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Abstract

Purpose of the review—Significant numbers of patients worldwide are affected by various rare 

diseases, but the effective treatment options to these individuals are limited. Rare diseases remain 

underfunded compared to more common diseases, leading to significant delays in research 

progress and ultimately, to finding an effective cure. Here, we review the use of genome-editing 

tools to understand the pathogenesis of rare diseases and develop additional therapeutic 

approaches with a high degree of precision.

Recent findings—Several genome-editing approaches, including CRISPR/Cas9, TALEN and 

ZFN, have been used to generate animal models of rare diseases, understand the disease 

pathogenesis, correct pathogenic mutations in patient-derived somatic cells and iPSCs, and 

develop new therapies for rare diseases. The CRISPR/Cas9 system stands out as the most 

extensively used method for genome editing due to its relative simplicity and superior efficiency 

compared to TALEN and ZFN. CRISPR/Cas9 is emerging as a feasible gene-editing option to 

treat rare monogenic and other genetically defined human diseases.

Summary—Less than 5% of ~7000 known rare diseases have FDA-approved therapies, 

providing a compelling need for additional research and clinical trials to identify efficient 

treatment options for patients with rare diseases. Development of efficient genome-editing tools 
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capable to correct or replace dysfunctional genes will lead to novel therapeutic approaches in these 

diseases.
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Introduction

A rare disease (also known as orphan disease) affects a relatively small percentage of 

patients in the general population. There are approximately 7000 different types of rare 

diseases worldwide, which altogether account for significant numbers of patients and 

substantial healthcare cost [1–4]. There is no universal definition for rare diseases. For 

example, a rare disease in the USA is defined as a condition that affects fewer than 200,000 

people, whereas the European Union uses a frequency of <1 patient per 2000 people as a 

definition for rare diseases [3]. Although individual occurrences of these diseases are rare, 

they cumulatively affect a significant proportion of the human population, accounting for 

approximately 20–30 million patients in the US [5]. There are several factors that often 

complicate the development of new therapeutic approaches for patients with rare diseases. 

For example, rarity of their occurrences hampers the advances in scientific research and 

delays medical referrals to disease experts who can correctly diagnose the disorder through 

specialized biochemical and genetic testing. Rare diseases often have limited clinical 

information and inadequate numbers of patients to calculate statistical significance and 

design clinical trials. Lack of biomarkers to evaluate the disease progression contributes to 

delays in treatments. Many rare diseases have early developmental or neonatal onsets 

resulting in poor prognosis without immediate therapeutic intervention.

Rare diseases are diverse and affect multiple organ systems. For example, Alveolar Capillary 

Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) causes fatal lung disease in 

newborns and infants but is also associated with developmental abnormalities in 

cardiovascular, gastrointestinal and urogenital systems [6]. Recently, more than 70 

pathogenic mutations in the Forkhead Box F1 (FOXF1) gene were identified in ACDMPV 

patients [6, 7]. Approximately 1700 mutations in the Cystic Fibrosis Transmembrane 

Conductance Regulator (CFTR) gene are associated with Cystic fibrosis (CF), a severe, 

progressive disorder affecting the lung, pancreas, liver, kidney and other organs [8]. 

Niemann–Pick disease type C1 is a neurovisceral lipid storage disorder associated with over 

200 mutations in the NPC1 gene [9]. Many rare diseases require organ transplantation, 

which is dependent on the availability of compatible donors and is associated with high 

healthcare costs [10–12]. Known mutational status in rare diseases provides a unique 

opportunity to use gene-editing approaches capable of achieving specific genomic 

modification within endogenous cells and tissues to repair the mutated gene itself.

Genome editing approaches have been used for several rare diseases with varied levels of 

success, aiming to correct or replace dysfunctional (mutated) genes [4, 13]. Specific 

nucleases, such as Transcription Activator-like Effector Nucleases (TALEN), 

meganucleases, Zinc Finger Nucleases (ZFN) and the Clustered Regularly Interspaced Short 
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Palindromic Repeats (CRISPR) / CRISPR associated protein 9 (Cas9) complex, allow the 

addition, replacement and removal of DNA fragments to correct mutated gene in genome. 

CRISPR/Cas9 system is the most commonly used method among genome editing 

approaches due to its simplicity, accuracy, and relatively low cost [14–17]. CRISPR/Cas9-

mediated genome editing is useful to repair non-functional genes as well as to correct 

pathogenic mutations encoding mutant proteins that are harmful or toxic. In the following 

four sections we summarized recent applications of CRISPR/Cas9 technology to rare 

diseases and discuss improvements required for its clinical translation.

Diversity of methods for genome editing

Genome editing methods use bioengineered nuclease enzymes to modify the organism’s 

genome in which DNA is inserted, deleted, or replaced in a precise and predetermined 

manner. Nuclease enzymes, also known as molecular scissors, cut genomic DNA to create 

site-specific double-strand breaks (DSBs) which later can be repaired through either Non-

Homologous End Joining (NHEJ) or Homologous Recombination (HR), resulting in precise 

changes in genome (Figure 1). The main genome editing techniques include ZFN, TALEN 

and CRISPR/Cas9, and each method has its advantages and disadvantages. Both ZFN and 

TALEN use artificial fusion proteins consisting of various DNA-binding domains linked to 

the nuclease domain of FokI to make DNA breaks. ZFN uses a combination of zinc finger 

DNA binding domains to recognize specific DNA sequences, however, the 3-base pair 

requirement for DNA-binding for each zinc finger and the low efficiency of the method are 

the main challenges for ZFN. The TALEN system works similarly to ZFN but relies on the 

TAL effector DNA-binding domain and the FokI nuclease to cut DNA. Compared to ZFN, 

the TAL effector DNA-binding domain uses 33–35 amino acid repeats as recognition sites, 

therefore increasing the specificity of genome editing. TALEN is easier to engineer than 

ZFN, the latter of which is technically challenging and time-consuming to design. 

Disadvantages of TALEN are related to low editing efficiency in heavily methylated DNA 

regions and significant difficulties with gene delivery due to large sizes of TALEN 

constructs. Overall, bioengineering and testing of TALEN and ZFN constructs for the 

correction of individual mutations are often time-consuming and expensive [14–16].

CRISPR/Cas9, a two-component genome editing system [18, 19], consists of a guide RNA 

and the CRISPR associated protein 9 (Cas9), which function as nuclease (Figure 1). Guide 

RNA of the CRISPR system can be designed to bind specific DNA sequences in genome. 

Compared to ZFN and TALEN, the CRISPR/Cas9 system is a simple, cost-effective, and 

highly efficient method. CRISPR/Cas9, like TALEN, was originally discovered in bacteria, 

where it functions as a part of internal defense mechanisms to protect the bacterial host from 

invading viruses [18, 20]. The main characteristic feature of CRISPR/Cas9 is that it uses 

RNA sequences instead of DNA-binding proteins to recognize specific DNA motifs (Figure 

1). Guide RNAs can be synthesized to target any specific DNA sequence in the genome, and 

specialized CRISPR/Cas9 algorithms have been developed to predict the possibility of off-

target effects. CRISPR/Cas9 system has completely revolutionized the genome-editing field, 

opening multiple possibilities for development of new therapies for rare diseases.

Pradhan et al. Page 3

Curr Stem Cell Rep. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Generation of animal models for rare diseases using CRISPR/Cas9 genome editing

CRISPR/ Cas9 has been extensively used to generate animal models for rare human diseases 

[21] (Table 1). Niemann-Pick disease type C1 (NPC1) is a rare lysosomal storage disease 

caused by inactivating mutations in the NPC1 gene. This disease is characterized by 

abnormal accumulation of cholesterol and glycolipids in late endosomes and lysosomes. 

Both mouse and feline models of NPC1 have been generated and used in preclinical studies 

to model the disease progression in humans [22–23]. However, the use of these models for 

high throughput screens to identify novel therapeutic agents is not economically feasible due 

to large time and labor costs to maintain and screen these animals. Recently, Tseng and 

coworkers [22] have generated two Zebrafish Npc1-null mutants using CRISPR/Cas9-

mediated gene targeting. The Npc1 mutants exhibited the early hepatic and the late 

neurological abnormality, both phenotypes being similar to human NPC1 [22]. These 

Zebrafish models of NPC1 can be used for rapid in vivo screening of potential therapeutic 

agents for this lysosomal storage disease. In another study, a mouse model of Desbuquois 

dysplasia (DBQD) type 1, a rare skeletal dysplasia characterized by short stature, round face 

and skeletal abnormalities, has been generated by CRISPR/Cas9 through disruption of the 

Cant1 gene encoding Calcium-Activated Nucleotidase 1 enzyme, which preferentially 

hydrolyzes UDP to UMP and phosphate [24]. Newly generated Cant1−/− mice exhibited 

multiple skeletal defects, recapitulating clinical features seen in patients with DBQD type 1 

[24]. Recently, Dreano and coworkers [25] reported the characterization of two rat models of 

cystic fibrosis (CF) using CRISPR/Cas9 genome editing. Rats homozygous for the F508del 

mutation in the transmembrane conductance regulator (Cftr) gene were compared with Cftr
−/− rats. F508del and Cftr−/− rats exhibited abnormalities that are typical to CF [25]. Authors 

concluded that F508del mutant rats represent a novel CF model, which can be useful for 

development of CF therapeutics.

The generation of new mouse models by CRISPR/Cas9 has been recently reported for 

Hyperoxaluria Type 1 (PH1) [26] and X-linked Retinitis Pigmentosa (XLRP) [27]. Our 

laboratory has created a clinically relevant mouse model of Alveolar Capillary Dysplasia 

with Misalignment of Pulmonary Veins (ACDMPV) by introducing the S52F FOXF1 

mutation (found in ACDMPV patients) [7] into the mouse Foxf1 gene locus using CRISPR/

Cas9 technology (Figure 2). ACDMPV is a severe congenital disorder characterized by lung 

hypoplasia, a paucity of alveolar capillaries and gallbladder agenesis in newborns and 

infants [6]. All phenotypes were recapitulated in genetically engineered Foxf1WT/S52F 

knock-in mice [7] and previously described mice heterozygous for the Foxf1 null allele 

(Foxf1+/−) [28, 29]. Similar to ACDMPV patients, Foxf1WT/S52F and Foxf1+/− mice 

exhibited reduced endothelial cell proliferation, decreased lung angiogenesis, and increased 

mortality after birth [7, 30]. FOXF1, a transcription factor from the Forkhead Box (FOX) 

family, is expressed in mesenchyme-derived cells such as endothelial cells, fibroblasts, 

pericytes, and visceral smooth muscle cells [31–34]. Published studies demonstrated that 

FOXF1 is critical for embryonic development [35–38], carcinogenesis [39, 40], organ 

regeneration [35, 41, 42], and lung repair after various injuries [43–46]. The Foxf1WT/S52F 

and Foxf1+/− mutant mice were recently used to develop two potential therapeutic 

approaches for ACDMPV patients. These approaches are based on increasing perinatal lung 

angiogenesis and endothelial proliferation through either nanoparticle delivery of 
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proangiogenic genes directly into endothelial cells [7, 47, 48] or cell transplantation with 

pulmonary endothelial progenitor cells [49].

Using CRISPR/Cas9 to correct pathogenic mutations in patient-derived primary cells and 
iPSCs

CRISPR/Cas9 genome editing has been extensively used to correct pathogenic mutations in 

primary cells and induced pluripotent stem cells (iPSCs) generated from patients with rare 

diseases [21] (Table 2). Recently, an intronic variant of Structural Maintenance of 

Chromosomes Flexible Hinge Domain Containing 1 gene (SMCHD1) was repaired by 

CRISPR/Cas9 method in primary and immortalized myoblasts obtained from patients with 

Facioscapulohumeral dystrophy type 2 (FSHD2), a rare autosomal dominant muscular 

disorder [50]. This genome modification restored expression of SMCHD1 and inhibited 

transcription of the DUX4 gene encoding highly cytotoxic myogenic protein, which is 

increased in Facioscapulohumeral dystrophy type 1 (FSHD1). These studies suggest that 

CRISPR/Cas9-mediated targeting of SMCHD1 can be explored in the development of new 

therapeutics for patients with FSHD 1 and FSHD2. CRISPR/Cas9 has been also used for 

disruption of the NPC1 gene in human cell lines, modeling cellular defects in cholesterol 

storage that occur in patients with Niemann-Pick disease [51]. Multiple groups have 

performed CRISPR/Cas9-mediated disruption of GLA gene (which encodes alpha-

galactosidase A) in either immortalized patient-derived cells or human embryonic stem cells 

(ESCs) to model cellular abnormalities that occur in Fabry disease (FD), a rare lysosomal 

storage disorder. Specifically, Lenders and co-workers [52] have used GLA-deficient cells to 

examine a possibility of chaperone therapy to correct FD defects, whereas GLA-deficient 

human ESCs were used to model autophagic dysfunction and exosome secretion in FD [53, 

54]. CRISPR/Cas9-mediated disruption of GLA in human iPSCs led to the identification of 

additional molecular mechanisms critical for FD pathogenesis [55].

Several research groups have reported the use of CRISPR/Cas9 genome editing to target β-
globin gene (HBB) in Sickle Cell Disease (SCD) and β-thalassemia [4]. SCD is a 

monogenic disorder caused by a point mutation in the human β-globin gene. Using a short 

single-stranded oligonucleotide template, the sickle mutation in β-globin was repaired in 

hematopoietic stem and progenitor cells obtained from peripheral blood and bone marrow of 

patients with SCD [56]. Compared to β-globin mutants, erythrocytes derived from gene-

edited cells showed fewer sickle cells after transplantation into non-obese diabetic mice in 
vivo [56]. Efficient targeting of the human β-globin gene to repair SCD point mutations by 

CRISPR/Cas9 genome editing was also performed by Kalkan et al [57]. Erythroid cells 

generated from biallelic-corrected iPSCs from SCD patients showed normal expression of β-
globin [58]. Interestingly, CRISPR/Cas9-mediated genome editing of the γ-globin repressor 

binding site in patient-derived hematopoietic stem and progenitor cells restored fetal 

hemoglobin synthesis and corrected the SCD phenotype [59]. Activation of fetal hemoglobin 

in erythroid cell lineage was also achieved using CRISPR/Cas9-mediated de-repression of 

γ-globin genes HBG1 and HBG2 [60]. These studies provide novel and promising 

therapeutic approaches for hemoglobinopathies.
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Genome editing methods have been used to study Chronic Granulomatous Disease (CGD), a 

rare immunodeficient disorder caused by defective NAPDH oxidase enzyme and mutations 

in either of five genes: CYBA, CYBB, NCF1, NCF2, or NCF4. Patient-specific point 

mutations in the Cytochrome b-245 heavy chain gene (CYBB) have been repaired in 

hematopoietic cells using non-integrating lentiviral vectors carrying RNA-guided Cas9 

endonucleases [61]. In another study, iPSCs with patient-specific c.75_76delGT (ΔGT) 

mutation in the NCF1 gene were generated by CRISPR/Cas9 and later used to develop a 

gene-correction approach. Functional analysis of iPSC-derived cells revealed a restoration of 

NADPH oxidase activity and increased anti-bacterial properties in corrected phagocytes 

[62]. Recently, Benati et al. [63] reported the use of CRISPR/Cas9-mediated in situ 
correction of the LAMB3 gene in keratinocytes derived from a patient with Junctional 

Epidermolysis Bullosa (JEB), a rare disorder characterized by fragile skin and formation of 

blisters. CRISPR/Cas9 genome editing of the ERCC6 (CSB) gene was successfully used to 

correct iPSCs from a patient with Cockayne syndrome (CS), a rare autosomal recessive 

disorder characterized by short stature, progeria, severe photosensitivity and learning 

disabilities [64]. Likewise, Iyer et al. [65] employed CRISPR/Cas9 for precise correction of 

pathogenic mutations in cell lines derived from patients with Limb-Girdle Muscular 

Dystrophy 2G and Hermansky-Pudlak Syndrome Type 1. These published studies 

emphasize the importance of precise genome editing tools to repair pathogenic mutations in 

patient-derived primary cells and iPSCs.

The use of CRISPR/Cas9 to correct pathogenic mutations in vivo

CRISPR/Cas9 has been used to correct or replace dysfunctional genes in rare monogenic 

and other diseases [4, 13] (Table 3). In the case of recessive diseases, allogeneic cell 

transplantation can compensate for the mutated gene [14, 16]. This approach was explored 

in animal models and patients with muscular dystrophy [66–69]. Furthermore, a specifically 

designed viral vector can deliver normal exogenous gene (exogene) into cells or tissues to 

compensate for the mutated gene. Lentiviruses and adeno-associated viruses (AAV) are the 

most commonly used vectors for the delivery of exogenes. In dominantly inherited diseases, 

in which the correction of pathogenic gene variants has to be done precisely, genome editing 

approaches have become methods of choice.

Tay-Sachs and Sandhoff diseases are rare lipid storage disorders associated with inactivating 

mutations in HEXA and HEXB genes and are characterized by progressive loss of neurons 

in the brain and spinal cord. Several groups used CRISPR/Cas9 to generate HEXA- or 

HEXB-deficient immortalized cell lines as well as to perform gene corrections in patient-

derived cells [70, 71]. Recently, Qu and co-workers [72] developed the CRISPR/Cas9-

mediated in vivo strategy, which is based on the expression of the exogenous lysosomal 

enzyme in hepatocytes of neonatal Sandhoff mice. This approach decreased the disease 

severity in Sandhoff mice, demonstrating the future potential for the treatment of patients 

with Tay-Sachs and Sandhoff diseases through in vivo genome editing [72]. AAV vector 

delivery of CRISPR/Cas9 components repaired compound heterozygous recessive mutations 

and rescued the disease phenotype in mouse models of Hereditary Tyrosinemia Type I and 

Mucopolysaccharidosis Type I [73], whereas delivery of AAV vector carrying the 

iduronate-2-sulfatase gene into cerebrospinal fluid significantly attenuated brain disease in a 
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mouse model of Mucopolysaccharidosis Type II [74]. In vivo genome editing partially 

restored expression of dystrophin and improved muscle function in a mouse model of 

Duchenne Muscular Dystrophy (DMD) [75, 76]. CRISPR/Cas9-mediated correction of 

DMD in mice was also performed using a self-complementary AAV delivery system [77]. In 

a landmark study for Interstitial Lung Disease, the delivery of CRISPR/Cas9 genome-editing 

components directly into the amniotic fluid led to in utero inactivation of the pathogenic 

SftpcI73T mutant allele, improving survival and decreasing lung fibrosis in SftpcI73T 
transgenic mice [78]. This study raises the possibility that in utero gene correction can be 

beneficial for monogenic lung diseases such as Interstitial Lung Disease, Cystic Fibrosis, 

and Alpha-1 Antitrypsin Deficiency.

Closing/ Conclusions

In summary, CRISPR/Cas9 genome editing technology has shown great potential for 

developing clinically relevant animal models that will be useful for testing new therapeutics 

for human rare diseases. While the correction of pathogenic mutations in cultured cells and 

patient-derived iPSCs are routinely performed in laboratory settings, CRISPR/Cas9 genome 

editing is emerging as a feasible option to target somatic cells in rare monogenic and other 

genetically defined human diseases. Recent progress in CRISPR/Cas9 technology has also 

led to clinical trials in the area of gene therapy. Several commercially available products that 

are based on CRISPR/Cas9 are on different stages of clinical testing to gain FDA approval 

[4, 79]. The global gene editing market is expected to expand at a high rate to accommodate 

the clinical needs of many rare diseases lacking efficient treatment options. While this 

technology accelerates the development of novel therapeutics for rare diseases, many 

important questions about the use of CRISPR/Cas9 genome editing in patients, such as 

efficacy, safety, and off-target effects, remain to be addressed. Furthermore, potential clinical 

applications of genome editing involve ethical and regulatory hurdles among other 

challenges [80–83]. Gene therapy applications mostly focus on targeting somatic cells, such 

as blood and bone marrow cells, so the genome changes cannot be inherited and passed to 

the next generations. Potential therapies targeting germ cells are considered to be 

controversial due to unknown long-term consequences that the germline gene therapy could 

cause.
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Figure 1: Site-specific genome editing methods that use endonuclease activity.
(A) The Zinc-Finger Nuclease complex (ZFN) consists of the FokI endonuclease domain 

(blue) and several Zinc finger (ZF) DNA-binding domains (yellow, red and green). Each ZF 

domain recognizes a 3-base pair (bp) DNA sequence. (B) Transcription Activator-Like 

Effector Nuclease (TALEN) is shown as a fusion protein consisting of FokI endonuclease 

domain and TALE DNA-binding domains. Sixteen colored subunits in each TALE domain 

recognize a single base pair of DNA sequences. (C) CRISPR/Cas9 system is comprised of 

Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR) and CRISPR 
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associated (Cas) protein 9. Guide RNA (gRNA, green) directs Cas9 endonuclease (grey) to 

specific DNA sites, which are located close to short Protospacer Adjacent Motifs (PAM, 

blue). Cas9 cleaves DNA upstream of PAM. (D) FokI and Cas9 endonucleases cause double-

strand DNA breaks (DSBs). DSBs are repaired through either NHEJ or HR mechanisms. (E) 

NHEJ repair is based on nucleotide deletions or insertions into cleaved DNA. (F) Repair 

through HR mechanism occurs in the presence of the donor DNA template, which contains 

homology regions on both sides of the template. Exogenous DNA is specifically inserted 

into the target site to modify the gene.
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Figure 2: Generation of Foxf1WT/S52F knock-in mouse model of ACDMPV using CRISPR/Cas9 
genome editing.
The schematic diagram shows the generation of Foxf1WT/S52F knock-in mice by homology-

directed repair method. Single amino acid substitution of serine-52 (S52) to phenylalanine 
(F) is performed using a donor DNA template containing 55 nucleotide base pairs (bp) 

homology arms (HA) on either side of the template. HAs allow the donor DNA template to 

recombine into the host genome through homologous recombination (HR), inserting the 

S52F Foxf1 mutation. The mutated amino acid and triplet nucleotide codon (F/Ttt) are 

labeled in red, whereas endogenous nucleotides are labeled in green. Silent mutations 

(yellow) are inserted into the donor DNA template to create a new Stu I restriction site 

needed for identification of the S52F Foxf1 mutant allele.
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Table 1:

Animal models of rare diseases generated using CRISPR/Cas9 genome editing approach

Disease Species Type of mutation Reference

1. Niemann-Pick disease type C1 (NPC1) Zebrafish Null mutant of Npc1 gene 22

2. Desbuquois dysplasia (DD) type 1 Mouse Knockout of Cant1 gene 24

3. Cystic fibrosis Rat Knockout/ deletion of Cftr gene 25

4. Alveolar Capillary Dysplasia with Misalignment 
of Pulmonary Veins (ACDMPV)

Mouse Knock-in mutation in Foxf1 gene 7

5. Primary hyperoxaluria type I (PH1) Mouse Gene correction in Agxt1 gene 26

6. X-linked retinitis pigmentosa (XLRP) Mouse Transgenic expression of Rpgr gene 27

7. Bronchopulmonary dysplasia (BPD) Mouse Expression of exogenes Foxf1 and Foxm1 from 
nanoparticle vector

47
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Table 2:

Use of CRISPR/Cas9 to correct pathogenic mutations in patient-derived primary cells and iPSCs.

Disease Species/ Cell type Type of mutation Reference

1. Facioscapulohumeral dystrophy Human / myoblasts Pseudogene SMCHD1 deletion 50

2. Niemann-Pick Type C Human/ HeLa cells NPC1 gene disruption 51

3. Fabry disease Human - HEK293T and primary urinary 
cells

Knockout of GLA gene 52

4. Fabry disease Human Embryonic Stem Cell Knockout of GLA gene 53

5. Fabry disease Patient-derived fibroblasts and HEK-293T 
cells

Knockout of GLA gene 54

6. Fabry disease Human-induced pluripotent stem cells/ 
Fibroblast

Knockout of GLA gene 55

7. Sickle cell disease Human/ hematopoietic stem and progenitor 
cells from peripheral blood or bone marrow

HBB gene correction 56

8. Sickle cell disease Human cell lines HBB gene correction 57

9. Sickle cell disease Induced pluripotent stem cells (iPSCs) HBB gene correction 58

10. Sickle cell disease Patient-derived hematopoietic stem/
progenitor cells

Insertion/ deletion in HBG gene 59

11. Sickle cell disease Human hematopoietic stem and progenitor 
cells

HBG1/HBG2 gene disruption 60

12. Chronic granulomatous disease Human hematopoietic cells and induced 
pluripotent stem cells (iPSCs)

CYBB and NCF1 gene correction 61, 62

13. Junctional epidermolysis bullosa Mouse/ Keratinocytes LAMB3 gene correction 63

14. Cockayne syndrome Human induced pluripotent stem cells 
(iPSCs) from fibroblasts

ERCC6 gene correction 64

15. Limb-Girdle Muscular Dystrophy 
2G (LGMD2G) and Hermansky-
Pudlak Syndrome Type 1 (HPS1)

LGMD2G iPSC-derived myotubes and 
HPS1 patient-derived B-lymphoblastoid cell 
line

TCAP gene correction 65
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Table 3:

Correction of pathogenic mutations in vivo using CRISPR/ Cas9

Disease Species Type of mutation Reference

1. Duchenne muscular dystrophy (DMD) Mouse Dmd gene correction 68, 69, 76, 77

2. Tay-Sachs or Sandhoff disease Mouse HEXA and HEXB gene correction 70

3. Sandhoff disease iPS cells/ Organoids HEXB gene correction 71

4. Tay-Sachs and Sandhoff Diseases Mouse HEXA and HEXB gene correction 72

5. Tyrosinemia type I and mucopolysaccharidosis type I Mouse Allelic exchange in Fah and Idua genes 73

6. Mucopolysaccharidosis type II (MPS II) Mouse Ids gene correction 74

7. Duchenne muscular dystrophy (DMD) Mouse Permanent exon skipping in Dmd gene 75

8. Interstitial lung disease Mouse Inactivation of Sftpc gene 78
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