in-between the
two saddle-node bifurcation points, the system exhibits
multistability [62–65] with three equilibria: two stable equili-
bria and one unstable equilibrium between them. The two
stable equilibria are two attractors with their own basins of
attraction, while the stable manifold of the unstable equili-
brium is the basin boundary [3,66]. Under the influence of
noise, the dynamical trajectory of the system can cross the
basin boundary [63,67,68]. In particular, as the value of κ
increases, the system can have a transition from the high- to
the low-abundance equilibrium at κc, as indicated by the
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green arrow in figure 7. This is the phenomenon of noise-
induced collapse. Conversely, when the system is already in
the extinction state, noise can trigger a transition from the
low- to the high-abundance state at κr, as illustrated by
the orange arrow in figure 7. This is the phenomenon of
noise-induced species recovery.

For both the noise-induced collapse and recovery phenom-
ena, the dynamical mechanism is a noise-induced transition
between two stable equilibria (attractors). There is a compe-
tition between the attractiveness of the dynamics in the
neighbourhood of the stable equilibria, which is controlled
by the negative eigenvalues of the Jacobianmatrix, and the sto-
chastic random jumps that take the trajectory out of the open
neighbourhood possibly into the other attractor [63,67,69,70].
To enable a transition, the noisy ‘kicking’ must be sufficiently
large to bring the system trajectory across the unstable equili-
brium. Our analysis of the 2D model reveals that, for the
collapse process, the Euclidean distance between the upper
stable equilibrium and the unstable equilibrium varies in the
interval (2.7, 3.4) for κ∈ [1.0, 2.0]. For the recovery process,
the Euclidean distance between the lower stable equilibrium
and the unstable equilibrium is in (0.5, 1.0) for κ∈ [1.0, 2.0].
The sizable difference in the distance range implies that, for
the same noise, recovery can occur more readily, where a
noise of relatively small amplitude is able to drive the
system to overcome the distance to the basin boundary, allow-
ing the trajectory to enter the basin of the upper equilibrium.
For an ensemble of trajectories, the transient time required
for the transition is exponentially distributed [64,71] with the
mean transient lifetime τ that depends on the noise amplitude.

In terms of the underlying stochastic process, the average
transient time τ is nothing but the first passage time [72] for
the transition, which decreases with the noise amplitude.
To derive the algebraic scaling relations (3.3) and (3.4),
we note that, for population stochastic processes, the equili-
brium distribution is typically stationary [73,74]. We thus
assume that the distributions of the pollinators and plants
have the following respective stationary probability density
functions [75,76]:

p(x) ¼ C
v(x)

e2
Ð
(d(x)=v(x)) dx (4:1)

and

p(y) ¼ C
u(y)

e2
Ð
(d(y)=(y)) dy, (4:2)

where C is a normalization constant. The integral in the expo-
nent is an antiderivative, and the constants produced by the
integration are grouped into C. The functions

d(x) ¼ ax� bx2 � kxþ hgxiy
1þ hhgxiy

xþ m

and

d(y) ¼ ay� by2 þ hgyix
1þ hhgyix

yþ m

are from equations (3.1) and (3.2), respectively, of the 2D
model. In principle, for a population that goes extinct, we
should consider a quasi-stationary distribution characterized
by a transient, typically fluctuating about a stable equilibrium
before becoming extinct [77]. In this case, we would deal with
a truncated portion of a stationary distribution, which would
be appropriate for our problem. However, since our goal is to
obtain the scaling dependence of the first passage time on the
noise amplitude, we exploit stationary distributions for both
the pollinator and plant species.

We first treat demographic noise. Substituting v(x) = ζ2x2,
u(y) = ζ2y2, d(x) and d(y) into equations (4.1) and (4.2) yields,

p(x) ¼ C
z2x2

e
2
z2

Ð ��
a�kþ hgx iy

1þhhgx iy
�
1
x�bþ m

x2

�
dx ¼ C

z2x2
e

2
z2
f(x) (4:3)
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and

p(y) ¼ C
z2y2

e
2
z2

Ð ��
aþ hgyix

1þhhgyix
�
1
y�bþ m

y2

�
dy ¼ C

z2y2
e

2
z2
f(y), (4:4)

where

f(x) ¼ �m

x
� bxþ a� kþ hgxiy

1þ hhgxiy
� �

ln (x) (4:5)

and

f(y) ¼ �m

y
� byþ aþ hgyix

1þ hhgyix

 !
ln (y): (4:6)

For an ergodic variable x with a stationary distribution, the
mean first passage time is given by [75]

tx ¼ 2
ðn
x

Ð n
0 p(x) dx
v(x)p(x)

dx, (4:7)

where x < n and n is the final abundance. The mean first
passage time τ for the pollinator species is

t ¼ 2
ðxf
x0

Ð x f

0 p(x) dx
z2Cx2p(x)

dx, (4:8)

where the area under p(x) between x0 and xf gives the fraction
of time that the process x spends in the interval (x0, xf ), x0 is
the initial value and xf is the final value. Substituting equation
(4.3) into equation (4.8), we get

t ¼ 2
ðxf
x0

2C
z2

�e

2f(x)
z2

x
þ 2f(x)Ei(x)

z2

0
BBB@

1
CCCA

e

2
z2

f(x)

dx, (4:9)

where Ei(x) ; � Ð1�x (e
�t=t) dt is the error function. Carrying

out the integration, we get

t ¼ 1
z2

2C
x f

� 2C
x0

� �
þ 1
z4

2C[(e(�2f(xf ))=z2Ei(xf )�e(�2f(x0))=z2Ei(x0)]:

(4:10)

Equation (4.10) gives dependence of τ on the noise amplitude
ζ. While the dependence appears complicated, numerical
testing of equation (4.10) in figure 8b reveals the scaling
relation (3.4).
We next consider environmental noise. With v(x) = σ2 and
v(y) = σ2, we can rewrite the probability density function as

p(x) ¼ C
s2 e

2
s2

Ð ��
ax�bx2�kxþ hgx iy

1þhhgx iy
�
xþm
�
dx ¼ C

s2 e
2
s2
f(x) (4:11)

and

p(y) ¼ C
s2 e

2
s2

Ð ��
ay�by2þ hgy ix

1þhhgy ix
�
yþm
�
dy ¼ C

s2 e
2
s2
f(y), (4:12)

where

f(x) ¼ mx� bx3

3
þ x2

2
a� kþ hgxiy

1þ hhgxiy
� �

(4:13)

and

f(y) ¼ my� by3

3
þ y2

2
aþ hgyix

1þ hhgyix

 !
: (4:14)

For initial condition x0 and final state xf, the mean first
passage time τ for pollinators is

t ¼ 2
ðxf
x0

Ð x f

0 p(x) dx
s2p(x)

dx: (4:15)

Substituting equation (4.11) into equation (4.15), we get

t ¼ 2
ðxf
x0

2C
s2 �e

2f(x)
s2 þ 2f(x)Ei(x)

s2

0
@

1
A

e
2
s2 f(x)

dx

¼ 2
ðxf
x0

2C
s2

2f(x)Ei(x)

s2 e
2
s2 f(x)

� 1

0
BB@

1
CCAdx

¼ 4C
s2

e

2f(xf )
s2 Ei(xf )

2f(xf )
2 � e

2f(x0)
s2 Ei(x0)

2f(x0)
2

2
6664

3
7775, (4:16)

where Ei(x) ¼ � Ð1�x (e
�t=t) dt is the error function. Numerical

testing of equation (4.16) shown in figure 8a attests to the scal-
ing law (3.3).

A remark about the generality of the scaling laws is in
order. Our calculation of the equilibria and derivation of
the scaling laws of noise-induced transients rely on the
reduced 2D model that is mathematically amenable to
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analysis. The 2D model was developed based on data from 59
empirical real world networks and was shown to capture the
essential behaviour of the real networks from a wide geo-
graphical range across continents and climate zones [42].
The 2D model can accurately predict the occurrence of the
tipping point, even in presence of stochastic disturbances.
These features of the 2D model suggest that it can serve as
a general paradigm to study the dynamics of complex sto-
chastic mutualistic networks and, consequently, the scaling
results obtained here are expected to be general as well.
rnal/rsif
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5. Discussion
Transients, stochasticity and high dimensionality represent the
three main obstacles to long-term forecasting of ecological sys-
tems. To understand the interplay among the three is thus of
paramount importance and broad interest. In this paper, we
take a step forward to addressing this challenging issue by
investigating the transient dynamics associated with species
collapse and recovery in a generic class of mutualistic net-
worked systems subject to stochastic influences. Such a
networked system is high-dimensional [29,35–44], whose
dynamics are described by the interactions of two groups of
species, e.g. pollinators and plants, in a mutualistic manner.

How do transients manifest themselves in a mutualistic
networked system? According to current understanding, the
deterministic dynamical picture of a mutualistic network is
dominated by a tipping point transition [43]. In particular,
as a parameter characterizing the ecological conditions
varies in the direction of environmental deterioration, at a
critical point (tipping point), the populations of all species
can collapse. As the environment is gradually improved so
as to cause the parameter to vary in the opposite direction,
at another critical point the species populations begin to
recover. The values of the two critical points typically
differ, leading to a hysteresis loop with the implication that
the environment needs to be significantly more improved
for the recovery to take place [43]. In the presence of stochas-
ticity, this deterministic picture is replaced by the phenomena
of noise-induced collapse and recovery. For example, at a
parameter value prior to the deterministic tipping point
where the system would be in a survival state with healthy
populations, noise can induce a collapse. Likewise, in the
parameter regime where the deterministic system is in an
extinction state, noise can induce recovery of the species
populations. For both noise-induced phenomena, the basic
dynamical mechanism is a transition between two stable
steady states: one corresponding to survival and another to
extinction, and it takes time for the transition to complete.
This naturally brings transients into the picture and provides
a paradigmatic setting for gaining insights into the complex
interplay of transients, stochasticity and high dimensionality.

Our approach is to use the full high-dimensional
networked system to demonstrate the phenomena of noise-
induced collapse and recovery. Simulations reveal the
ubiquity of transient behaviours for both environmental
(Gaussian white) noise and demographic (state-dependent,
coloured) noise. However, to obtain a quantitative under-
standing of the transients, the full high-dimensional system
becomes infeasible both computationally and theoretically.
We thus take advantage of the 2D reduced model that was
previously demonstrated to be effective at capturing the
essential tipping point dynamics [42] to numerically obtain
the scaling laws quantifying the two noise-induced pheno-
mena. The 2D model also enables a theoretical analysis of
the underlying transient behaviours in terms of the mean
first passage time. In particular, the tipping point transition
occurs between the steady states created by saddle-node
bifurcations, where the low- and high-abundance steady
states correspond to extinction and survival, respectively,
and the unstable state determines the boundary that separ-
ates the basins of the two steady states. Depending on the
initial and final states, the transition can be a collapse process
(a reverse saddle-node bifurcation) or a recovery process (a
forward saddle-node bifurcation). The phenomena of noise-
induced collapse and recovery occur in the parameter
regime in between the two saddle-node bifurcations, which
also depend on the nature of the noise. In particular, environ-
mental noise has an additive influence on the transition
behaviours, but the effect of demographic noise depends on
the species abundance. If the initial state of the system is in
the high-abundance steady state, demographic noise is
strong, making it the dominant stochastic source to induce
a system collapse. In contrast, the strength of the demo-
graphic noise becomes small when the initial state is in the
basin of the low-abundance steady state, so it has little
effect on the dynamics, leaving room for environmental
noise to play a dominant role in affecting the recovery
dynamics. For both types of noise, the associated average
transient time is found to scale with the amplitude algebrai-
cally, which is established numerically with support from a
physical theory based on the mean first passage time of the
underlying stochastic dynamical system.

In nonlinear dynamical systems in general, transients can
have a deterministic origin or they can be induced by noise.
In the high-dimensional ecological networks studied in this
paper, both types of transients can occur. In particular, if
the bifurcation parameter κ is below the tipping point, the
noiseless deterministic dynamics are governed by stable
survival and extinction states. For a fixed value of κ (and
other system parameters too) in this regime, neither a collapse
from the survival state nor a recovery from the extinction
state can occur. The two transitions are possible only if
either or both environmental and demographic noises
are present. Dynamically, we have then, what we call,
noise-induced transients, whose duration is exponentially
distributed and the average transient time follows an alge-
braic scaling with the noise amplitude. However, if κ is
beyond the deterministic tipping point, transient dynamics
can occur before the system finally collapses into the extinc-
tion state. A tipping point transition or a regime shift can
occur after a period of relative stasis without noise, even in
the absence of further deterioration of the environment.
The timing of the eventual collapse is difficult to predict
because of the random nature of the transient time. Taken
together, in the pre-tipping point regime, transients are
induced by noise but, in the post-tipping point regime,
deterministic transients arise.

In the present work, we have used mutualistic networks
as a gateway to studying high-dimensional ecological net-
works. Because of the mutualistic interactions, when a
group of pollinators or plants becomes extinct, the abun-
dances of other species that are in mutualistic relationships
with the extinct species are also greatly affected. Under exter-
nal drivers such as improved environmental conditions and
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incubation of pollinators, the extinct species may gradually
recover their abundances and the corresponding species
with the mutualistic relationship are also recovered. This
kind of dynamics is at the core of our work, and its general
principles, ideas and methods can be extended to complex
networks in other disciplines to address critical issues such
as resilience and sustainability.

Our results suggest possible management strategies for
high-dimensional ecological systems under stochastic influ-
ences. For example, in view of the detrimental effect of
demographic noise in causing an ecosystem to collapse, as
analysed in this paper, it is of critical importance to devise
methods to reduce the level of demographic noise to keep
the system in the survival state. In contrary, when the
system is already in extinction, a suitable amount of environ-
mental noise may facilitate recovery [29]. The algebraic
scaling law of the average transient lifetime uncovered here
suggests that the recovery process can be expedited with
stronger noise.

There has been large-scale extinction of many species
of pollinators, such as wild bees, while other species are in
trouble as well. The collapse of pollinators has unimaginable
consequences for biodiversity and food production. Their
protection is vital for our survival. The pollinator ecosystems
are affected by a host of perturbations, such as climate change
caused by global warming, the excessive use of pesticides,
diseases and bacterial infections, and loss of habitats due to
pollution, fragmentation and destruction. A reliable under-
standing of the tipping point dynamics in ecological
networks has profound implications for addressing critical
issues, such as resilience and sustainability, for nature
conservation and ecosystem management.
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