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The approximately universal 
shapes of epidemic curves in the S​
usc​ept​ibl​e‑E​xpo​sed​‑In​fec​tio​
us‑Recovered (SEIR) model
Kevin Heng1,2* & Christian L. Althaus3

Compartmental transmission models have become an invaluable tool to study the dynamics of 
infectious diseases. The Susceptible-Infectious-Recovered (SIR) model is known to have an exact 
semi-analytical solution. In the current study, the approach of Harko et al. (Appl. Math. Comput. 
236:184–194, 2014) is generalised to obtain an approximate semi-analytical solution of the 
Susceptible-Exposed-Infectious-Recovered (SEIR) model. The SEIR model curves have nearly the same 
shapes as the SIR ones, but with a stretch factor applied to them across time that is related to the ratio 
of the incubation to infectious periods. This finding implies an approximate characteristic timescale, 
scaled by this stretch factor, that is universal to all SEIR models, which only depends on the basic 
reproduction number and initial fraction of the population that is infectious.

Compartmental models provide a key tool in infectious disease epidemiology for studying the transmission 
dynamics of various pathogens1–3. The Susceptible-Infectious-Recovered (SIR) model is known to have an exact 
semi-analytical solution4–6. No such solution exists for the Susceptible-Exposed-Infectious-Recovered (SEIR) 
model, although some of its properties have been examined using an approximate analytical approach7. In the 
current study, the approach of5 is generalised to demonstrate that, while no exact semi-analytical solution is 
possible, an approximate one does exist.

It will be demonstrated that this approximate solution of the SEIR model implies the curves of all SEIR models 
are simply stretched or compressed relative to one another by the factor,

where the incubation period is 1/σ , the infectious period is 1/γ and the generation time is 1/σ + 1/γ . The 
SIR model is a special case with α = 1 . This property implies the time taken for the infectious curve to peak is 
approximately universal for the SEIR model when scaled by α.

In “The SIR model” section, the SIR model is concisely reviewed and extended. In “The SEIR model” section, 
approximate solutions of the SEIR model and their implications are elucidated. A concise summary is provided 
in “Summary” section.

The SIR model
In the SIR model, the fraction of the population that is susceptible (S) becomes infected at a rate β = R0γ , 
where R0 is the basic reproduction number. There is no incubation period. The fraction of the population that 
is infected is immediately infectious (I) for a period of 1/γ , after which a fraction of the population recovers (R). 
The SIR model is described by the following set of coupled ordinary differential equations1,5,

(1)α =
σ

σ + γ
,
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where t represents the time. Since this set of equations does not consider births or deaths, we have S + I + R = 1.

Review of Harko et al.5.  As a starting point, the derivation of5 is made more compact and cast in the math-
ematical notation of the current study. By taking the derivative of the first equation of (2) with respect to time, 
one obtains equation (12) of5,

where for convenience one uses shorthand notation for the derivatives with respect to time,

By combining Eq. (3) with the second equation in (2), one obtains equation (13) of5,

By using the change of variables,

one obtains from Eq. (5) an expression that is equivalent, but not identical, to equation (24) of5,

because one has chosen to work directly with S (and not S/S0 ) as the independent variable. The preceding 
expression is recognised as a Bernoulli differential equation, which may be solved to obtain an expression that 
is equivalent, but not identical, to equation (25) of5,

where the initial value of S is denoted as S0 . The constant of integration is set by demanding that S + I + R = 1 . 
Recalling the definition of φ , an expression that is equivalent to equation (26) of5 follows,

where t0 is the initial time. The preceding integral has no exact analytical (closed-form) solution and needs to 
be evaluated numerically, which is why it is strictly speaking an exact semi-analytical solution of the SIR model.

The first and third equation of (2) may be combined to obtain

where the initial fraction of the population that has recovered is chosen to be R0 = 0 , which in turn implies that 
the initial fraction of the population that is infectious is I0 = 1− S0.

Extension of Harko et al.5.  By setting I ′ = 0 in Eq. (2), one realizes that the infectious curve I peaks at 
S = γ /β = 1/R0 . Thus, Eq. (9) may be used to express the time taken for I to peak,

where one assumes I0 ≪ 1 . The quantity γ�t is the time interval expressed in terms of the infectious period 
and depends only on two parameters: R0 and I0 . Variations in I0 shift the S, I and R curves back and forth in 
time without changing their shapes. We emphasize a subtle choice of notation: R0 is the initial fraction of the 
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population that has recovered (and is always set to zero in the current study), whereas R0 is the basic reproduc-
tion number.

When the infectious curve I first starts to rise from its initial value, the logarithm term in the integral of 
Eq. (9) may be approximated as ln (S/S0) ≈ S/S0 − 1 , which allows the integral to be evaluated analytically. It 
follows that

where we have defined the epidemic growth rate as

from which one obtains the known relationship between the basic reproduction number and the growth rate1,8,

where D ≡ 1/γ is the infectious period.

The SEIR model
Seeking an approximate semi‑analytical solution.  The SEIR model builds on the SIR model by con-
sidering an additional compartment for the fraction of the population that is exposed (E): infected but not yet 
infectious. The incubation period is 1/σ . The SEIR model is described by the following set of coupled ordinary 
differential equations1,

Since this set of equations does not consider births or deaths, we have S + E + I + R = 1.
The first and fourth equations may be combined to obtain

which is identical to the SIR model. Again, the choice of R0 = 0 is made with no loss of generality.
By combining all four equations, one obtains

The approximation is taken that the rate of change of the acceleration of R is vanishingly small,

This yields

where one defines α ≡ σ/(σ + γ ) . When α = 1 , one recovers equation (19) of5 for the SIR model.
One generalises equation (13) of5,

from which the familiar Bernoulli equation follows,

Retaining the R′′′ term in Eq. (17) would lead to a second-order, non-linear ordinary differential equation of 
φ(S) with no known analytical solution.
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Solving for φ as in “Review of Harko et al.5” section yields

where φ0 is the initial value of φ . The preceding expression leads to an expression for I, in terms of S, with a yet 
unspecified constant of integration ( φ0),

Let the initial fraction of the population that is exposed be E0 . Demanding that S0 + E0 + I0 + R0 = 1 yields

Expressions for E and I, in terms of S, are obtained

Finally, S can be expressed in terms of t via the following integral,

Since I0 ≪ 1 , the time taken for I to peak is

The preceding expression is identical to Eq. (11) of the SIR model, except for the extra factor of α . It should be 
noted that the upper limit of the integral ( 1/R0 ) assumes the approximation I ′ = E′ = 0 . However, Eq. (27) is 
not used to compute the peak times in Fig. 2. Its only purpose is to demonstrate that one may factor out αγ from 
the integral. Stating the upper limit of the integral in Eq. (27) more accurately does not alter the main conclusion 
of the current study.

The relationship between the growth rate and the basic reproduction number can again be derived. Using the 
same series expansion of the logarithm term in the integral of Eq. (26), one obtains

albeit with a different definition of the growth rate,

It follows that

where D′
≡ 1/σ is the incubation period. When α = 1 , the expression for the SIR model in Eq. (14) is recovered. 

If S0 ≈ 1 and I0 ≪ 1 , then one obtains R0 ≈ 1+�(D + D′).
The exact relationship between the growth rate and R0 has been derived in various ways8 (and references 

therein) and is given by R0 = (1+�D′)(1+�D) . This equation accounts for the characteristic generation 
time distribution of SEIR models, which is a convolution of the exponentially distributed incubation and infec-
tious periods with mean durations of D′ and D, respectively. The approximate solution of Eq. (30) lacks the term 
�2D′D . Hence, it corresponds to the case of an exponentially distributed generation time with mean duration 
D′

+ D , which is the same as the solution for the SIR model assuming an infectious period of D′
+ D.

Implications.  Equation (27) has non-trivial implications. It suggests that the susceptible, exposed, infectious 
and recovered curves of SEIR models, with different values of D′ and D, follow approximately universal shapes 
that are stretched by a factor of 1/α = 1+ D′/D relative to one another. To demonstrate this property, the full set 
of coupled equations in (15) is solved numerically using the solve_ivp routine of the Python programming 
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language suite9. For illustration, one assumes R0 = 2 and I0 = 10−4 . Figure 1 shows the solution curves of 100 
SEIR models, where the values of the incubation ( D′

≡ 1/σ ) and infectious ( D ≡ 1/γ ) periods are randomly 
drawn from an interval between 2 and 5 days. When time is scaled by the factor αγ , the 100 susceptible, exposed, 
infectious and recovered curves lie approximately on top of one another.

The second implication is that the time taken for the infectious curve to peak is approximately universal for 
all SEIR models when scaled by α and expressed in terms of the infectious period. In other words, αγ�t should 
only depend on R0 and I0 . To demonstrate this property, the full set of equations in (15) is again solved numeri-
cally for 10,000 random draws of 1/σ and 1/γ and for R0 = 2 to 7. For each SEIR model, the time taken for the 
infectious curve to peak ( �t ) is calculated numerically. All 10,000 values of �t are multiplied by αγ ; two sets of 
curves with different I0 values are shown in Fig. 2 for illustration. For all 10,000 SEIR models, the αγ�t values lie 
approximately on the same curve across R0 for a given value of I0 , demonstrating that αγ�t is a dimensionless 
(with no physical units), approximately universal timescale of the SEIR model.

Summary
In the current study, approximate semi-analytical solutions of the SEIR model are found by generalising a pre-
vious approach for deriving an exact solution of the SIR model. This finding implies that the entire family of 
susceptible, exposed, infectious and recovered curves of the SEIR model follow approximately universal shapes 
that are stretched or compressed, relative to one another, by a factor consisting of the incubation and infectious 
periods. The time taken for the infectious curve to peak is the characteristic timescale of the system and depends 
only on the basic reproduction number and the initial fraction of the population that is infectious when scaled 
by the infectious period and this stretch factor.

Figure 1.   Solution curves of 100 SEIR models as a (a) function of time and (b) time scaled by αγ . For 
illustration, the basic reproduction number has been set to R0 = 2 and the initial fraction of the population 
that is infectious has been set to I0 = 10

−4 . Each set of curves is generated using 100 random realisations of the 
incubation and infectious periods, each drawn from an interval between 2 and 5 days for illustration.

Figure 2.   Time until the infectious curve (I) peaks as a function of the basic reproduction number R0 . In the 
SEIR model, the time to the epidemic peak ( �t ) scales approximately with α and γ . For illustration, two values 
of the initial fraction of population that is infectious ( I0 ) are considered. Each set of curves is generated using 
10,000 random draws of the incubation and infectious periods from an interval between 2 and 5 days.
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