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Abstract

Stroke leads to long term sensory, motor and cognitive impairments. Most patients experience 

some degree of spontaneous recovery which is mostly incomplete and varying greatly among 

individuals. The variation in recovery outcomes has been attributed to numerous factors including 

lesion size, corticospinal tract integrity, age, gender and race. It is well accepted that genetics play 

a crucial role in stroke incidence and accumulating evidence suggests that it is also a significant 

determinant in recovery. Among the number of genes and variations implicated in stroke recovery 

the val66met single nucleotide polymorphism (SNP) in the BDNF gene influences post-stroke 

plasticity in the most significant ways. Val66met is the most well characterized BDNF SNP and is 

common (40–50 % in Asian and 25–32% in Caucasian populations) in humans. It reduces activity-

dependent BDNF release, dampens cortical plasticity and is implicated in numerous diseases. 

Earlier studies on the effects of val66met on stroke outcome and recovery presented primarily a 

maladaptive role. Novel findings however indicate a much more intricate interaction between 

val66met and stroke recovery which appears to be influenced by lesion location, post-stroke stage 

and age. This review will focus on the role of BDNF and val66met SNP in relation to stroke 

recovery and try to identify potential pathophysiologic mechanisms involved. The effects of age on 

val66met associated alterations in plasticity and potential consequences in terms of stroke are also 

discussed.
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1. INTRODUCTION

Stroke patients are faced with long-term impairments, disabilities and handicaps. Depending 

on the location and the extent of the lesion, 80 % of patients suffer from motor impairments 

that typically affect the motor control of the face, arm and leg on one side of the body 

(Brewer et al., 2013). Altered gait patterns, balance impairments, reduced muscle tone, joint 

mobility and stability are frequently observed (Arene and Hidler, 2009; Brewer et al., 2013). 

Along with motor problems, visual and sensory impairments (Kessner et al., 2016), mood 

(Robinson et al., 1984) and perceptual disorders as well as cognitive decline (Serrano et al., 

2007) are common sequelae after stroke.

Once the initial high mortality phase of the acute stroke is over, most patients experience 

spontaneous recovery, due to the intrinsic capacity to repair injury even in the absence of 

therapeutic interventions. Spontaneous recovery primarily occurs during the first 3 to 6 

months after stroke with the most significant improvements during the first 30 days (Duncan 

et al., 2000). Depending on the clinical criteria of assessment, near full recovery is reported 

in 25% to 50% of patients (Duncan et al., 2000). Despite these optimistic classifications, 

spontaneous recovery is rarely complete and shows drastic variation among patients. A 

systematic analysis of literature revealed that only 65% of the stroke survivors with motor 

deficits of the lower extremity show some degree of recovery. Less than 15% of the patients 

with initial paralysis had complete recovery of both the upper and lower extremities 

(Hendricks et al., 2002). A majority of studies report proportional functional recovery in 

roughly 70 to 80% of patients (Guggisberg et al., 2017; Veerbeek et al., 2018; Winters et al., 

2015), indicating no significant improvement in nearly a quarter of stroke survivors.

A wide range of factors is implicated in the observed differences in stroke recovery. 

Advanced age seems to be a significant yet relatively weak prognostic factor for poor 

outcomes (Denti et al., 2008). Gender and race play a role with women being more likely to 

have long-term disability compared to men (Di Carlo et al., 2003; Santalucia et al., 2013) 

and black individuals experience poorer recovery compared to whites (Stansbury et al., 

2005). Initial injury as assessed by early motor deficit or lesion size is the most important 

prognostic factor. Less severe initial motor impairment and smaller lesion size is a strong 

predictor of subsequent functional gains (Cramer et al., 2007; Duncan et al., 1992). A 

number of studies indicate that corticospinal tract integrity is associated with improved 

outcomes (Cho et al., 2007; Kim et al., 2018; Watanabe et al., 2001). In line with those 

findings the absence or low amplitude of transcranial magnetic stimulation responses which 

suggests loss of neurons or axons in the corticospinal tract is associated with poor functional 

recovery (Kim et al., 2016a). Finally, it is well established that genetics play a crucial role in 

stroke incidence and accumulating evidence suggests that it is also a significant determinant 

in recovery.

A large number of genes and their variations are implicated in stroke risk and prognosis 

(Sharma et al., 2013). Among them, brain–derived neurotrophic factor (BDNF) is a widely 

expressed neurotrophin in CNS and plays a key role in memory, neuronal differentiation and 

survival and synaptic plasticity (Binder and Scharfman, 2004). Several BDNF variants in 

humans have been identified (Akbarian et al., 2017). Among them, val66met single 
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nucleotide polymorphisms (SNP) is particularly important due to its drastic effects on BDNF 

physiology and related pathophysiology. This review will therefore discuss post stroke 

recovery phenomena with a specific focus on the influence of val66met SNP on chronic 

stroke recovery and its interaction with aging.

2. GENETICS IN STROKE

2.1 Genetic influences on stroke incidence

Genome wide complex trait analysis studies (Bevan et al., 2012) and epidemiologic studies 

conducted with twins and first-degree relatives of stroke patients indicate that stroke is 

heritable. (Brass et al., 1992; Li et al., 2017; Seshadri et al., 2010). Common multifactorial 

stroke which constitutes most of the stroke cases appears to be a polygenic condition 

including numerous alleles with small effect sizes (Lindgren, 2014). Employing linkage 

analysis or candidate gene associations, earlier comparison studies between stroke patients 

and healthy controls have identified numerous susceptibility genes. A meta-analysis reported 

that out of the 32 genes studied, significant associations with ischemic stroke were identified 

for factor V Leiden Arg506Gln, methylenetetrahydrofolate reductase C677T, prothrombin 

G20210A and angiotensin-converting enzyme insertion albeit their effect being relatively 

modest (Casas et al., 2004). More recently, genome-wide association studies (GWAS) where 

a large number (500K – 5million) of single nucleotide polymorphisms (SNP) are examined, 

identified numerous novel variations associated with stroke risk. Certain risk loci and their 

association with risk factors along with their implications in pathological cascades have been 

described. Namely; Paired-like homeodomain transcription factor 2 (PITX2) and zinc finger 

homeobox 3 (ZFHX3) in atrial fibrillation, alpha 1–3-N-acetylgalactosaminyltransferase 

(ABO), chromosome 9p21 locus, Histone Deacetylase 9 (HDAC9), and Aldehyde 

Dehydrogenase 2 Family (ALDH2) in coronary artery disease, ALDH2 and HDAC9 in 

Blood pressure, Forkhead box F2 (FOXF2) in pericyte and smooth muscle development, 

Hyaluronan Binding Protein 2 (HABP2) in coagulation, Matrix Metallopeptidase 12 

(MMP12) in carotid plague formation and Tetraspanin-2 (TSPAN2) has been implicated in 

neuro-inflammation (Chauhan and Debette, 2016). It has to be kept in mind however that 

GWAS have certain limitations: that the loci that are identified may relate to genetic 

regulatory elements that control other parts of the genome or other genes, and not relate to 

just the gene next to the locus.

More potent effects of genetics are observed in cases where genetic factors contribute to 

intermediate phenotypes such as atherosclerosis (Lusis et al., 2004) or lead to monogenic 

stroke syndromes. Monogenic Stroke syndromes refer to single gene disorders with high 

penetrance that lead to stroke as a part of a systemic disease or as the primary clinical 

phenotype (Tan and Markus, 2015). They account for less than 1% of all strokes and are 

more frequent in young stroke patients without known risk factors (Sharma et al., 2013). 

These syndromes encompass a broad range of disorders that lead to ischemic or hemorrhagic 

strokes and arise due to arterial diseases (Ballabio et al., 2007; Lindgren, 2014; Tan and 

Markus, 2015) (Table 1).
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2.2 Genetic influences on stroke recovery:

Studies investigating the effects of genetics on stroke recovery are scarce. The multicenter 

Genetics of Ischemic Stroke Outcome (GISCOME) study which gathered records including 

genome-wide genotypic and functional outcome data from 12 ischemic stroke projects is 

currently ongoing. GISCOME aims to detect genetic influence on stroke outcomes and has 

the potential to fill a significant gap in our knowledge in genetics of stroke recovery (Jane M 

Maguire, 2017). As of now, a limited number of candidate genes and their polymorphisms 

have been shown to influence stroke recovery in humans.

Apolipoprotein E (APOE) gene variations rs7412 and rs429358 have been related to stroke 

risk (Khan et al., 2013). APOE ε3/ε4 genotype in men and APOE ε2/03B53 in women were 

associated with increased 30-day mortality in stroke (Gromadzka et al., 2005). Other studies 

report equivocal findings regarding long-term outcomes. Gromadzka et al. found no 

association between APOE genotypes and stroke. Functional outcome and APOE was only 

associated in male ε4 carriers which had greater deficits at the time of admission and higher 

mortality risk up to a year after stroke (Gromadzka et al., 2007). Similarly, another study 

reported significantly poor recovery in ε4 carriers (Cramer et al., 2012). On the other hand, 

Sarzyńska-Długosz et al. did not find any impact of APOE genotype on mortality or poor 

outcome at 1 year post stroke (Sarzynska-Dlugosz et al., 2007). These findings suggest a 

significant interaction between the APOE genotype, gender and possibly time elapsed after 

stroke, however, further research is required.

Studies also reported associations between several other polymorphisms and functional 

outcomes in stroke. While variation in rs7136446 of the Insulin like growth factor1 was 

associated with favorable functional outcome 24-months post-stroke, the significance was no 

longer present after the data were corrected for multiple comparisons(Aberg et al., 2013). An 

allele of the myeloperoxidase G-463A polymorphism was associated with a poorer 

functional short-term outcome (Hoy et al., 2003). Carriers of either the rs5275 or rs20417 
variant of the Cyclooxygenase-2 (COX-2 ) gene had relatively lower disability and stroke 

handicap scores (Maguire et al., 2011). In Catechol-O-Methyltransferase polymorphism, 

patients with Val/Val alleles had higher motor functions and activities of daily living scores 

compared to Met/Met genotype (Liepert et al., 2013). Finally, other variations including C-

reactive protein gene polymorphism rs1130864, serotonin transporter gene 5-HTTLPR s/s 

and sTin2 VNTR were associated with indices of long-term function (Guo et al., 2014; 

Kohen et al., 2008). Among the identified gene variations BDNF val66met polymorphism is 

the most studied SNP and will be discussed in detail below.

3. BDNF IN STROKE

BDNF, the second discovered member of the neurotrophic family, localizes in chromosome 

11p in humans. It consists of four 5` exons and one 3` exon that encodes the mature BDNF 

protein (Timmusk et al., 1993). Similar to other neurotrophins, BDNF is synthesized in the 

endoplasmic reticulum as a precursor and converted to mature BDNF via proteolytical 

processes mainly by proprotein convertase PC7 (Wetsel et al., 2013), but also extracellularly 

by metalloproteinases and plasmin (Deinhardt and Chao, 2014). There has been controversy 

regarding whether BDNF is released in the precursor and/or in the mature form, but 
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accumulated evidence indicates that at least a fraction is released in the proBDNF form 

(Mizoguchi et al., 2011). ProBDNF is not transient biosynthetic intermediate and has 

significant modulatory role in synaptic plasticity (Yang et al., 2009). Acting through p75 

neurotrophin receptor proBDNF promotes cell death, attenuate synaptic transmission and 

take part in synapse elimination (Je et al., 2013) During the formation of mature BDNF, the 

N-terminal prodomain (pro-peptide) is cleaved. It was assumed to degrade and therefore had 

no significant bioactivity. Recent evidence however indicates that the pro-domain of 

val66met polymorphic variant of BDNF (discussed below) may actually function as a novel 

independent synaptic modulator (Mizui et al., 2017).

Unlike other growth factors, BDNF is secreted in a constitutive and activity-dependent 

manner. BDNF can be secreted by neurons both from axons and dendrites in response to 

neuronal activity (Lessmann and Brigadski, 2009) and binds to a tropomyosin-related kinase 

(trk) receptor. TrkB activation by BDNF triggers a diverse set of intra cellular signaling 

pathways including protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K), 

extracellular signal-regulated kinase (Erk)1 and 2, phospholipase C-γ (PLC-γ) and Ras 

(Nakagawara et al., 1994; Zirrgiebel et al., 1995). BDNF also binds to the low affinity P75 

neurotrophin receptor, which inhibits axonal regeneration via partnerships with Nogo 

receptor and Lingo-1 and promotes apoptosis through association with Sortilin. It has been 

shown that mature forms of BDNF show higher affinity towards TrkB whereas proBDNF 

preferentially bind to P75 (Kraemer et al., 2014; Lee et al., 2001) which likely accounts for 

the substantially different and even opposing effects of BDNF at different conditions and 

cell populations (Zhao et al., 2017).

3.1 BDNF and synaptic plasticity

BDNF is implicated in numerous physiologic functions ranging from neuronal development 

and survival to synaptic transmission, plasticity and neurotransmitter release (see (Binder 

and Scharfman, 2004; Schinder and Poo, 2000) for detailed reviews). Compared to 

constitutively expressed BDNF, activity-dependent BDNF release plays a pivotal role in 

synaptic plasticity. BDNF promotes survival and growth in cortical and hippocampal cells, 

dorsal root ganglion cells, serotonergic neurons and peripheral sensory neurons of vestibular 

and nodosepetrosal ganglia (Binder and Scharfman, 2004; Popova et al., 2017). Despite its 

prominent effect on numerous neuron subclasses in vivo, genetic deletion of BDNF in CNS 

does not cause substantial cell loss in vivo suggesting that it acts primarily as a 

differentiation factor (Rauskolb et al., 2010). Proliferating cells of the adult CNS are also 

modulated by BDNF. Neurogenesis is enhanced by BDNF in the adult olfactory bulb, 

striatum, septum and thalamus (Pencea et al., 2001; Zigova et al., 1998). In addition, basal 

levels and enrichment or exercise induced hippocampal neurogenesis requires BDNF (Liu 

and Nusslock, 2018; Rossi et al., 2006).

Through trkB receptor activation, BDNF influences neuro-morphological development and 

synaptic connectivity. While axon guidance appears independent of BDNF, wiring and 

synaptic connectivity at the target relies on BDNF activity (Poo, 2001; Rico et al., 2002). 

Conditional deletion of trkB leads to reductions in number of presynaptic terminals and 

excitatory synapses formed by Schaffer collaterals and presynaptic defects in mossy fiber 
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connectivity in the hippocampus (Danzer et al., 2008; Luikart et al., 2005). Similarly, 

conditional trkB deletion at thalamus leads to pruning and abnormally branched axon 

terminals to innervate the somatosensory cortex (Lush et al., 2005). Dendritic development, 

growth and arborization is also differentially modulated by BDNF in a site specific manner 

(Cohen-Cory et al., 2010). With its role in synaptic plasticity, BDNF is crucial in learning 

and memory. BDNF facilitates LTP induction in hippocampal slices (Figurov et al., 1996) 

and dentate granule cells (Kovalchuk et al., 2002) via TrkB receptors (Minichiello, 2009). 

Target disruption of BDNF leads to impairment of LTP at hippocampal Schaffer collaterals 

(Korte et al., 1995) which can be rescued by acute recombinant BDNF treatment (Patterson 

et al., 1996). In line with those findings, selectively deleting BDNF from the forebrain in 

mice lead to impairments in specific forms of learning with no major effects on acoustic 

sensory processing or baseline anxiety (Gorski et al., 2003).

Motor learning also relies on BDNF function. Learning complex motor skills or exercise 

increases BDNF and TrkB in motor cortex (Klintsova et al., 2004). Transcranial direct 

current stimulation of mouse primary motor cortex slices has been shown to induce LTP, 

which was absent in BDNF and TrkB mutant mice (Fritsch et al., 2010). In addition, 

pharmacological upregulation of BDNF was shown to facilitate motor learning (Yoneda et 

al., 2017). The diverse functions of BDNF ranging from cell survival to plasticity and its 

function as a canonical mediator of neuroplasticity suggests a critical involvement in stroke 

pathophysiology and prognosis.

3.2 BDNF modulation and stroke outcome

BDNF’s promoting effects on growth, proliferation and neuronal plasticity lead to its 

potential application as a therapeutic agent for stroke. Early preclinical studies using 

intracerebro-ventricular BDNF infusions showed reduction in infarct size (Schabitz et al., 

1997; Yamashita et al., 1997) and protection of CA1 pyramidal cells in the hippocampus 

after focal ischemia (Beck et al., 1994). Numerous reports replicated lesion size reduction 

(Schabitz et al., 2000; Zhang and Pardridge, 2001) and showed improved functional 

outcome (Chen et al., 2000; Muller et al., 2008) with BDNF treatment. Endothelial cells in 

the ischemic striatum produce BDNF to promote recruitment of neuronal precursors from 

the subventricular zone into the ischemic striatum (Grade et al., 2013), showing BDNF’s 

role in endogenous recovery. Clarkson et. al. demonstrated that BDNF elevations by AMPA 

receptor agonist at the peri-infarct region is responsible for motor recovery (Clarkson et al., 

2011). BDNF was identified as the mediator of numerous neuroprotective and/or recovery 

enhancing pharmacological agents including angiotensin and Tetramethylpyrazine nitrone 

(Fouda et al., 2017; Taliyan and Ramagiri, 2016; Zhang et al., 2018). In addition, effects of 

rehabilitation on recovery were abolished in rats receiving infusions of antisense BDNF 

oligonucleotide after stroke (Ploughman et al., 2009). These results underline the important 

role of BDNF in spontaneous as well as rehabilitationinduced recovery.

Clinical studies also show BDNF’s involvement in stroke pathophysiology. Patients with 

atherosclerosis and cerebrovascular disease risks have low circulating levels of BDNF 

(Golden et al., 2010). Higher serum BDNF levels are associated with a decreased risk of 

cardiovascular disease and mortality (Kaess et al., 2015). In the Framingham study, low 
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BDNF levels were associated with increased risk for transient ischemic attack and stroke. 

Salinas et. al. report that social support increases BDNF levels and reduce the risk for stroke 

(Salinas et al., 2017). Further studies reported reduced circulating BDNF levels in the acute 

phase of ischemic stroke and lower levels were associated with poor functional outcome 

(Lasek-Bal et al., 2015; Stanne et al., 2016). BDNF levels were negatively correlated with 

infarct sizes, with larger infarcts leading to more pronounced reductions (Qiao et al., 2017). 

In addition, higher BDNF levels were associated with less white matter hyperintensity and 

better visual memory (Pikula et al., 2013). Serum BDNF levels were also associated post-

stroke depression as lower BDNF levels were found in depressed patients (Yang et al., 

2011). These studies point towards a relation between stroke outcome and BDNF levels. Yet 

the possibility of a causal relation remains elusive when only blood BDNF levels are taken 

as an indicator. More convincing evidence for a crucial role of BDNF in stroke and stroke 

recovery comes from clinical studies based on BDNF SNP val66met variant.

4. BDNF val66met SNP

4.1 BDNF SNP in CNS

A single nucleotide polymorphism is the most common type of variation in the DNA 

sequence where a particular nucleotide is replaced by an alternative one. BDNF gene 

contains a number of SNPs: rs6265 (val66met), rs10767664, rs10501087 rs988712, 

rs4074134, rs2030323, rs925946, rs4923461, rs10835211, rs1488830, rs1519480 and 

rs7481311 (Akbarian et al., 2017). Among these, val66met is the most well characterized 

SNP and is common in humans. val66met SNP (also known as G189A or rs6265) occur in 

the prodomain of BDNF gene as a substitution of a valine (Val) by a methionine (Met) at 

codon 66. It is an evolutionarily recent variation observed only in humans (Anastasia et al., 

2013) with a frequency reaching up to 40–50 % in Asian and 25–32% in Caucasian 

populations (Verhagen et al., 2010). Val66met SNP appears to be implicated in a number of 

psychiatric conditions including anxiety, major depression, bipolar disorder, schizophrenia 

and eating disorders (Hong et al., 2011; Verhagen et al., 2010) and confers risk of sporadic 

Alzheimer’s disease (Ventriglia et al., 2002).

The landmark study by Egan et al.was the first to describe that val66met polymorphism 

reduces activity-dependent secretion of BDNF without affecting constitutive secretion (Egan 

et al., 2003). It was later shown that NMDA receptor-dependent synaptic plasticity in the 

hippocampus was impaired by val66met polymorphism (Ninan et al., 2010). Another study 

replicated this finding and showed Fluoxetine induced increases in BDNF and neurogenesis 

the in hippocampus was impaired in val66met carrier mice (Bath et al., 2012). BDNF 

val66met polymorphism drastically alters the structure and function of BDNF pro-domain 

and confers bioactivity only to Met66 pro-domain variants under certain conditions 

(Anastasia et al., 2013). As a result, Met-BDNF pro-peptide attenuates LTD whereas Val-

BDNF pro-peptide treatment enhances LTD in hippocampal slices (Mizui et al., 2015). 

Moreover, reduction in hippocampal volume has been associated with val66met 
polymorphism (Pezawas et al., 2004) and although being task and age related, there is 

substantial evidence for reduced memory performance in val66met carriers (Kambeitz et al., 

2012).
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Motor learning related plasticity is also altered by val66met SNP. BNDF val66met 
polymorphism reduces training-dependent increases in the amplitude of motor-evoked 

potentials and motor map reorganization (Kleim et al., 2006; McHughen et al., 2010). 

However, the differences between genotypes diminish after repeated training (McHughen et 

al., 2011). Conversely, no evidence for BDNF val66met polymorphism effect on motor map 

plasticity was found in older adults (McHughen and Cramer, 2013), indicating age as a 

confounding factor. The significant impact of val66met SNP on various forms of 

neuroplasticity suggests an important role in stroke recovery.

4.1 Impact of BDNF SNP in Stroke Recovery

An increasing number of clinical and preclinical studies are focusing on the role of val66met 
in stroke (see table 2 for a summary). Early clinical studies investigated the epidemiologic 

relation between stroke and BDNF val66met. Zhao et al. analyzed ischemic stroke risk in 

494 patients and 337 controls and reported a significantly increased risk in met/met carriers 

(Zhao et al., 2013). A study on 206 stroke patients analyzed the association of BDNF 

val66met polymorphism and ischemic stroke occurrence. The study reported a borderline 

significant relationship (p=0.051) between the polymorphism and ischemic stroke but no 

significant difference among genotypic groups regarding the severity of the stroke and 

functional disability (Keshavarz et al., 2016). In a study conducted in an East Asian cohort, 

val66met polymorphism was independently associated with worse outcomes at 2 weeks and 

1 year post-stroke, and patients displayed a decline in functional scores and cognitive 

function (Kim et al., 2012). Similarly, in subcortical stroke survivors 4 months post-stroke, 

functional scores were significantly worse in the met carrier group without any difference at 

2 months (Kim et al., 2013). Cramer and Procaccio in their analysis of GAIN American and 

GAIN international studies observed that recovery over the first month was poorer in 

val66met group, but the difference diminished at 3 months (Cramer et al., 2012).

Recent research also indicates an interaction between val66met SNP and post stroke 

rehabilitation. Stroke patients (>6 months post-stroke) with hemiparesis were trained in a 

motor learning task and met carriers performed worse compared to val/val patients (van der 

Vliet et al., 2017). Similarly, among stroke patients trained to relearn the motor patterns of 

split-belt treadmill walking, val66met SNP carriers performed worse compared to non-

carriers but the difference was ameliorated with high intensity exercise (Charalambous et al., 

2018). In a study of upper limb rehabilitation, stroke patients carrying val66met SNP 

showed reduction in the magnitude of motor improvement with therapy. This was 

particularly evident for the patients with higher, but not lower, residual motor function 

(Shiner et al., 2016).

Literature demonstrates worse memory and functional outcome in val66met carriers after 

subarachnoid hemorrhage(Mirowska-Guzel et al., 2012; Siironen et al., 2007) but not in 

patients that had stroke as a result of hemorrhage (Vilkki et al., 2008). In the study by 

Mirowska-Guzel et al. val66met polymorphism was associated with worse outcome only at 

early time points (admission and day 7) but not at one month (Mirowska-Guzel et al., 2012). 

In more recent studies, it has been reported that val66met polymorphism was not a predictor 

of long-term, functional mobility (French et al., 2018) or recovery of aphasia after stroke (de 
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Boer et al., 2017). It was however shown that dysphagic stroke patients carrying the met 
allele recovered better in response to pharyngeal electrical stimulation (Essa et al., 2017). On 

the other hand, the Val allele was associated with unfavorable outcomes of stroke 

rehabilitation (Mirowska-Guzel et al., 2014). Taken together, clinical studies suggest poor 

outcomes in val66met carriers particularly at earlier time points. At later stages of stroke, 

this association tends to disappear. These equivocal clinical findings could arise from 

complex interactions with other human genetic variations, gender or age. An additional 

undetermined factor is the temporal progression of functional recovery as observed 

differences between BDNF SNP carriers may not be sustained at different post stroke stages.

Preclinical studies in animals are invaluable in gaining a deeper understanding of complex 

biological and pathological phenomena. Knock-in mice homozygous for the BDNF 

val66met SNP (BDNF met/met) display similar phenotypic features as humans (Chen et al., 

2006). When WT and BDNFmet/met were subjected to middle cerebral occlusion that 

produced infarction primarily in the striatum and a part of the cortex, there were no 

differences in lesion size or hemispheric swelling between the genotypes (Qin et al., 2011). 

BDNFmet/met mice showed a significantly larger motor deficit 6 days after stroke in rotarod. 

In Catwalk analysis BDNFmet/met mice were significantly worse compared to controls at day 

7 but not at 2 weeks and 1 month. BDNFmet/met mice showed reduced proliferating 

endothelial cells and vessel density through upregulation of angiostatic factors CD36 and 

TSP-1, suggesting an association between met allele and stroke-induced angiogenic deficits. 

Despite greater deficits at early stages, a subsequent long-term study showed improved 

motor/gait function by week 2 (Qin et al., 2014). The view that val66met SNP may lead to 

improved outcome long-term is supported by observations from other CNS injury 

conditions. Kruger et al. reported that Met allele promoted recovery of executive function in 

war veterans with traumatic brain injury (30 years follow up), showing a complex long term 

role of BDNF SNP in CNS injury (Krueger et al., 2011).

5. PATHOPHYSIOLOGIC MECHANISMS OF VAL66MET in STROKE

Initial studies on the effects of val66met polymorphism primarily reported associations with 

disease states and impaired plasticity in the brain. The prominent view derived from the bulk 

of these studies implied a negative and maladaptive role for BDNF val66met SNP. Yet the 

high frequency of this variation reached in diverse human populations argues for its adaptive 

role. While the dampening effects of val66met SNP on activity-dependent BDNF secretion 

and related plastic alterations appear robust, the potential deleterious effects on memory, 

motor learning and stroke outcome are complex and potentially context-dependent. Indeed, 

an evaluation of current literature suggests that the effect of val66met SNP in learning and 

memory is task and age (discussed further in “vall66met SNP and aging” section) specific. A 

significant portion of the earlier literature report poorer performance in met carriers 

particularly in hippocampus dependent memory tasks (Kambeitz et al., 2012). On the other 

hand, visual memory (Yogeetha et al., 2013) and memory based task switching performance 

(Gajewski et al., 2011) in met carriers were superior compared to val/val individuals, 

indicating a task specific impact of the SNP Similarly, post stroke functional disability and 

recovery profile differences among genotypes is not straightforward. Evidence from clinical 

and pre-clinical studies suggest that while val66met SNP carriers are most likely 
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functionally worse in acute phases of stroke, results from later stages are equivocal. 

Arguably, depending on the injury type, severity, and location of stroke, val66met SNP can 

be advantageous depending on pathophysiological mechanisms influenced by val66met 
SNP.

5.1 Altered interhemispheric interaction in val66met carriers

Cortical strokes lead to suppressed activity in the surrounding ipsilesional cortical regions 

(Murphy and Corbett, 2009). Apart from cases where big infarctions destroying large 

portions of the cortex, hypo-excitability is mainly due to tonic or extrasynaptic GABA 

activity (Clarkson et al., 2010). This inhibition of the marginally damaged tissue lasts up to 

one month in animal models (Clarkson et al., 2010). Simultaneously, corresponding regions 

in the contra lesional cortex display extensive activation induced responses and 

hyperexcitability as early as 3 days. These alterations coincide with the transfer of the 

ipsilateral forelimb responses. Inhibition of the ipsilesional cortex and increased excitability 

at the contralesional cortex gradually diminish. Around day 14, lesion periphery begins to 

regain normal function (Dijkhuizen et al., 2001) which coincides with functional recovery. 

These findings from animal experiments are in line with human studies and fit well the 

interhemispheric imbalance observed in stroke patients.

A large body of evidence from transcranial magnetic stimulation studies report an 

interhemispheric cortical excitability imbalance due to increased excitability (Shimizu et al., 

2002) on the intact hemisphere and inhibition of the lesioned side after stroke (Traversa et 

al., 1997). Motor cortical mapping studies revealed a decreased number of excitable sites 

over the affected hemisphere compared to the unaffected site (Cicinelli et al., 1997). In 

addition, an abnormally high interhemispheric inhibitory drive from the primary motor 

cortex (M1) of the intact hemisphere onto the M1 of lesioned hemisphere is well 

documented (Murase et al., 2004). Such observations lay the foundation of the 

interhemispheric competition model of stroke recovery.

According to interhemispheric competition model, the lack of inhibitory input from the 

damaged hemisphere onto the intact hemisphere leads to an increased excitability in the 

intact side which in turn exerts further inhibition on the damaged hemisphere. This overall 

imbalance is postulated to be detrimental for stroke recovery. Indeed, increased inhibitory 

input exerted on to the lesioned hemisphere (Murase et al., 2004) and hyperexcitability of 

the intact hemisphere (Di Lazzaro et al., 2010) is a predictor of worse outcome and impaired 

recovery. Similarly, functional recovery is correlated with a tendency toward LTP-like 

activity in the lesioned hemisphere and a tendency for LTD-like activity in the intact side (Di 

Lazzaro et al., 2010). Animal experiments also fortify this notion. Blocking tonic GABA 

activity via agonists or deletion of GABA-A receptor subunits promote rapid behavioral 

recovery after stroke (Clarkson et al., 2010). Taken together, hyperactivity of the intact 

hemisphere appears detrimental for the long term recovery by exerting excessive inhibition 

on the peri-infarct cortex.

An important study by Di lazzaro et al. reports interesting findings indicating that post 

stroke cortical imbalance can be fundamentally altered in val66met carriers. Using single 

pulse TMS, the authors reported a 9-fold weaker inter-hemispheric imbalance in cortical 
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excitability between affected and intact hemispheres in val66met carriers. Authors argued 

that BDNF signaling which can potentiate presynaptic glutamate release and increase the 

response to glutamate at postsynaptic sites may be blunted in val66met carriers thereby 

reducing excitability in the intact hemisphere (Figure 1A) (Di Lazzaro et al., 2015). These 

findings suggest a complex role for val66met genotype in stroke recovery and can 

potentially explain some of the discrepant findings in clinical studies (Di Pino et al., 2016).

It has also been suggested that hyper excitability of the intact hemisphere may be 

responsible for residual sensorimotor functions acutely after stroke through reinforcement of 

the ipsilateral corticoreticulospinal pathway (Dijkhuizen et al., 2001). Therefore, reduced 

hyperactivity and plasticity on the intact hemisphere may account for the observation that 

val66met carriers -regardless of lesion size- are functionally worse at early time points. In 

addition, in patients with severe damage, functional take over by the intact hemisphere 

appears to play compensatory roles suggesting that reduced activity and plasticity in the 

intact hemisphere of val66met patients would be detrimental for long term recovery (Di Pino 

et al., 2014). Finally, findings by Di lazzaro et al. suggest that val66met SNP may promote 

recovery by reducing cortical imbalance, particularly in patients with small or medium sized 

lesions. However, clinical literature provides limited evidence supporting this view (Essa et 

al., 2017; Krueger et al., 2011; Mirowska-Guzel et al., 2014), indicating that interaction 

between genotypes and post stroke plasticity is more complex than interhemispheric 

competition model predicts. Alternatively, the lack of stratification (i.e for lesion size and 

location) in patient data may be obfuscating results.

5.2 Increased subcortical excitation and compensation in val66met carriers

Emerging evidence suggests that val66met SNP may exert drastically different effects on 

subcortical structures, which may account for differences in stroke outcome and recovery. 

Fisher et al. reported that human val66met carriers showed 2–7% higher subcortical 

serotonin transporter (5-HTT) binding in the striatum but not in the neocortex (Fisher et al., 

2017). Using mice carrying val66met in both alleles (BDNFMet/Met) and wild type 

(BDNFVal/Val) mice, Jing et. al. examined the effects of val66met polymorphism on synapses 

in the dorsal striatum(Jing et al., 2017). Their study revealed enhanced neurotransmission in 

the dorsolateral striatum in BDNFMet/Met mice caused by increased glutamate release and 

NMDA receptor-mediated neurotransmission in the medium spiny neurons. AMPA receptor-

mediated transmission was not altered among groups. Contrary to observations in cortical 

structures, there was no alteration in dendritic complexity and spine density, supporting the 

view that val66met SNP had no effect on striatal volume (Bueller et al., 2006).

Aforementioned studies by our group also suggest that striatal plasticity after stroke is 

significantly different in val66met mice with an increased compensatory potential 

particularly in the contralesional striatum (Qin et al., 2014; Qin et al., 2011). In this study, 

BDNFMet/Met mice displayed improvement of gaits through adaptive mechanisms relying on 

the non-injured contralateral hemisphere. BDNFMet/Met mice showed larger striatal volume, 

increased neuronal cell body and branched dendritic tree in medium spiny neurons in the 

contralesional striatum, assessed at 6 months post-stroke. Also, elevated excitatory synaptic 

markers in the striatum in the contralateral hemisphere suggest an excitatory shift in 
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BDNFM/M mice. Striatum receives its primary excitatory afferents from the thalamus and the 

cortex, and project inhibitory efferents to the substantia nigra pars reticulata (SNr) and 

globus pallidus (GP) through direct and indirect pathways. These pathways then project 

back to the cortex and thalamus to form the striatothalamo-cortical circuits (Alexander et al., 

1986). The direct and indirect pathways operate in conjunction to each other and facilitate or 

inhibit movement respectively. Disinhibition of inhibitory inputs to the thalamus through GP 

and SNr may potentiate excitatory cortical afferents to striatum. The increased excitatory 

activity in striatum may underlie the functional improvement of BDNFM/M mice. (Figure 

1B).

6. VAL66MET SNP AND AGING

Aging is a normal physiological process that leads to a gradual deterioration of the overall 

fitness of the organism. The cumulative effects and burden of aging vary greatly among 

individuals due to differences in personal experiences and habits, but genetics are also a 

prime determinant. BDNF and TrkB receptors show dynamic changes throughout the life 

span. Animal studies indicate a peak in BDNF and TrkB levels in early postnatal life that 

reach stable levels in adulthood (Friedman et al., 1991; Silhol et al., 2005) and gradually 

decline with aging (Hayashi et al., 1997). Interestingly, aging does not only lead to a decline 

in hippocampal BDNF, but also induces a shift towards increased proBDNF levels that 

inversely correlates with the ability to perform in spatial memory tasks (Buhusi et al., 2017). 

Circulating BDNF levels decline with age is associated with hippocampal shrinkage and 

memory impairments (Erickson et al., 2010). Although trkB mRNA levels in the 

hippocampus do not vary drastically in healthy humans, the expression decreases over their 

life span (Webster et al., 2006). BDNF protein expression is also markedly reduced in the 

septum, cerebral cortex, cerebellum, striatum and midbrain with age in healthy humans 

(Croll et al., 1998). Animal studies show that age related decline in hippocampal 

neurogenesis, changes in hippocampal structure are also associated with BDNF function 

(von Bohlen und Halbach, 2010) and BDNF mediated beneficial effects on learning, 

memory and neuroprotection decline with age (Sohrabji and Lewis, 2006). In summary, age 

related decline in brain plasticity is tightly correlated with reductions and/or alterations in 

BDNF activity and availability.

Given the effects of val66met on BDNF induced cortical plasticity, interaction between age 

and val66met SNP may have profound implications in stroke recovery. According to the 

“resource modulation hypothesis” suggested by Lindenberger et al. as the physiologic 

“resources” (anatomical or neurochemical) of the brain decline with age, effects of genetic 

variations among individuals become more prominent and detectable (Papenberg et al., 

2015). For example, while the effect of a potentially maladaptive variation may be quite 

miniscule and untraceable at young age, it can manifest over time and the cumulative effect 

could reach significant proportions. Indeed, the effects of val66met polymorphism on certain 

cognitive functions seem to fit this theory. In a study by Li et al., Met allele carriers in the 

old population recalled fewer items than Val homozygotes in a backward serial recall task. 

No difference of genotype was observed in the young adult group (Li et al., 2010). Similarly, 

age related decline in perceptual speed (Ghisletta et al., 2014) memory performance 

(Kennedy et al., 2015) reasoning skills (Harris et al., 2006) and cognitive (Ward et al., 2017) 
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reserve is more pronounced in the Met allele carriers. In line with behavioral measures, age-

related decline in activation of the posterior hippocampal region during a memory task was 

worse in met carriers (Sambataro et al., 2010). Importantly, BDNF SNP was also linked to 

the rate of decline in skilled task performance (Sanchez et al., 2011). While these findings 

are primarily learning and memory related, they indicate a gradual potentiation of the 

val66met SNP effects on plasticity.

Overall, there is substantial evidence indicating that val66met SNP impairs cortical 

plasticity, particularly with advancing age. Cortical plasticity is fundamental for stroke 

recovery and rehabilitation efficacy (Hara, 2015). Therefore, it can be hypothesized that 

aged val66met carriers would benefit less from stroke rehabilitation. However, it is not clear 

how age would alter the effects of val66met on cortical imbalance. In addition, subcortical 

plasticity in val66met carriers does not appear impaired in humans (Bueller et al., 2006) and 

animal studies suggest even increased excitability and compensation (Jing et al., 2017; Qin 

et al., 2014). Effects of age on such variables are yet to be investigated. Examining the 

intricate relation between val66met SNP, age and stroke is of significant importance to 

understand the varied recovery profiles observed in stroke survivors and developing 

genotype specific rehabilitation regimens.

7. CHALLENGES AND FUTURE DIRECTIONS

Understanding genetic influences on stroke pathophysiology and recovery is an arduous 

task. It requires examination of a genetic variation alone as well as in combination with 

others in meticulously designed, vigorously controlled, expensive clinical studies conducted 

by teams that include experts on diverse fields. Despite a few limitations, GWA studies have 

produced promising data in determining new genetic factors affecting stroke risk (Lindgren, 

2014). Further GWA studies may help us elucidate the interactions among genetics, 

metabolic, and physiologic pathways during recovery. Study design however requires special 

care. From clinical perspectives, long-term outcome studies paying particular attention to 

patient stratification in regards to age, lesion size and genotype (i.e. homozygote vs 

heterozygote), are of paramount importance. Moreover, such studies should longitudinal 

encompass different stages of post-stroke (acute, sub-acute and recovery) and asses various 

neurological and functional outcomes. In the context of BDNF SNP, investigating whether 

val66met leads to differential outcomes in human patients at defined post stroke phases 

depending on lesion size or location would be invaluable. Understanding impacts of BDNF 

val66met SNP in response to rehabilitation also has potential clinical relevance to pave the 

way for developing customized treatments.

Preclinical studies are scarce and much of the questions regarding the impact of val66met 

SNP on stroke pathophysiology still remains to be addressed. Functional outcome studies 

coupled with electrophysiological methods in animals should be employed to further 

elucidate post stroke changes in recovery, cortical imbalance and plasticity in val66met SNP.
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8. CONCLUSION

BDNF, with its involvement in numerous physiologic mechanisms ranging from neuronal 

survival to plasticity is a crucial mediator of post stroke recovery. A frequent BDNF, SNP 

val66met confers drastic effects on BDNF function. Despite the early understanding in the 

field that val66met is primarily a maladaptive variation in terms of stroke outcome, 

subsequent research indicates a much more complex interaction between val66met and 

stroke pathophysiology. BDNF val66met polymorphism may lead to differential outcomes 

depending on the time elapsed after stroke -and potentially- lesion size, location and age. 

The amount of evidence pointing towards a differential pathophysiology in BDNF 

Vall66Met SNP carriers suggest that the variant is a potential genetic factor that contributes 

to the heterogeneity of recovery processes among stroke survivors. Understanding the exact 

nature of the interaction between val66met and stroke recovery and how it is influenced by 

age requires further research.
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FIGURE 1. 
Proposed mechanisms that underlie BDNF val66met SNP effect in cortical (A) and 

subcortical (B) stroke: A, Stroke causes imbalance in excitability (Red arrows) and inter 

hemispheric inhibition (blue arrows) in Val/Val individuals. Inhibition from the lesioned 

hemisphere is reduced leading to increased excitability on intact hemisphere. This in turn 

exerts increased inhibition on to the ipsilesional hemisphere in the intact hemisphere, 

resulting in a greater extent of cortical imbalance. In Met carriers, cortical excitability in the 

intact hemisphere is not drastically increased. Similarly, excitability in the lesioned 

hemisphere is not dampened to a great extent. These observations suggest a milder 

imbalance in intercortical inhibition. B, Subcortical lesions disturb ipsilesional strio-

thalamo-cortical circuits (Cirle and arrow) and cause shrinkage in ipsilateral and contra 

lateral striatum in val/val carriers. Met carrier mice display enhanced activation in the strio-

thalamo-cortical circuits. The excitatory shift may underlie the functional improvement of 

BDNFM/M mice and resistant to atrophy in the contralesional striatum..

- * (Helm et al., 2016) , ** (Kim et al., 2016b) ,*** (Kim et al., 2016c)
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TABLE 1:

Monogenic causes of stroke

Monogenic Stroke Disease Gene Inheritance Mechanism

CADASIL NOTCH 3 Autosomal dominant small vessel disease

CARASIL HTRA1 Autosomal recessive small vessel disease

RVCL TREX1 Autosomal dominant small vessel disease

Farby’s Disease GLA X linked Large artery and small vessel disease

Homocystinuria CBS and other Autosomal recessive Large artery and small vessel disease

Sickle cell disease HBB Autosomal recessive Large artery and small vessel disease

Pseudoxanthoma elasticum ABCC6 Autosomal recessive Large artery and small vessel disease

Marfan syndrome FBN1 and other Autosomal dominant Arterial dissection, cardio embolism

Vascuar Ehlers danlos syndrome COL3A1 Autosomal dominant Arterial dissection

MELAS
MtDNA gene MT-TL1 encoding 
tRNALeu Maternal inheritance Mitochondrial (multisystem)
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TABLE 2:

A summary of studies examining the effect of Val66met SNP on stroke outcome.

SPECIES ASSESMENT TIME POINT(S) KEY FINDINGS REFERENCE

HUMAN Motor learning in Unilateral 
stroke

>6 months post stroke Met carriers performed worse 
compared to non-carriers

Charalambous et al, 2018

Functional mobility in Stroke 6 months post-stroke Val66Met polymorphism does not 
predict long-term outcome

French et al, 2018

Aphasia Recovery in Stroke 
(with aphasia)

Aphasia onset less than 3 
months, follow-up study

Val66Met polymorphism does not 
alter clinical recovery

De Boer et al, 2017

Motor learning in Stroke 
(with hemiparesis)

At least 6 months post-
stroke

Met carriers performed worse 
compared to Val/Val patients

Van der Vliert et al, 2017

Dysphagia recovery in Stroke 
(with Dysphagia)

within 6 weeks of stroke Met carriers recovered better in 
response to pharyngeal electrical 
stimulation

Essa et al, 2017

Motor improvement in 
unilateral stroke (with 
hemiparesis)

2–123 months post-stroke, 
14 day theraphy protocol

Reduced magnitude of motor 
improvement with therapy in Met 
carriers

Shiner et al, 2016

Motor adaptation in stroke at least 6 months post-
stroke

Val66Met polymorphism influences 
the rate but not the amount of total 
adaptation

Helm et al, 2016

FMRI / Brain activation in 
stroke

at least 11 weeks post 
stroke

Decreased brain activation among 
Met carriers

Kim et al, 2016b

Motor outcome in ischemic & 
hemorrhagic stroke

<2 weeks after onset, 1 and 
3 month evaluation

Met carriers showed poorer upper 
extremity motor outcome

Kim et al, 2016c

Functional disability in 
ischemic stroke

6 months post-stroke No difference among genotypes Keshavarz et al, 2016

Stroke rehabilitation outcome 
in ischemic & hemorrhagic 
stroke

within 3 months of stroke 
onset

Unfavorable outcome associated with 
Val/Val genotype

Mirowska-Guzel et al, 
2014

Stroke risk & neurologic 
disability in ischemic stroke

1 and 90 days post stroke Met/Met genotype is associated with 
increased stroke risk and poor 
outcome

Zhao et al, 2013

Neurologic disability in 
subcortical stroke

(stroke <1 month), 1 and 3 
months post-discharge

Worse outcome in Met carriers Kim et al, 2013

Neurologic disability & 
cognitive function in 
ischemic stroke

2 weeks and 1 year post-
stroke

Val66Met polymorphism is 
associated with poor outcome and 
cognitive function

Kim et al, 2012

Stroke severity in ischemic & 
hemorrhagic stroke

1st and 3rd month post 
stroke

Poor recovery in Met carriers at 1 
month, difference diminished at 3 
months

Cramer et al, 2012

Stroke severity, Neurologic 
disability in ischemic & 
hemorrhagic stroke

acute (within 12 hours), 7 
days, 30 days post stroke

Worse outcome in Met carriers at 
admission and day 7 but not at one 
month

Mirowska-Guzel et al, 
2012

Functional outcome in 
subarachnoid hemorrhage

3 months after SAH Met allele is associated with poor 
outcome

Siironen et al, 2007

MOUSE Motor & Gait in transient 
focal ischemia (MCAO)

1st and 2nd week, 1,2,4 
and 6 months

Greater deficit at 1 week but superior 
recovery at later time points in 
Met/Met mice

Qin et al, 2014

Motor & Gait in transient 
focal ischemia (MCAO)

1 d, 4 d, 7 d, 2 weeks, and 
1 month after MCAO

Met/Met mice were significantly 
worse compared to controls at day 7 
but not at later time points

Qin et al, 2011
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