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Abstract

The field of neuroimaging dedicated to mapping connections in the brain is increasingly being 

recognized as key for understanding neurodevelopment and pathology. Networks of these 

connections are quantitatively represented using complex structures, including matrices, functions, 

and graphs, which require specialized statistical techniques for estimation and inference about 

developmental and disorder-related changes. Unfortunately, classical statistical testing procedures 

are not well suited to high-dimensional testing problems. In the context of global or regional tests 

for differences in neuroimaging data, traditional analysis of variance (ANOVA) is not directly 

applicable without first summarizing the data into univariate or low-dimensional features, a 

process that might mask the salient features of high-dimensional distributions. In this work, we 

consider a general framework for two-sample testing of complex structures by studying 

generalized within-group and between-group variances based on distances between complex and 

potentially high-dimensional observations. We derive an asymptotic approximation to the null 

distribution of the ANOVA test statistic, and conduct simulation studies with scalar and graph 

outcomes to study finite sample properties of the test. Finally, we apply our test to our motivating 

study of structural connectivity in autism spectrum disorder.
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1 | INTRODUCTION

Connectomics, the field of neuroimaging dedicated to mapping connections in the brain, is 

increasingly being recognized as key for understanding neurodevelopment. Structural 

networks exist as physically connected regions of the brain, and functional networks are 

groups of regions that tend to function together. The study of these complex networks is 

crucial for developing cognitive and pharmaceutical therapies for treating psychiatric, neuro-

logical, and developmental disorders. Quantitatively, these networks are often represented 

using complex structures, including matrices, functions, and graphs, and require specialized 

statistical techniques for estimation and inference about developmental and disorder-related 

changes.

Principled statistical methods are necessary for analyzing these structures. Due to the scale 

of their dimensionality, common approaches currently include simplistic connection-wise 

methods whose power is hindered by the need for multiple comparison correction. 

Unfortunately, classical statistical testing procedures are not well suited to high-dimensional 

testing problems. An alternative approach, which is also common in the context of 

neuroimaging analysis, is to test for global differences in summary measures and then 

visualize or use exploratory techniques to investigate where group differences exist in 

structure or function. Common techniques for this include averaging across volumetric or 

surface-based images, or extraction of salient network features such as modularity 

(Newman, 2006); however, this current state of the art fails to leverage the full structure of 

the observed data for comparisons.

In the context of global or regional tests for differences in neuroimaging data, traditional 

analysis of variance (ANOVA) is not directly applicable without first summarizing the data 

into univariate or low-dimensional features, a process that might mask the salient features of 

high-dimensional distributions. Direct statistical inference on the imaging objects is 

fundamentally hindered by the lack of a precise definition of variance in high-dimensional 

data, which in turn hampers the comparison of within-group to between-group variability. In 

this paper, we propose a general framework for ANOVA testing of complex structures by 

studying generalized within-group and between-group variances based on distances between 

high-dimensional observations.

The methods we propose are closely related to the fields of distance statistics and kernel 

testing, which have been shown to be equivalent in many cases (Sejdinovic et al., 2013). 

Similar to our proposed methodology, the literature in both of these fields centers around the 

reduction of the observed data using a distance (or kernel) to describe the dissimilarity 

between subjects. Kernel tests have been used extensively in statistical genetics, and were 

pioneered in association studies by Kwee et al. (2008). These score-based tests, which use 

the high-dimensional genetic data as predictors and scalar outcomes, have been used in the 

context of common and rare variant analyses (Wu et al., 2011; Ionita-Laza et al., 2013), and 

are recognized as an important tool for the analysis of sequencing data. The limiting 

distribution of kernel test statistics is well understood (Zhang and Lin, 2003). Another 

approach in genetic analyses involves sum tests (Wang and Elston, 2007; Pan, 2009), which 

are based on the assumption that all genetic predictors have the same association with the 
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outcome, and sum tests study this common association parameter using weighted sums of 

the predictors. More recently, much work has focused on developing versions of these tests 

that adaptively choose these weights and combine kernels to optimize power (Lee et al., 
2012; Ionita-Laza et al., 2013; Pan et al., 2014; Zhao et al., 2015; Van de kar et al., 2018) to 

detect both sparse and dense alternatives. While both kernel and sum tests benefit from the 

convenience of linear model specification for the sake of adjusting for confounding 

variables, their performance under model misspecification is not well understood. Finally, 

distance correlation (Székely et al., 2007; Székely and Rizzo, 2009) is an alternate measure 

of multivariate dependence for high-dimensional random vectors. Leveraging a distance 

measure to generalize Pearson correlation, distance correlation provides a means for 

assessing complex nonlinear correlations and testing independence. Distance correlation, 

which was proposed for the Euclidean random vector observation case, has also been shown 

to be related to the kernel-based maximum mean discrepancy tests popular in machine 

learning literature (Sejdinovic et al., 2013). More recently, other manifold-based testing 

procedures that leverage distance between the spaces in which the observed data reside have 

been proposed. These have based inference on the bootstrap (Pan et al., 2017) or asymptotic 

approximations for particular ball-based divergences (Pan et al., 2018).

For testing in higher dimensions, distance-based ANOVA considers the partitioning of sums 

of squared distances between subjects. Although pioneered in the ecology literature 

(McArdle and Anderson, 2001), distance-based ANOVA is increasingly being used in 

genomics (Minas et al., 2011) and neuroimaging (Reiss et al., 2010). This approach uses a 

pseudo-F statistic that assesses the ratio of the within-group distances to the between-group 

distances. The framework is similar to the kernel-based testing proposed by Gretton et al. 
(2012) based on the maximum mean discrepancy, but the form of the test statistic differs. 

Unfortunately, the null distribution of the distance-based ANOVA test statistic is not easily 

approximated and thus inference to date has been based solely on Monte Carlo 

approximations of the permutation distribution (PERMANOVA). This is computationally 

intensive and suboptimal in terms of statistical power. The potential inefficiency of 

permutation-based testing stems from the flexible estimation strategy for the null 

distribution. A recent work by Minas and Montana (2014) developed an analytical 

approximation to the permutation null distribution, which promises much improved 

computational time with similar power. Fast versions of kernel tests and distance correlation 

statistics based on matching moments to the permutation distribution have also been 

proposed by Zhan et al. (2017). While PERMANOVA tests are closely related to distance 

correlation under specific choices of distance functions in the case of random vectors, their 

extension to the case of more complex outcome structures has not yet been formalized.

In the remainder of this paper, we propose an analytical approach for testing for differences 

in the distribution of complex structures leveraging the PERMANOVA framework. In the 

next section, we describe this test in detail and derive its limiting distribution. We then 

consider a motivating study of structural connectivity in the brains of subjects with autism 

spectrum disorders. In Section 4, we conduct simulation analyses in four different settings: a 

scalar outcome, a graphical outcome, a functional outcome, and a real data-based 

connectomic outcome. We conclude with a discussion in Section 5.
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2 | PROPOSED METHODOLOGY

For a prototypical subject, the data unit is X ≔ (M, D), where M is an object in some space 

ℳ and D ∈ {0, 1, …, K − 1} is a disease group indicator. We denote by P0 the true 

distribution of X. Suppose that r: ℳ × ℳ [0, + ∞) is a semimetric, symmetric discrepancy 

function that quantifies in some scientific context-dependent manner how dissimilar two 

given objects in ℳ are. Suppose that we observe n independent draws X1 ≔ (M1, D1), X2 ≔ 
(M2, D2), …, Xn ≔ (Mn, Dn) from P0—each of these corresponds to measurements taken on 

a different subject.

Our goal is to use the available data to determine whether the distribution of M is the same 

across all subpopulations defined by D. For each d ∈ {0, 1, …, K − 1}, we denote by P0d the 

conditional distribution of M given D = d implied by P0. Our null hypothesis is then

ℋ0:P00 = P01 = ⋯ = P0(K − 1) .

This corresponds to the null hypothesis wherein M and D are independent under P0. To test 

this hypothesis, we will use the classical partitioning of variation approach from the classical 

ANOVA setting. A central quantity in the developments to follow, which we refer to as the r-
variance of a population of objects M ∈ ℳ with distribution P, is defined as 

σ2(P ): = EP × P r M1, M2 = ∬ r m1, m2 dP m1 dP m2 . This definition for the variance of an 

object is particularly convenient because it generalizes the usual notion of variance in an 

interpretable fashion. Also, the natural U-statistic estimator

σn2: = n
2

−1
∑

i < j
r Mi, Mj

of the r-variance σ2 (P0*) based on the marginal distribution P0* of M implied by P0 lends 

itself to relatively simple theoretical analysis. We note that although the computation of the 

above sum may be burdensome in large samples, a Monte Carlo approximation based on 

randomly sampling pairs of subjects can easily be used. We wish to construct an ANOVA-

like test statistic using r-variance. Denoting by πs the marginal probability that D = s under 

P0, we observe that the ANOVA discrepancy

T P0 : =
σ2 P0 * − ∑s = 0

K − 1πsσ2 P0s
∑s = 0

K − 1πsσ2 P0s

is identically zero under ℋ0. A sample version of this discrepancy based on U-statistics can 

be used as the test statistic. To construct this statistic, we define the within-group analog of 

the sum of squared distances as

SSEn: = ∑
s = 0

K − 1
ns − 1

ns
2

−1
∑

i < j
r Mi, Mj I(Di = Dj

= s)
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and the total sum of squared distances as SSn: = (n − 1) n
2

−1
∑i < jr Mi, Mj , where we set 

ns: = ∑i I Di = s . The scaled quantities SSEn∕n and SSn∕n are nonparametric estimators of 

∑s = 0
K − 1 πsσ2 P0s  and σ2 (P0*), respectively. The difference SSTn ≔ SSn − SSEn corresponds 

to an analog of the between-group sum of squares. An empirical estimator of T(P 0) is thus 

given by

Tn: = 1
n

SSTn/(K − 1)
SSEn/(n − K) ,

which can be seen as a scaled F-like test statistic. The unscaled counterpart of this statistic, 

Qn ≔ nTn, is known as the distance-based pseudo-F statistic. Large positive values of the test 

statistic Qn are incompatible with the null hypothesis ℋ0 of independence between M and 

D. This approach was first proposed by Anderson (1963), who noted that it reduces to the 

classical ANOVA F statistic in the scalar Euclidean case. However, in the general case the 

test statistic does not follow an F distribution, and Anderson (1963) suggested randomly 

permuting the group labels (D1, D2, …, Dn) to approximate sampling from the null 

distribution. Minas et al. (2011) suggested a similar statistic with different degrees of 

freedom in the numerator and denominator. Recently, Minas and Montana (2014) developed 

a Pearson type III approximation for the permutation distribution of the F statistic, which 

significantly reduces the computational burden of testing. These methods all potentially 

suffer from a loss of power from the permutation-based approximation, which we investigate 

in Section 4. The proposed test statistic Tn is also closely related to work by Gretton et al. 
(2012), who studied a quantity similar to SSTn from the perspective of maximum mean 

discrepancy. When M is a random vector in ℝp and r is the Euclidean norm, the numerator of 

the proposed pseudo-F statistic is closely related to the empirical distance covariance 

(Székely and Rizzo, 2009) between M and D observations, which is a weighted combination 

of the average within-group and between-group distances. However, for more complex 

structures, such as those of interest in connectomics, the ability to use more general distance 

functions and to accommodate complex data objects is crucial.

To determine appropriate test cutoffs to use for Qn without relying on permutations, we 

require a better understanding of the distribution of Qn under ℋ0. The U-statistic form of the 

sample r-variance can be leveraged to obtain a distributional approximation to the various 

building blocks of the pseudo-F statistic under ℋ0. We begin by studying the large-sample 

behavior of both SSEn and SSTn.

Theorem 1.

a. Under ℋ0, the denominator SSEn∕(n − K) of Qn tends to σ2 (P0*) in probability.

b. Provided σ2 (P0*) ∈ (0, +∞) and πs ∈ (0, 1) for some s ∈ {0, 1, …, K − 1}, the 
numerator of Qn can be written as
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SSTn/(K − 1) = σ2 P0 * + n/(K − 1)

× n
2

−1
∑

i < j
u Mi, Mj + oP (1)

under ℋ0 for some first-order nondegenerate kernel u, whose form is given in the 

Supporting Information. As such, in large samples, the distribution of SSTn is 
approximated by that of the infinite series

(K − 1) ⋅ σ2 P0 * + ∑
j = 1

∞
λj Zj2 − 1 ,

where Z1, Z2, … are independent standard normal variates and λ1, λ2, … are 
eigenvalues of the operator that maps any given function g into 
m ∫ u m, m2 g m2 dP00 m2 .

The proof of this theorem leverages a representation of the statistic as a first-order 

degenerate U-statistic. To demonstrate this, in appendix, we outline the decomposition of 

SSTn into three parts. We state and prove a lemma that shows that the product the estimation 

errors of two asymptotically linear estimators is asymptotically equivalent to a U-statistic. 

Together with the Hájek projection, this in turn shows that SSTn admits the claimed 

representation. The result then follows directly from the theory of U-statistics. Using this 

description of the behavior of the key building blocks of our test statistic Qn, we are able to 

describe its large-sample properties.

Corollary 1.

Suppose that σ2 (P0*) ∈ (0, +∞) and πs ∈ (0, 1) for some s ∈ {0, 1, …, K − 1}. Under ℋ0, 

Qn tends in distribution to

Z*: = 1 + (K − 1)−1 ⋅ σ P0 *
−2 ∑

j = 1

∞
λj(Zj

2 − 1), (1)

where Z1, Z2, … are independent standard normal variates and λ1, λ2, … are eigenvalues 
described in the above theorem.

We note that this result provides an asymptotic approximation to the null distribution of Qn 

without any restriction on the complexity of the structure of M except for the symmetry of 

the discrepancy r. Furthermore, estimates of the eigenvalues λ1, λ2, … can be computed in a 

relatively straightforward fashion by calculating the eigenvalues of the kernel matrix Hn 

defined to have (i, j)th element Hn, ij: = u Xi, Xj /n (Rosasco et al., 2010). While somewhat 

complicated, the exact form of u(Xi, Xj) is provided in appendix. Once estimates λ1,n, λ2,n, 

… of the eigenvalues λ1, λ2, … have been obtained, the quantiles of the distribution of Z* 

are estimable via Monte Carlo simulation, thereby enabling the construction of 

asymptotically valid test cutoffs.
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For concreteness, we outline the sequence of steps involved in the implementation of our 

proposed test:

i. Compute the test statistic Qn and the estimator SSn/n of σ2 (P0*)

ii. Calculate the matrix Hn and its first J eigenvalues λ1, n, λ2, n, …, λJ , n.

iii. Sample B realizations Z1*, Z2*, …, ZB* from the null distribution of Qn by setting

Zb*: = 1 + n
(K − 1)SSn ∑

j = 1

J
λj, n(Zj, b

2 − 1)

for a large array {Zj, b}j,b of draws from independent standard normal variates.

iv. Estimate the P-value by (1/B) ∑b = 1
B I Zb* > Qn .

The approximation parameters B and J are chosen to be sufficiently large so that the P-value 

estimates are precise; more details are provided in Section 4. The selection of J may be 

based on the proportion of variation in the distributional approximation Zb*. The proposed 

test consists of rejecting the null hypothesis whenever the statistic Qn is above the (1 − α)th 

quantile of the distribution of Z* and failing to reject otherwise. The probability of rejection 

is thus given by P0 (Qn > qα). Under a weak condition, the test has good operating 

characteristics, as described in the theorem below.

Theorem 2.

Under the null hypothesis, the rejection probability of the test based on Qn is asymptotically 
no larger than α. Suppose that the discrepancy r is sensitive to group differences, in the 
sense that

∬ r m1, m2 dP0s1 m1 dP0s2 m2

> ∬ r m1, m2 dP0d m1 dP0d m2

for some s1 ≠ s2 ∈ {0, 1, …, K − 1} for each d ∈ {0, 1, …, K − 1}. Then, the power of Tn 

tends to one as n → +∞.

This result indicates that with any discrepancy r we can conduct testing on data observed in 

complex forms. Furthermore, with an appropriate choice of r, our proposed test is expected 

to have enough power to detect group differences with a sample of sufficient size. An 

appropriate distance function takes into account salient features of the data structure, and the 

power of the test depends on the sensitivity of the selected distance function to group 

differences that exist in the sample. In the context of vector outcomes, possible distance 

functions include the Euclidean distance or absolute distance; in the context of vectors of 

correlations, other metrics such as those proposed by Reiss et al. (2010) and Shehzad et al. 
(2014) have been argued to better capture variation. However, as the dimension of the 

observed data increases, the potential for the accumulation of noise that can drown out 
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signal is also of concern (Fan and Fan, 2008; Hall et al., 2008; Fan et al., 2014). The use of 

distances that weight specific subsets of variables based on biological understanding can 

mitigate this by emphasizing variables in which differences are expected and down-

weighting noisy variables that may contribute less to group differences (e.g., Wang and 

Elston, 2007; Madsen and Browning, 2009; Han and Pan, 2010). In the context of data in 

which group differences are expected to manifest in variables which are adjacent with 

respect to an ordering, distance functions which involve smoothing across adjacent or nearby 

variables can also provide improved power. For more complex data structures such as 

matrices, which are commonly used to represent networks via potentially weighted 

adjacency matrices, as is the case for our motivating connectomic study, there are a variety 

of potential distance functions that can be applied. Settings involving lower dimensional 

matrix observations are amenable to the metric induced by Frobenius norm or the square 

thereof for sensitivity to group-level differences (Reiss et al., 2010). In cases of higher 

dimensional observed data matrices, the trace distance induced by the nuclear norm is a 

metric that may also be helpful for determining differences between populations of matrices. 

Functional data are also amenable to distance-based testing, and distances between functions 

that have been advocated for include the integrated square error and the L2 distance (Cuevas 

et al., 2004), the Kolmogorov-Smirnov distance, as well as the squared Hellinger distance, 

which has desirable numerical properties (Shinohara et al., 2014). Careful selection of r is 

critical for assuring optimal power of distance-based testing. Below, we investigate the 

performance of our test in the context of our motivating structural connectomic study. 

Software implementing these analyses in R is available on Github (link provided in the 

Supporting Information section).

3 | RESULTS FROM A DIFFUSION TENSOR IMAGING STUDY OF 

CONNECTOMICS IN AUTISM

Autism is a neurodevelopmental disorder that results in challenges with social behaviors, 

communication, and repetitive behaviors. Normal and abnormal neurodevelopment has been 

the focus of a significant amount of literature in neuroscience, and recent large investments 

in studies involving neuroimaging (Van Essen et al., 2013; Satterthwaite et al., 2014; 

Jernigan et al., 2016; Volkow et al., 2017) have provided brain researchers with data 

resources for studying mechanisms of behavioral phenotypes through structural connectomic 

analyses. To examine the utility of the proposed distance-based test in such studies, we used 

a diffusion tensor imaging (DTI) dataset including 264 subjects aged 6 to 19 consisting of 

144 subjects with autism spectrum disorders (ASD) and 120 typically developing controls 

(TDC). Diagnoses were confirmed by expert consensus of two independent psychologists 

following the guidelines set by Collaborative Programs of Excellence in Autism. ASD and 

TDC subjects had similar age distributions by design (t-test P = .83). Thirty-direction DTI 

was acquired and quality assured after denoising and brain extraction, and a tensor model 

was fit to identify the direction of water diffusion across the brain. The brain was segmented 

into 301 regions using a coregistered T1-weighted image, and FSL probtrackx (Behrens et 
al., 2003) was used to estimate the degree of structural connectivity between each of the 301 

regions accounting for the volume of each region. The observed data for each subject were 

thus symmetric 301 by 301 connectivity matrices, with (i, j)th entry being a measure of the 
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strength of connection between regions i and j. Figure 1 shows network representations of 

connectivity matrices, with nodes representing regions and edges being weighted by 

connection strength for two subjects for illustration. We used the sum of squared differences 

in a number of connections represented by edges as our distance function for all hypothesis 

testing.

Our experiment included two comparisons which we accomplished using both the proposed 

test and traditional permutational ANOVA. First, to examine the power of the proposed test 

in the context of large effect sizes, we tested for differences associated with age-related 

development by dichotomizing age by its median across all subjects (12.2 years). Average 

connectivity matrices in the younger and older groups, respectively, are shown in the top two 

rows of Figure 2 for illustration. Both the proposed test (P = .01) and the PERMANOVA (P 
= .004) indicated a significant difference in structural connectivity associated with age, as 

expected. The proposed method was, as also expected, an order of magnitude faster 

computationally (10s) compared with the permutation-based approach (141s). We also 

compared connectivity across quintiles of age, and the proposed test (P = .06) and the 

PERMANOVA (P = .05) indicated similar age-associations. Across deciles of age, neither 

the proposed test (P = .37) nor the permutation-based analysis (P = .26) found differences 

across age groups in structural connectivity. This shows promise for the faster proposed 

method for detecting structural changes in the connectome despite the high dimensionality 

and complexity of the connectomic representation.

Next, we tested for differences between the ASD and TDC groups. As based on previous 

literature (for an excellent review, see Travers et al., 2012) we expect differences in the 

structural connectome between ASD and TDC subjects to be subtle, and effect sizes to be 

relatively small. Neither the proposed test (P = .36) nor PERMANOVA (P = .15) rejected the 

null of no difference between groups, likely due to the small effect size and relatively small 

sample size. The global nature of the discrepancy measure selected may also have been 

suboptimal for detecting differences associated with ASD. Future work will focus on 

biologically informed distance functions to better elucidate group differences, including 

those that emphasize established findings concerning structure and function abnormalities in 

ASD (Figure 3).

4 | SIMULATION STUDIES

To assess the performance of our proposed test in a variety of controlled settings, we 

considered four simulation scenarios: (1) a simple scalar ANOVA case with a normally 

distributed outcome; (2) a small graphical case with five nodes (see Figure 4); (3) a 

functional data case; and (4) simulations based on the DTI data from Section 3. In this 

section, we will outline each of these simulation scenarios as well as the results for these 

experiments. For all simulation settings, we estimated the number of eigenvalues to be used 

in the proposed approximation of the null distribution to ensure that the proportion of 

variation explained was 95% or greater. Next, to determine a reasonable value for the 

number of Monte Carlo samples to be used to calculate P values, we estimated the number 

of samples necessary using the graphical case in scenario 2 to achieve P-value root-mean-

square error (RMSE) rates of less than 10−3 by comparison with cases of very large values 
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of B. We found that B = 2.5 × 105 was sufficient. Similarly, we estimated the necessary 

number of permutations to ensure similar RMSE rates using the state-of-the-art 

PERMANOVA approach. We used the adonis function in the vegan package (Oksanen et al., 
2015) in R (R Core Team, 2015), and found that 2.5 × 105 permutations were necessary. 

Details of this analysis are shown in Figure S1.

4.1 | Scenario 1: Scalar case

We first conducted a simulation study with two groups of subjects whose outcomes were 

randomly generated from a normal distribution. That is, we repeatedly (B = 1000 times) 

sampled subjects i = 1, …, n with group indicator Di~Bern(π0) and outcome Mi ∼ N μDi, σ2

for n ∈ {30, 50, 100, 500}, π0 ∈ {1/2, 1/3}, and σ ∈ {1, 2, 3}. We then conducted a 

traditional ANOVA, which compares the classical F statistic calculated from the observed 

data to the F-distribution with the appropriate number of degrees of freedom. Finally, we 

conducted the proposed distance-based ANOVA using two distance functions: the squared 

Euclidean distance r1(m1, m2) = (1/2)(m1 − m2)2 and the absolute distance r2(m1, m2) = 

(1/2)∣m1 − m2 ∣.

We first assessed the appropriateness of the asymptotic approximation to the test statistic 

null distribution by simulating data under the null for each noise level and sample size 

setting. We investigated the convergence of the null distribution of the test statistic Qn with 

the proposed approximation, selecting σ2 = 1, and the results are shown in quantile-quantile 

(Q-Q) plots in Figure 3. Each line shown compares the quantiles of one of 104 simulations 

with 5000 samples from the approximate distribution using J = 10 with the observed 

distribution across simulations. As expected, the approximation is closer to the true 

distribution for larger sample sizes. The approximation also performs better in cases with 

similar group sizes (π0 = 1/2). At larger sample sizes, the approximation appears to be 

slightly more accurate for the Euclidean distance compared with the absolute discrepancy; 

however, both approximations appear excellent. For some plots (in particular, the absolute 

distance for n = 50 and π0 = 1/3), we found the empirical null to have a slightly shorter 

range compared with that of the approximation, which yields a Q-Q plot with white space on 

the right of the subfigure.

We then investigated the performance of the approximation for hypothesis testing in terms of 

three key aspects: the maintenance of the nominal type I error rate, power for detecting 

alternatives of various effect sizes, and computation time. We averaged over 104 simulated 

datasets to evaluate each of these criteria. For the type I error simulations, we assumed σ2 = 

1 and μ0 = μ1 = 0. For all simulated scenarios, the type 1 error rates were around the nominal 

5% level and are shown in the first and third rows of Figure S2. We examined type 1 error 

rates for sample sizes as small as n ∈ {30, 50} to determine the performance of our test 

when the asymptotic approximation to the null distribution is likely to be far from the true 

distributions. While these results for n ∈ {30, 50} are reassuring in their conservatism, for 

small sample sizes a permutation-based test is recommended.

Next, we studied the power of the distance-based ANOVAs by setting μ0 = 0 and μ1 = 1, and 

varying the level of noise σ2. These results are shown in the second and fourth rows of 
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Figure S2. As expected, the power rises quickly as the sample size increases, with all tests 

achieving nearly 100% power for all noise settings at n = 500. Similarly, increased noise 

levels were associated with decreased power for all three methods. We found the power of 

the proposed tests to be quite similar but slightly lower than the standard ANOVA, with the 

Euclidean distance-based ANOVA showing very similar power to the classical test. The 

absolute distance-based test showed the lowest power, with a loss of up to 10%. Finally, in 

Figure S3, we compare the computation time necessary for each of the simulation studies 

presented. Note that computation time does rise with sample size but is similar across group 

proportions and across the two selected discrepancy measures, and takes at most 

approximately 4.5 seconds.

To determine J, the number of eigenvalues λj n, used in the approximation, we adopted a 

strategy of selecting J based on the data for all type I error and power simulations. We 

selected J to be the minimum number of terms necessary for explaining 95% of the variation 

in Z*. We found that the number of terms varied across distances, and in the case of the 

absolute distance differed across sample sizes (see top rows of Table 1 for these results for 

the type I error case with π0 = 1/2 as an illustration).

4.2 | Scenario 2: Graphical case

We next considered a simple graph-outcome case with five common nodes, labeled A 
through E, in each subject and variation in the presence or absence of edges between the 

nodes as illustrated in Figure 4. For this computationally more complex case, we averaged 

over 103 simulations for each set of parameters. We used the Frobenius norm of the 

difference in the adjacency matrices as our distance function, which counts the number of 

edge disagreements. To compare this with the state-of-the-art PERMANOVA approach, we 

used the adonis function in the vegan package (Oksanen et al., 2015) in R (R Core Team, 

2015). The adonis function first generates the null distribution of the pseudo-F statistic by 

permuting the group labels of the simulated data, and compares this with the calculated 

pseudo-F statistic for the observed data.

To assess type I error rates, we fixed τ = τ0 = τ1 ∈ {10%, 15%, 20%} and simulated datasets 

for n ∈ {30, 50, 100, 250} and π0 ∈ {1/2, 1/3}. The results from these experiments are 

shown in the first and third rows of Figure S4. Both methods had approximately nominal 

rates, with the proposed approximation showing slight conservatism in the smallest sample 

size (n = 30) cases. Next, we fixed τ0 = 5% and simulated datasets for τ1 ∈ {5%, 10%, 15%, 

20%} to assess the statistical power of the two approaches for various effect sizes. The 

results from this analysis are shown in the second and fourth rows of Figure S4. 

Surprisingly, the permutation test showed low power in most cases; indeed, for the smaller 

effect sizes of τ1 ∈ {0.1, 0.15}, the permutation-based analysis showed no power to detect 

the simulated group differences, and only moderate power with the largest effect size of τ1 = 

0.2. The proposed distance-based test showed high power for the n = 500 sample size across 

all effect sizes. Indeed, for τ1 ∈ {0.15, 0.2}, our test showed excellent power for sample 

sizes as small as n = 100 whereas the permutation-based test showed markedly lower power. 

The number of terms J used varied across alternatives and sample sizes, and averages of J 
across simulations are shown in Table 1.
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The computation times from this analysis are presented in Figure S5. Notably, the 

computing time required by the two methods is remarkably different, with the proposed test 

requiring only a small fraction (less than 30 seconds) of the time required for the 

permutation test (up to 17 minutes).

4.3 | Scenario 3: Functional case

We next investigated whether the proposed test might be useful for comparing samples of 

functions. In particular, we generated data according to a specified parametric form:

t M(t) = τ exp 10(t − 0.5)
1 + exp 10(t − 0.5) + tZ1 + Z2,

where Z1 and Z2 are independent mean-zero normal variates with variance σ2. We defined 

the discrepancy between two curves m1 and m2 as the integrated squared error 

r m1, m2 = ∫t m1(t) − m2(t) 2dt, and simulated 103 samples of curves for each set of 

parameters and sample size n ∈ {30, 50, 100, 250}. To assess the type I error rate of our 

proposed test as well as the permutation test, we simulated data with three noise levels: σ ∈ 
{0.1, 0.3, 0.5}. The results of this analysis are shown in Figure S6 and demonstrate that all 

methods provided nominal type I error rates. Next, we estimated the power of each method 

by simulating data for which τ = 0 for the D = 0 group, but for which we varied τ for the D 
=1 group (shown in subfigure titles in second and fourth rows of Figure S6). Note that for 

the smallest effect size of τ = 0.1, neither method showed power. However, for the medium 

effect size case of τ = 0.3, both methods showed moderate to high power for samples larger 

than n = 100, and the proposed method showed higher power than the permutation test, as in 

the scalar and graph cases. Furthermore, all tests had high power for the large effect size 

case when n = 50 or larger. Comparisons of computing time yielded similar results to the 

graphical case, with the proposed method approximately two orders of magnitude faster—

the results are shown in Figure S7.

4.4 | Scenario 4: Connectome case

Finally, to study the performance of our test in the context of the structural connectomic 

study described in Section 3, we developed a simulation study based on these data. We 

resampled from the observed networks without replacement and randomly sampled a 

fictitious phenotype Di~Bern(π0) for n ∈ {30, 50, 100, 264}. Using the same squared 

difference discrepancy measure as in the data analysis, we estimated the type I error rate by 

simulating 103 samples under the null distribution. We then assessed the power of the two 

tests by simulating signal in the observed data. For each sample, we began by again 

simulating a fictitious phenotype. We then induced a shift, μ ∈ {7.5, 15, 30}, in a number of 

connections, k ∈ {20, 100, 200}, where the strongest associations between ASD and the 

edge weights existed in the observed data based on t-tests. This allowed us to induce varying 

levels of signal in the biologically most plausible regions.

The results from these analyses are shown in Figure 5, with rows indicating the number of 

connections where signal was added and columns showing the strength of the signal. 

Estimates of power are shown in the second through fourth rows, and the first row shows 
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type I error rates. Both the proposed and permutation tests had nominal type I error rates. As 

expected, when k = 200, all methods showed high power for sample sizes larger than n = 30. 

For k = 100, the larger effect sizes showed high power for both methods, but for μ = 7.5, the 

methods were only powered when the sample size was larger than n = 100. For the most 

sparse signal (k = 20), only cases with large sample sizes or large effect sizes showed 

differences. In the n = 264 cases with k = 20, the proposed method showed higher power 

than the permutation test when μ ∈ {7.5, 15}. When the signal was strongest (μ = 30), the 

two tests performed remarkably similarly. Finally, the computation time results were similar 

to those from the graph and functional cases and are shown in Figure S8.

To assess the proposed test’s performance in the case where K > 2, we randomly sampled a 

fictitious phenotype Di from a discrete uniform distribution on {0, …, 4} for n ∈ {30, 50, 

100, 264}. Using the approach as the above K = 2 example, we estimated the type I error 

rate. We then assessed the power of the two tests by simulating signal in the observed data 

by inducing a shift, but to different degrees in the different groups dμ (where d ∈ {0, …, 4} 

denotes group) in k ∈ {20, 100, 200} connections. We found the results to be similar to the 

K = 2 case (see Figures S9 and S10).

5 | DISCUSSION AND CONCLUSION

In this paper, we propose a distance-based ANOVA technique that allows for fast two-

sample testing of connectomes represented by graphs and more complex structures using a 

subject-to-subject distance or discrepancy measure. We leverage the U-statistic form of the 

generalized variance to find the limiting behavior of the pseudo-F statistic. Our test shows 

improved power in simulations while maintaining nominal type I error rates. We expect that 

this test will also be useful in large genomic studies and other biomedical big data settings, 

in which permutational ANOVA testing is increasingly popular. Our test also generalizes 

directly to the case of more than two groups by appropriate scaling of the test statistic, as in 

the case of the classical F-test.

We demonstrate the utility of this methodology in a modern connectivity study. As ASD is 

an elusive disease in which only certain networks are affected, a global test using structural 

connectivity measures alone may neither be most informative nor powerful. Future 

investigations of ASD using connectivity measures for certain functional systems and 

targeted comparisons in prespecified brain networks will likely be more fruitful for 

understanding disorder-related dysconnectivity. The proposed testing methodology may be 

useful for such scenarios, in combination with other approaches that include appropriate 

dimension reduction. In addition, to study global connectivity differences such as those 

attributable to age, the proposed test is promising for examining group differences. We 

demonstrated this by stratifying age by the sample median, as well as into quintiles and 

deciles. In future studies, we propose to investigate analytical approximations to the cases 

where the predictor is continuous or there are multiple predictors (Reiss et al., 2010).

A key modeling choice left to the analyst when using distance-based testing, including that 

proposed here, involves the selection of an appropriate distance function. The flexibility of 

the choice of distance function is a key advantage of the distance-based testing approach, 
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and allows for comparisons of observations of complex and composite form based on a 

biological understanding of the scientific problem of interest. However, selection of a 

suboptimal distance function without regard for the structure of the observations, especially 

in the context of high-dimensional data, can lead to poor statistical power. Thus, we advise 

careful consideration of the construction of the distance function based on previous 

knowledge about the measurement structure as well as the scientific problem under study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Observed data for two selected subjects, consisting of volume-normalized counts of 

streamline connections between each pair of regions. Regions are represented spatially in 

sagittal, coronal, and axial views as red dots, and blue lines are connections. Darker and 

wider blue lines indicate stronger connections between regions
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FIGURE 2. 
Mean networks (first and second rows) for subjects younger than the median age (12.2 

years) compared to older subjects. Regions are represented as red dots, and connections are 

shown as blue lines. Thicker lines indicate stronger connections on average between regions, 

and the legend indicates the number of streamline connections estimated. In the third row, 

the differences between the maps are shown with blue lines indicating stronger connections 

in older subjects, and red lines indicating weaker connections in these groups
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FIGURE 3. 
Q-Q plots comparing the proposed approximation to the empirical null distribution of the 

squared Euclidean (top) and absolute (bottom) distance-based ANOVA test statistic Qn in 

the scalar case. ANOVA, analysis of variance; Q-Q, quantile-quantile
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FIGURE 4. 
Graph-outcome simulation design. On the left, the adjacency matrix for the simulated graphs 

is shown, and on the right three example subjects are shown with τ0 =5% for the first 

population and τ1 =10% for the second

Shinohara et al. Page 20

Biometrics. Author manuscript; available in PMC 2020 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5. 
Figures showing the type I error rates and power for various settings with network outcomes 

in scenario 4. The top row shows type I error rates for several noise levels and power under 

several alternatives for the case of π0 = 1/2, and the bottom rows show results for the case of 

imbalanced group sizes
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TABLE 1

Average number of terms J used in asymptotic approximation for the scalar type I error (top) and graph power 

(bottom) simulation studies with π0 = 1/2

Scalar case n = 30 n = 50 n = 100 n = 500

Euclidean distance 1.00 1.00 1.00 1.00

Absolute distance 7.85 9.87 12.23 15.40

Graph case n = 30 n = 50 n = 100 n = 250

τ1 = 0.1 3.92 4.40 4.87 5.00

τ1 = 0.15 4.17 4.63 4.96 5.00

τ1 = 0.2 4.28 4.75 4.99 5.00

Note: The parameter J was estimated using the data to ensure greater than 95% of the variation was explained.
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