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Abstract
The COVID-19 pandemic has accounted for millions of infections and hundreds of thousand deaths worldwide in a
short-time period. The patients demonstrate a great diversity in clinical and laboratory manifestations and disease
severity. Nonetheless, little is known about the host genetic contribution to the observed interindividual phenotypic
variability. Here, we report the first host genetic study in the Chinese population by deeply sequencing and analyzing
332 COVID-19 patients categorized by varying levels of severity from the Shenzhen Third People’s Hospital. Upon a
total of 22.2 million genetic variants, we conducted both single-variant and gene-based association tests among five
severity groups including asymptomatic, mild, moderate, severe, and critical ill patients after the correction of potential
confounding factors. Pedigree analysis suggested a potential monogenic effect of loss of function variants in GOLGA3
and DPP7 for critically ill and asymptomatic disease demonstration. Genome-wide association study suggests the most
significant gene locus associated with severity were located in TMEM189–UBE2V1 that involved in the IL-1 signaling
pathway. The p.Val197Met missense variant that affects the stability of the TMPRSS2 protein displays a decreasing allele
frequency among the severe patients compared to the mild and the general population. We identified that the HLA-
A*11:01, B*51:01, and C*14:02 alleles significantly predispose the worst outcome of the patients. This initial genomic
study of Chinese patients provides genetic insights into the phenotypic difference among the COVID-19 patient
groups and highlighted genes and variants that may help guide targeted efforts in containing the outbreak.
Limitations and advantages of the study were also reviewed to guide future international efforts on elucidating the
genetic architecture of host–pathogen interaction for COVID-19 and other infectious and complex diseases.

Introduction
It has been more than 100 years since the 1918 influ-

enza outbreak killed at least fifty million people world-
wide1. Now we are facing another pandemic. Since the
late December of 2019, the 2019 novel coronavirus dis-
eases (COVID-19) has spread rapidly throughout the
world, resulting in more than five million confirmed cases
and hundreds of thousands deaths in less than
6 months2,3. The disease was caused by the infection of a
novel enveloped RNA betacoronavirus that has been
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named severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), which is the seventh coronavirus species
that causes respiratory disease in humans4,5. The virus
causes serious respiratory illnesses such as pneumonia,
lung failure, and even death6. Until now, there is no
specific therapeutics and vaccine available for its control.
Continuing epidemiological and molecular biological
study to better understand, treat and prevent COVID-19
are urgently needed.
A characteristic feature of many human infections is

that only a proportion of exposed individuals develop
clinical disease and for the infected persons, severity
varies from person to person7. In the COVID-19 out-
break, a high level of interindividual variability was
observed in terms of disease severity and symptomatic
presentation. Around 80%–85% of the laboratory con-
firmed patients were classified as mild (i.e., non-
pneumonia and mild pneumonia), while 15%–20%
would progress to severe or critical stage with a high
probability of respiratory failure8–10. Patients with severe
disease had more prominent laboratory abnormalities
including lymphocytopenia and leukopenia than those
with non-severe disease11,12. In addition, not all people
exposed to SARS-CoV-2 were infected according to the
epidemiological observation of the patients’ close con-
tacts13,14. Notably, previous studies have indicated that
genetic background plays an essential role in determining
the host responses to infections by HIV15–17, HBV18,
HCV19, influenza20–23, SARS-CoV24,25, numerous com-
mon viruses26, etc. Those studies highlighted the HLA
alleles and several genes involved in the interferon pro-
duction and viral replication pathway and indicates that
genetic factors may also play an important role to explain
the interindividual clinical variability among patients
infected by SARS-CoV-2.
Till now, the global genetic community has been

actively investigating in the genetic contribution to
COVID-19. A recent twin study in UK suggests a
30%–50% genetic heritability for self-reported symptoms
of COVID-19 and the predictive disease onset27, indicat-
ing a very strong genetic background predisposing the
COVID-19 patients’ clinical manifestation and suscept-
ibility. An earlier studies comparing the distribution of
ABO blood group from 1775 patients infected with SARS-
CoV-2 with 3694 normal people from Wuhan city and
23,386 people from Shenzhen city suggested that blood
group A had a significantly higher risk for COVID-19
(OR= 1.20, p= 0.02) while blood group O had the lower
risk28. Using allele frequency and expression quantitative
loci (eQTL) information of general healthy population
from 1000 genome project and others, a few studies
investigate the mutation frequency spectrum in different
populations in candidate genes such as ACE2 and
TRMPSS229–31. Genome-wide association test on array

data from the UK Biobank participants with a positive and
negative polymerase chain reaction (PCR)-tests also
reveals a few suggestive genes26. The COVID-19 host
genetics initiative was established to encourage genera-
tion, sharing and meta-analysis of the genome-wide
association summary statistics data around the world32.
International collaborative efforts are necessary to eluci-
date the role of host genetic factors defining the severity
and susceptibility of the SARS-CoV-2 virus pandemic.
Herein, we report the first genetic study of COVID-19

disease severity in China by deeply analyzing the asso-
ciation between the genetic variants present in the
patients’ genome and their disease progression. We have
recruited 332 hospitalized patients from a designated
infectious disease hospital in Shenzhen City33. The
patients display varying clinical and laboratory features
and were categorized as asymptomatic, mild, moderate,
severe, and critical cases according to the criteria made by
the Chinese Center for Disease Control and Prevention6.
To maximize the statistical power given the relatively
small hospitalized sample size and for accurate detection
of extremely rare variants, we conducted deep whole
genome sequencing (average 46×) for the patients. Given
a fixed samples size, this protocol facilitates the estimation
of genetic effects of rare and loss of function variants in
addition to the common variants that may be potentially
contributing to the COVID-19 clinical variability34. Based
on the 22.2 million variation detected from the patients,
we investigated host factors by conducting both single
variant and gene-based genome-wide association study
(GWAS) and by evaluating the difference of allele fre-
quency of the protein truncating variants and HLA alleles
among the patient groups. In addition, we performed
joint-calling of the genetic variants of the unrelated
COVID-19 patients (n= 284) and the publicly available
Chinese genomes from the 1000 genome project35 (n=
301, ~7×) and 665 selected Chinese genomes from the
Chinese Reference Panel Population (manuscript in pre-
paration, ~30×) to explore potential genetic factors that
may contribute genetic susceptibility of SARS-CoV-2
infection.

Results
Clinical and laboratory features of the 332 hospitalized
COVID-19 patients
The 332 recruited patients with laboratory-confirmation

of SARS-COV-2 infection were quarantined and treated
in the Shenzhen Third Hospital. We extracted and ana-
lyzed the clinical symptoms, laboratory assessment and
recent exposure history of the patients from the hospital’s
electronic medical records. The 332 patients consist of 48
family members and 284 unrelated individuals.
A total of 25 (7.5%), 12 (3.6%), 225 (67.8%), 53 (16.0%),

and 17 (5.1%) patients were defined as asymptomatic, mild,
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moderate, severe, and critically ill, respectively, according to
the most severe stage they encountered during the disease
course following the Chinese CDC criteria6 (Fig. 1a). The
criteria for the severity based on the clinical manifestation

were detailed in the section “Materials and methods”. A
broader definition of the mild group includes the asymp-
tomatic, mild and moderate patients, and the severe group
includes the severe and critically ill patients.

Fig. 1 Clinical and laboratory assessments of the recruited 332 COVID-19 patients. a Number of samples belong to the five categories. b Top
20 features that classify the patient categories in the machine learning trained model. c Age distribution for the five categories of patients.
d Distribution of disease duration, i.e., the duration between the disease onset and the first negative RT-PCR test among the five groups of patients.
e Gender distribution for the five categories of patients by age. f Distribution of the proportion of patients with or without medical comorbidities
among the five categories of patients by age.
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The patients displayed several clinical presentations
typical to COVID-19, which mainly involved fever
(70.8%), cough (54.2%), fatigue (23.9%), hoarse voice
(17.6%), loss of appetite (16.2%), delirium (15.1%) (Sup-
plementary Fig. S1). Less than 10% of the patients had also
experienced diarrhea, chest and abdominal pain, short-
ness of breath and anosmia. More than 50% of the
patients had at least one medical comorbidities (e.g.,
hypertension). Consistent with previous report, the
broadly defined severe patients tend to be older (severe:
average 45 years old vs. mild average 58 years old, t test
p= 0.03, Fig. 1b), suffer from a longer course of disease
between the onset and the first negative reverse-
transcriptase (RT)-PCR test outcome (Fig. 1c) and
shorter exposure time (Supplementary Fig. S2). In addi-
tion, the severe patient group consist of more males than
females (severe 66.7% vs. mild 41.3%, χ2 test p= 4.3e–4,
Fig. 1d) and tend to undergo medical comorbidities more
frequently (severe 58.8% vs. mild 45.1%, χ2 test p= 0.07,
Fig. 1e) than the mild patients.
During hospitalization, a series of 64 laboratory

assessments including a complete blood count and blood
chemical analysis, assessment of liver function, assess-
ment of renal functions, test of humoral immunity, test of
coagulation, measure of electrolyte, and measure of blood
gas electrolyte (Supplementary Fig. S3) and a time-series
evaluation of T lymphocyte subgroups (Supplementary
Fig. S4) were performed for each of the patients to
monitor their disease status and progression. Using a tree-
based machine learning prediction model36, we computed
the local interaction effects of the 64 laboratory assess-
ment features as well as three demographic features
including age, gender, and w/o medical comorbidities for
classification of the patient severity category (Supple-
mentary Fig. S5). The top ten features of greatest
importance that contribute to a severer disease outcome
include decreased lymphocyte counts (Tc-Count, T-
CELL, LYMPH#) and platelet counts, evaluated inter-
leukin 6, C-reactive protein and D-dimer, increased age
and decreased A/G and CO2 (Fig. 1f), consistent with
previous reports37. We applied the top 20 features of
importance to assign a severity score for each patient to
reflect their disease status (Supplementary Fig. S6).

Deep whole-genome sequencing and genetic variants
identified
We obtained the whole blood and performed deep

whole genome sequencing for the recruited patients.
There is no significant difference for sequencing depth
between the broadly defined mild and severe group (mild
46.26× vs. severe 46.71×) (Fig. 2a). We conducted varia-
tion detection and genotyping using the GATK joint
genotyping framework to avoid potential batch effect
derived from individual variant calling. Bioinformatics

analysis and the data quality control process were
described in details in the section “Material and methods”.
Among the 332 patients, we identified a total of 22.2

million variants including 17.9 million biallelic single
nucleotide polymorphism, 1.75 million biallelic small
insertions and deletions, and 2.49 million multiallelic
variants (Fig. 2b, Supplementary Table S1). The average
transition/transversion (ts/tv) ratio is 2.12 and the pro-
portion of heterozygous vs. homozygous variants among
all the samples is 1.29, consistent with the statistical
expectation38 and indicates good quality of the variant
calls (Supplementary Fig. S7). Among the 284 unrelated
patients, we have identified 398 K variants that result in an
alteration of the protein coding sequence, 5147 of which
were predicted loss of function variants that included
1973 frameshift, 1528 stop-gained, 954 splice donor, and
692 splice acceptor variants (Fig. 2c). Totally, 261 of those
variants were uniquely presented in the COVID-19
patients (5.07%) and have not been previously reported
in the 1000 genome and the gnomAD studies35,39,40. On
average, each patient possessed 343 predicted loss of
function variants in their genome (Supplementary Fig. S8).
We evaluated whether loss of function variation might
enrich in severe patients in the following analysis.

Potential monogenic genetic effects using the pedigree
and population strategies
Our first question was whether there might be mono-

genic cause for the young but critically ill patients, or on
the other side, the old but asymptomatic patients. We
tried to tackle this question using both the family and the
population strategy. There were in total 35 pedigree
families involved in the study. Their disease severity was
positively correlated with their ages where older people
tend to experience severer disease progression (Supple-
mentary Table S2). Nonetheless, there were two families
consisting of patients that did not follow the trend
(Supplementary Tables S2 and S3). Family KING8 was
composed of four members (Fig. 2d). Patient 2780 was a
35-year-old woman without previous comorbidity when
she was infected by SARS-CoV-2 and progressed in cri-
tically severe COVID-19. Her 6.75-year-old daughter
(Patient 2822) was an asymptomatic patient while her 61-
year-old mother (Patient 4902) and her 34-year-old hus-
band were moderate patients infected by the virus. We
investigated the loss of function variants that were
uniquely present in patient 2780 but not her mother and
daughter and that were rare (<0.005) in the general
population (1000 genome and the gnomAD). In total,
there were five rare loss of function variants meeting the
criteria (Supplementary Table S4). Among the five, four
were uniquely presented as heterozygous genotypes in
patient II while one SNV (rs143359233), resulting in a
splice acceptor alternation in gene GOLGA3, were present
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twice among the critically ill group of patients (the other
critically ill patient is a 65-year-old male patient). In
another noteworthy family KING21, a 60-year-old female
patient (Patient 1002) remained to be asymptomatic

during the infection while her 37-year-old son displayed
moderate symptoms (Patient 4923). There were eleven
loss of function variants that were presented in patient
1002 but not in her moderately infected son and that were
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absent in the severe patients (Supplementary Table S5).
Particularly, a 1-bp insertion in gene DPP7 was present
twice in another 40-year-old female asymptomatic patient
besides Patient 1002. This insertion has been known to
destroy DPP7’s transcription in whole blood and several
other tissues and organs according to GTEx Portal
(Supplementary Fig. S9). Notably, the DPP7 is a dipeptidyl
peptidase that plays a role in innate immune system41 and
another dipeptidyl peptidase 4 (DPP4) is the host receptor
for the binding of the MERS-CoV envelope spike glyco-
protein42. Nonetheless, due to lack of sampling of more
family members, such as the father of Patient 2780 and
the parents or siblings of Patient 1002, we were not able to
resolve the causality of the candidate genetic variants to
disease severity. Replication with more family patients
with extreme phenotypes sequenced recently and in the
near future around the globe will help elucidate the
impact of those loss of function variation among the
COVID-19 patients.
As an alternative strategy powered more by unrelated

samples, we further investigated difference of genetic
burden of loss of function variants between the severe and
the mild groups of patients. The severe and the critical
patients tend to have slightly more loss of function
insertions and deletions than the asymptomatic, mild and
the moderate groups (p= 0.004) in a logistic regression
taking the number of loss of function variants as variable
and the patients’ age, gender, the 20 principle components
and effective sequencing depth as covariates (Supple-
mentary Fig. S10). When performing a mutation burden
test for each of the 16,801 genes that have more than one
variant among the 284 unrelated patients, we did not
identify genes that were enriched in loss of function var-
iants in the severe and critical patients (Fig. 2e). On the
other hand, we found two heterozygous loss of function
variants located in MST1R and RASA2 that were only
present in the asymptomatic and mild patients (Supple-
mentary Fig. S11). The MST1R encodes the macrophage
stimulating one receptor expressed on the ciliated epi-
thelia of the mucociliary transport apparatus of the lung
and follows an autosomal dominant inheritance mode for
susceptibility to nasopharyngeal carcinoma43. None-
theless, because those loss of function variants were only
present in one patient among the mild groups, the sta-
tistical significance observed here was not robust. In
conclusion, using this strategy, we did not identify strong
evidence for loss of function mutation burden difference
between the mild and the severe groups.
Particularly, we have inspected the missense and loss of

function variants present in the SARS-CoV-2 S protein
host cellular receptor gene ACE2 and the S protein primer
gene TMPRSS2 that were known to have played a critical
role in controlling the viral entry into the host cell, as well
as a few other genes that were predicted to play a role in

the host–pathogen interaction network like SLC6A19,
ADAM17, RPS6, HNRNPA1, SUMO1, NACA, and
BTF344. The majority of the functional variants have
minor allele frequency (MAF) less than 1% except for the
p.Val197Met missense variant in TMPRSS2 (Fig. 2f).
Although not statistically significant, the p.Val197Met
variant (rs12329760) displayed a higher allele frequency in
the asymptomatic and mild group compared to the rest of
the group (asymptomatic: 0.46, mild: 0.50, moderate: 0.38,
severe: 0.39, critical severe: 0.26). p.Val197Met was pre-
viously found to have higher allele frequency in East Asian
(0.31–0.41) and Finnish (0.36) but is less frequently seen
in South Asians (0.14–0.29) and the Europeans
(0.17–0.23) (Supplementary Fig. S12). Computational
protein modeling suggested that the p.Val197Met
TMPRSS2 isoform decrease the stability of the TMPRSS2
protein, promote the binding to S-protein and inhibit its
binding with ACE244. The decreasing allele frequency in
the severe patient groups supports that the p.Val197Met
is related to the disease outcomes of COVID-19. The
other genes did not display significant allele frequency
difference among the patient groups (Supplementary
Fig. S13).

Genome-wide association of common and rare variants
with COVID-19 severity
To further investigate genetic effects for the patient

severity, we performed genome-wide single variant asso-
ciation test and sequence kernel association test (SKAT)
analysis of three traits implicating patient severity. We
defined the first trait as a dichotomous classification of the
broadly defined “severe group” that consists of the severe
and critical ill patients (n= 70) and the “mild group” (n=
262) that consists of the asymptomatic, mild, and mod-
erate patients. We defined the second trait as a quanti-
tative measurement of the severity level trained from the
demographic features such as age, gender, and the 64
laboratory assessments (n= 332) (Supplementary Figs. S5
and S6). We used the disease duration from the electronic
health records as the third trait which corresponds to the
duration of time between the complained disease onset
and the first laboratory confirmed PCR test negative
outcome (n= 233) (Fig. 1d). Power analysis indicates that
given 80% statistical power, we will be able to identify
associations between genotypes and phenotypes for var-
iants with MAF greater than 0.2 and with a relative
genetic risk contribution greater than 2 given the current
sample size for dichotomous trait and similarly for the
quantitative trait (Supplementary Fig. S14). Principal
component analysis of the patients suggests little genetic
differentiation (Supplementary Figs. S15 and S16).
We tested all the QC-passed 19.6 million biallelic var-

iants for association with each of three traits in a logistic or
linear regression model that includes gender, age, and the
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top 20 PC axes as covariates. The global distribution of
resulting p values was very close to the null expectation
(λ= 0.996–1.1, Supplementary Fig. S17) indicating that
stratification was adequately controlled. The most sig-
nificant single-nucleotide polymorphisms (SNP) rs6020298
is located in the intron of a read-through transcript
TMEM189–UBE2V1 in the 20q13.13 region (Fig. 3a, b).
The rs6020298 (hg38 chr20:50152518, A allele frequency
severe vs. non-severe: 0.59 vs. 0.45) marks a suggestive
significant association signal for both the severe and mild
binary trait (logistic regression p= 4.1e–6, OR= 1.2) and
the quantitative measurement of the severity score (linear
regression p= 1.1e–6, beta= 0.35). SNPs in linkage dis-
equilibrium with rs6020298 (r2 > 0.8) also affect the gene
UBE2V1 and TMEM189 (Fig. 4a). The UBE2V1 gene
encodes the ubiquitin-conjugating enzyme E2 variant 1.
Both the UBE2V1 and TMEM189–UBE2V1 have been
involved in the interleukin-1 (IL-1) signaling pathway41 and
suggested to work together with TRIM5 to promotes
innate immune signaling45. IL-1 is elevated in COVID-19
patients especially the severe and critical patients who
suffer from the cytokine storm and severe inflation46.

Clinical trial using IL-1 blockade on critical patients results
in an improvement in respiratory function in 72% of the
patients47. The lead SNP rs6020284 has a MAF close to 0.5
among the worldwide populations except for the African
population (AF= 0.13) (Fig. 4b). It is also an eQTL for
LINC01273, TMEM189 among several tissues including
the lung where the risk A allele increases the TMEM189
and LINC01273 expression in several tissues (Supple-
mentary Fig. S18). This may indicate that an inborn eval-
uated TMEM189 expression in the patients may promote
IL-1 signaling and predisposes the patients toward a poorer
outcome against the COVID-19 infection. However, given
the limited sample size in this study and that the inter-
mediate pathways between TMEM189 and IL-1 produc-
tion is still unclear, more replication and functional
validation efforts should be made to re-evaluate this asso-
ciation signal. Notably, the TMEM189–UBE2V1 locus has
been associated with monocyte percentage of leukocytes
and granulocyte percentage of myeloid white cells48. We
did not observe nominal association (p < 0.05) at the lead
SNP rs6020298 with all the 64 laboratory assessments
among the patients (Fig. 4c). Therefore, the observed signal

b c

d e f

a

Fig. 3 Genetic loci associated with patient severity. a–c Single variant and association test for three severity traits. a Severe and critical severe
groups vs. the rest of the non-severe groups. b Severity score assessed by laboratory test measurements. c The duration from disease onset to
recovery. d–f Gene-based association test for three traits.
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is not supposed to be confounded by individual variability
on blood cell types. There is no strong genetic association
with the disease durations (Fig. 3c). We evaluated the
rs6020298 signal in the european population using the host
genetic initiative data. There is no significant association
for this locus among the European population (Supple-
mentary Fig. S19). We also performed a GWAS on the
81,193 copy number variations identified from the 332
individuals. We did not identify copy number variations
that were significantly associated with the disease severity
(Supplementary Fig. S20).
As for the time when this study was conducted, two loci-

3p21.31 and 9q34.2 were reported to have been strongly
associated with the risk of progressing in critical severe
COVID-19 in the Spanish and Italian population49. We
compared the association signal and the allele frequency of
these two loci reported by the Spanish and Italian study
with that in the Chinese population (Table 1). For the

3p21.31 locus, although the risk allele of the lead SNP
(rs11385942) is a common variant present in the European,
African, and the South Asian populations, it is almost
absent in the Chinese and the general East Asian popula-
tion (allele frequency ~0) (Table 1). Therefore, we didn’t
identify any variants that were significantly associated with
the patient severity in this region (Supplementary Fig. S21).
On the other hand, the allele frequency of the lead SNP
(rs657152) at 9q34.2 is similar around the globe
(~0.42–0.63). We found an increasing of risk for critically
severe COVID-19 patient with the risk allele that deter-
mines the blood type A in the 9q34.2 loci compared to the
other blood types for critically severe patients although it is
not statistically significant. The comparison analysis here
suggests that prediction of genetic risk should consider the
genetic diversity from different populations.
We further performed optimal SKAT gene-based asso-

ciation test on the functional variants including a total of
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Fig. 4 LD, allele frequency and pleiotropic effects of the TMEM189–UBE2V1 signal suggestively associated with COVID-19 patient severity.
a Locuszoom plot shows the p value of the SNPs centering the lead SNP rs6020298 and the recombination rate. Color of the dots indicate linkage
disequilibrium r2 metric. b Allele frequency of s6020298 among the 1000 genomes populations. The allele frequency of the reference and alternative
allele is visualized by the geography of genetic variants browser developed by the university of Chicago. c p Value of the single variant genome-wide
association test for the 64 laboratory assessments at the lead SNP rs6020298. The p value of the three traits (severity, severity score and disease
duration) in Fig. 3 were also displayed.
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99,166 missense and loss of function variants that were
predicted to have high or moderate impacts by variant effect
predictor among the patients. The NOA1 gene tend to
higher mutation burden in the severe group (P= 8.1e–;07)
(Fig. 3d). This gene encodes the GTPase that functions in
the mitochondrion and has been associated with platelet
count and leukocyte count41. We did not identify other
genes that are genome-wide significantly associated with
the severity score or the disease duration (Fig. 3e, f).

HLA gene alleles associated with severity in the COVID-19
patients
Manifestation of numerous infectious diseases are clo-

sely related to the genetic variants across the major his-
tocompatibility complex genes, i.e., the human leukocyte
antigen (HLA) genes, which play an essential role in
presenting the antigen determinant epitopes from the
pathogens to the T cell or B cell to activate the host

immune response50,51. In the 2003 SARS outbreak, caused
by the SARS coronavirus (SARS-CoV) related to SARS-
CoV-2, the HLA-B*46:01 was reported to be associated
with infection severity in East Asian patients24. Herein, we
investigated the genetic effect from HLA genes on the
COVID-19 patient severity. We re-aligned all the reads
mapped to the eight HLA haplotypes in the human
reference genome (GRCh38) and all the unaligned reads
and typed the three class I HLA genes (A–C) and four
class II HLA genes (DPB1, DQA1, DQB1, and DRB1)
using the xHLA52 and the SOAP-HLA approach53. 4-digit
haplotyping resolution was achieved for 99% of the
patients for all the genes except for DQA1 where three
patients were only typed to the 2-digit resolution. We
observed zero mendelian error rate for the typing results
using the family members involved in the study. We
investigated whether some HLA alleles may significantly
differ between the broadly defined severe (severe and
critical, n= 69) and mild (asymptomatic, mild and mod-
erate, n= 215) groups of unrelated patients using a
logistic regression with age, gender and the top 20 prin-
cipal components as covariates. The frequency compar-
ison between the severe and mild groups for the total 30
HLA-A, 51 HLA-B, 28 HLA-C, 20 DPB1, 21 DQA1, 16
DQB1 and 32 DRB1 alleles were displayed in Fig. 5 and
Supplementary Table S6. Among the class I HLA genes,
C*14:02 (severe 8.7% vs. mild 4.6%, OR= 4.7, P= 3e–;3),
B*51:01 (severe 10.1% vs. mild 5.8%, OR= 3.3, p= 7e–3),
A*11:01 (severe 29.7% vs. 26.2%, OR= 2.3, p= 8.5e–3)
were the top three most significant alleles between the
two groups that predispose the patients entering the
severe stage (Table 2). The HLA-A*11:01, B*51:01, and
C*14:02 is in strong linkage equilibrium with each other
and thus represents one haplotype. This haplotype has an
average allele frequency 2.4%–3.6% among the Chinese
populations according to the HLA Allele Frequency Net
Database54. In our study, we find that this haplotype is
more prevalent in the severe patients compared with the
mild patients.
Notably, although B*46:01 has been suggested to pre-

sent the fewest SARS-CoV and SARS-CoV-2 peptides in
an in silico analysis55 and has been associated with the
SARS-CoV in a small sample size association analysis
without correcting demographic and geographic covari-
ates24, our analysis does not support this allele is asso-
ciated with the disease severity (OR= 0.5, p= 0.15). On
the contrary, allele frequency of B*46:01 is less frequent in
the severe patients (10.1%) than among the mild patients
(12.8%). Class II HLA genes is less significantly associated
with the disease severity compared to the Class I genes
(Table 2). DRB1*14:04 (severe 2% vs. mild 0.5%, p= 0.01),
DRB1*01:01 (severe 2.2% vs. 0.5%), DQA1*01:01 (severe
2.9% vs. 0.9%) are the top three risk alleles while
DPB1*03:01 (severe 0.7% vs. mild 4.5%) and DRB1*12:01

Table 1 Comparison of the allele frequency and genome-
wide association signals for two associated loci in
European population.

Compared information rs11385942 3p21.31 rs657152 9q34.2, ABO

Allele frequency

CHROM chr3 chr9

POS (hg38) 45,834,967 133,263,862

Risk allele GA C

Other allele G A

All patients (N= 284) 0 0.453

Asymptomatic (N= 12) 0 0.413

Moderate (N= 194) 0 0.44

Severe (N= 52) 0 0.469

Critical (N= 17) 0 0.618

ChinaMAP 0.00396 0.424

1000G_EAS 0.005 0.628

1000G_EUR 0.0805 0.601

1000G_SAS 0.296 0.596

1000G_AFR 0.053 0.539

gnomAD_EAS 0.00061 0.633

Assoication

Italian OR (95% CI) 1.53–2.48 1.22–1.59

p value 7.02E–08 5.31E–05

Spain OR (95% CI) 1.76–4.42 1.17–1.60

p value 1.17E–05 2.81E–03

Chinese OR (95% CI) NA 0.38–1.42

p Value NA 0.693
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(severe 2.2% vs. mild 3.7%) might display a protective
effect.

Comparison with general population for potential genetic
contribution to SARS-CoV-2 infection susceptibility
Our study till now has been restricted in the infected

patients to understand the genetic contribution to patient
severity. Mapping genes related to infection susceptibility
is more difficult. An ideal design commands a comparison
between people who are exposed or not exposed to the
pathogen. This is hard to meet because early detection
and isolation of infected patients are the primary con-
tainment strategies against an outbreak56. Therefore, we
choose another approach to investigate genetic suscept-
ibility by comparing the 284 unrelated hospitalized
patients (the Case) with two general populations includ-
ing 301 Chinese individuals in 1000 genome project35 (the
Control I) and 665 individuals recruited from the Chinese
Reference Panel program (CNPR, paper in preparation,
the Control II). Control I and Control II differ in terms of
the similarity of the adopted sequencing protocol com-
pared to the Case. All the technical components are
almost the same between the Case and Control 2 except
for sequencing depth (case 46× vs. control 2 30×). On the
other hand, various factors are different between the Case
and Control 1, including types of sample (case fresh blood
vs. control 1 cell line), sequencing technology (case MGI’s
nanoball sequencing vs. control 1 Illumina sequencing),
sequencing read cycles (case 100 bp pair-end vs. control 1
150 bp pair-end) and the sequencing depth (case average
46× vs. average 7×). Study like this can reveal genetic
difference between the infected population and the gen-
eral population if any and if not, instruct on what cautions
should be taken when comparing the disease cohorts vs.
the general in the whole genome sequencing context. The
comparison of the infected patients and the general

population was also conducted by the COVID-19 host
genetic initiative.
We analyzed the data carefully by jointly genotype the

samples from their individual gvcf files using the GATK
best practices38 instead of simply merging the popula-
tion vcf files of the case and the control. Principle
component analysis indicates that population structure
is the dominant confounding factor and sequencing
induced batch effects were difficult to identify in the
PCs (Supplementary Figs. S22 and S23). Similarly, we
conducted both single variant and gene-based associa-
tion tests for the two case–control data sets using the
top 20 PCs, gender and age (age was not available for
1 KGP samples and was used for the CNPR alone) as
covariates Fig. 6. Surprisingly, in the single association
test for the high and moderate impact variants, many
variants in the HLA region displayed significant asso-
ciations between the COVID-19 patients and the 1 KGP
Chinese (Fig. 6a) even though the inflation was see-
mingly adequately controlled (Supplementary Fig. S24).
In the gene-based association test, we observed sig-
nificantly different mutation burdens in the immu-
noglobulin loci (Fig. 6b). However, this was not
replicated when we compared the COVID-19 patients
with the 665 CNRP individuals (Fig. 6c, d). Therefore,
we inferred that the association signals between the
1 KGP and the COVID-19 patients were probably due to
sequencing batch effects. As the fresh blood of an
infected individual contains numerous somatic mutated
B-cells, patients tend to accumulate more mutations in
the immunoglobulin genes57. As many studies try to
directly compare the allele frequency between the
general population and the COVID-19 patients29,31, our
discoveries remind us of the necessity for re-evaluation
of the significant hits given distinct experimental pro-
tocol for case and control.

Table 2 Nominal association of HLA allele and severity by logistic regression.

Severe Non-severe OR SE P

C*14:02 0.086 0.047 4.75 0.52 0.003028

B*51:01 0.101 0.058 3.38 0.45 0.007017

A*11:01 0.297 0.263 2.33 0.32 0.008512

DRB1*14:04 0.029 0.005 15.1 1.06 0.01027

DRB1*01:01 0.022 0.005 13.7 1.13 0.02034

DPB1*03:01 0.008 0.044 0.09 1.15 0.03669

DQA1*01:01 0.029 0.009 6.05 0.87 0.03947

DRB1*12:01 0.022 0.037 0.18 0.87 0.04478

B*13:02 0.058 0.051 0.27 0.66 0.04935

Severe group indicates severe and critical patients.
Non-severe group includes asymptomatic, mild, and moderate patients.
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In the single variant association test between the
COVID-19 patients and the CNPR who were sequenced
using the same experimental protocol and were laboratory
PCR tested negative, we identified genome-wide sig-
nificant associated signals tagged by a novel missense
variant (Patient T allele frequency= 0.34, CNPR T_AF=
0.14, OR= 18, p= 4.7e–17) in MUC2; a missense variant
rs200584390 (Patient G allele frequency= 0.31, CNPR
G_AF= 0.09, OR= 9.29, p= 1.5e–13) in RIMBP3 and a
missense variant rs200975425 (Patient T allele fre-
quency=0.24, CNPR T_AF= 0.39, OR= 5.4, p=
9.4e–10) in GOLGA8B (Fig. 6c). Gene-based association
test also indicates that RIMBP3 and GOLGA8B were
different between the patients and the CNPR (Fig. 6d).
Those discoveries require further replication and inter-
pretation when more sequencing data for patients and for
general populations become available worldwide32.

Discussion
We have conducted the first genetic association study

for the COVID-19 severity and SARS-CoV-2 infection
susceptibility by studying the genome and clinical out-
come of 332 patients in a designated infectious disease
hospital in the Shenzhen City. Instead of using the
microarray or the exome genome sequencing, we have
carried out high-depth whole genome sequencing and
analysis for the patients to obtain the greatest possible
power given a small sample size available so far. The study
design enables the detection of very rare and private
functional variants for the patients58 and ensures that the
potential causal variants were directly assayed to com-
pensate the loss of power due to poor linkage dis-
equilibrium between the assayed and the causal variants59.
We revealed that the disease progression after the

SARS-CoV-2 infection can be determined by both the
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monogenic and complex genetic basis. In the investigation
of potential monogenic effects, using a pedigree gene-
mapping strategy, we identified a recurrent loss of func-
tion mutation in gene GOLGA3 among the critically ill
patients and a recurrent loss of function 1-bp insertion in
gene DPP7 among the asymptomatic patients. Both genes
were related to the host immune response to the viral
infection. We did not identify further genes that has a
large monogenic effect using the population gene-based
association test strategy.
For a list of candidate genes proposed by previous study

on the molecular virology of SARS-CoV-2, we identified
that the missense variant rs12329760 in TMPRSS2 was
less frequent among the critical patients compared to the
rest of the patients and the general population. This
variant results in an alteration of the valine to the
methionine at the 197th amino acids (p.Val197Met) that
has been predicted to decrease the TMPRSS2 protein
stability and ACE2 binding44. On the other hand, our
study using Chinese samples did not support the
assumption29 that host genetic factors in the essential
SARS-CoV receptor ACE2 and some other genes involved
in the host–pathogen interaction network might play a
role in determining the patient’s severity or susceptibility.
In the genome-wide association analysis, a gene locus

around TMEM189–BE2V1 and TEMEM189–UBE2V1
that are known to function in the IL-1 signaling path-
way41,45. The lead SNP rs60220284 is an eQTL where the

risk allele A increases the gene expression of genes within
the locus60 and is more prevalent in the severe and critical
patients. While COVID-19 severe patients demonstrate
elevated IL-1 compared to the mild patients and the
general population46, our study suggests potential corre-
lation between genetic variability in this gene and the
disease severity.
Notably, the HLA-A*11:01, B*51:01, and C*14:02 alleles

were significantly more prevalent in the severe and critical
severe patients compared to the mild and the moderate
patients after careful control of population structure and
demographic characters such as age and gender. The
three alleles were in linkage disequilibrium with each
other and has been previously reported to have a 2%–3%
population allele frequency in Dai and Jinpo minorities in
China54 and the B*51:01 has been previously linked to the
Behcet’s disease61, a kind of rheumatic disease. We were
not able to access the role of HLA-B*46:01, although it
has been predicted as the worst presenting HLA alleles to
the SARS-CoV-2 proteome55 and linked to the SARS
2003 outbreak24.
Surprisingly, GWAS using the COVID-19 patients as

the case and the 1000 genome Chinese population as the
control suggested an enrichment of significantly asso-
ciated signals in the HLA region and mutation burden in
the immunoglobulin genes. Nonetheless, this was not
replicated when we compared the patients to another
independent Chinese population. A lot of efforts in the

Fig. 6 Single variant and gene-based association test between COVID-19 patients and the general populations. a Single variant association
test and b gene-based association test between the unrelated COVID-19 patients (n= 284) and the 1KGP Chinese population (n= 301) c single
variant association test and d gene-based association test between the unrelated COVID-19 patients (n= 284) and the CNRP Chinese population
(n= 665). Only variants with moderate or high impacts by variant effect predictor were shown in (a) and (c).
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genetic field have been made and there may be more in
the future to investigate genetic susceptibility of the
SARS-COV-2 infection by directly comparing two or
more general populations with the COVID-19
patients31,32. Therefore, cautions should be taken to
properly control the batch effects. Replication is essential
and perhaps a joint or meta-analysis strategy can rule out
the real from the false statistical signals.
Some limitations of the study should be noted. Power

analysis indicates that sample size of around 300 is barely
sufficient to identify genome-wide significant genetic
variants with MAF greater than 0.2 and odds ratio greater
than 1.8 given type I error rate 0.05. We do not have
power to detect causal variants beyond this risk and allele
frequency scenario. In addition, although the study of
hospitalized patients in a designated hospital includes all
severe patients, the design has a limited presentation of
the asymptomatic patients (7.5%) which ratio has been
estimated to be 30.8% (95% confidence interval:
7.7%–53.8%)62. Given that RT-PCR test and the ser-
oprevalence immunoglobulin M and G antibody tests
targeting the SARS-CoV-2 has been widely adopted in
China and around the globe, it will be important to
identify and study the extreme asymptomatic patients to
understand the host factors contributing to a capable
control of the viral infection.
As we and the others are continuing to recruit patients

and data in China and around the world to understand the
host genetic background underlying the varying clinical
outcome of the patients, this work represents the first
genetic study on the Chinese hospitalized patients where
high quality sequencing data were generated and sys-
tematic analysis on the genomic and clinical data were
conducted. Our results highlight several genetic factors
involved in the immune responses including genes
involved in the viral entry in the host cells, genes related
to immune responses and the HLA alleles. This work is
also an important and initial start to guide study design
regarding the selection of samples, the genetic assay
approach, the bioinformatics and the statistical genetic
analysis for COVID-19 as well as other infection and
complex disease. The publicly available summary statistics
will encourage international collaborative efforts to
understand the host–pathogen interaction and to contain
the COVID-19 outbreak.

Material and methods
Patient recruitment and definition of phenotypes
A total of 332 patients were recruited from Jan 11th

2020 to Apr 2020 in Shenzhen Third People’s Hospital,
the only referral hospital in Shenzhen City, China33. All
were confirmed with SARS-COV-2 infection using real-
time RT-PCR assay of nasal and pharyngeal swab speci-
mens. The demographic, epidemiological, clinical, and

laboratory assessments were extracted from the electronic
medical records of the patients. This study was approved
by the ethics commissions of the Shenzhen Third People’s
Hospital Ethics Committee with a waiver of informed
consent. According to the 5th edition of the national
treatment guideline of COVID19 in China and the Chi-
nese CDC criteria6, the patients were diagnosed as
asymptomatic, mild, moderate, severe, and critically ill
according to the most severe stage they experienced
during the disease course. The asymptomatic, mild and
the moderate groups of patients do not experience
pneumonia. When meeting any one of the following
criteria: (1) RR > 30, (2) oxygen level < 93%, (3) PaO2/
FiO2 < 300 mmHg, and (4) disease progression greater
than 50% area in CT scan, a patient is categorized as
severe patients. Patients experienced one of the following:
(1) respiratory failure and requires mechanical ventila-
tion, (2) shock, and (3) complicated by failure of other
organs and requires intensive care monitoring were
classified as critically ill.

Assignment of severity score to each patient
A machine learning XGBoost-based model was

developed to predict ordinal severity scores using
patients’ phenotype data of 64 laboratory test results63.
We first filtered out the laboratory test items of which at
least 50% of patients did not have any recordings. The
remaining 52 laboratory test items with missing values
were further imputed by missForest algorithm64. The
missForest is a nonparametric method to impute miss-
ing values using random forest model in an iterative
fashion. Then the originally ordered severity levels of
asymptomatic, mild, moderate, severe, and critical were
assigned integer values of 1–5, respectively. The
numeric representations retained the ordinal levels of
severity. We applied the reduction framework men-
tioned in Li et al.65, where the ordinal regression was
reduced to binary classification. The reduction frame-
work of extended binary classification was then inte-
grated within XGBoost model. Moreover, we selected
the most predictive laboratory test items using SHAP
(SHapley Additive exPlanations) algorithm66. The SHAP
is a game theoretic approach to explain the output of a
given machine learning model using Shapley values
from game theory and their related extensions. We
finally trained the XGBoost-based ordinal regression
model using the selected laboratory test items. As a
result, the prediction outcome produced by the final
model was typically a real number reflecting severity
level that was used in the downstream analysis. We used
100 base estimators for missForest, maximum iteration
of 10, and the criterion was mean squared error. For the
XGBoost-based ordinal regression model, we used 500
base estimators and learn rate of 0.5. In general, the
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hyper-parameters of models in this study were chosen
by combining grid search of fivefold cross validation and
manual tuning.

DNA extraction, library construction, and deep whole-
genome sequencing
Genomic DNA was extracted from frozen blood sam-

ples of the 332 patients using Magnetic Beads Blood
Genomic DNA Extraction Kit (MGI, Shenzhen, China).
At least 0.5 μg was obtained for each individual and used
to create WGS library, which insert sizes 300–500 bp for
paired-end libraries according to the BGI library pre-
paration pipeline. Sequencing was conducted on the
DNBSEQ platform (MGI, Shenzhen, China) to generate
100 bp paired-end reads.

Genome alignment and variant detection
We used Sentieon Genomics software (version: sentieon-

genomics-201911) to perform genome alignment and
variant detection67. Analysis pipeline were built according
to the recommendation in the Broad institute best
practices described in https://gatk.broadinstitute.org/hc/
en-us/sections/360007226651-Best-Practices-Workflows.
Sequencing reads were mapped to hg38 reference gen-
ome using BWA algorithm. For each sample, after
remove duplicates, Indel realignment and base quality
score recalibration, SNP and short Indel variants were
detect using the Sentieon Haplotyper algorithm with
option --emit_mode gvcf to generate an individual GVCF
file. Then the GVCF files for all samples were subjected
to Sentieon GVCFtyper algorithm to perform joint var-
iant calling. Copy number variations were identified using
manta v1.668, an assembly-based caller using the default
parameters following the protocol in a recent HGDP
project69.

Variant quality score recalibration and filtration
Variant quality score recalibration were perform using

Genome Analysis Toolkit (GATK version 4.1.2). Known
variant files were downloaded from the GATK bundle. For
indel recalibration, we used Mills_and_1000G_gold_standard
indels as the positive training and true set. For SNP recali-
bration, we used hapmap_3.3, 1000G_omni2.5, and
1000G_phase1.snps as positive training sets, hapmap_3.3 as
true set, and dbSNP_v146 as the known set. The metrics DP,
QD, MQRankSum, ReadPosRankSum, FS, SOR were used in
the recalibration process. The truth-sensitivity-filter-level were
set to 99.0 for both the SNPs and the Indels. Finally, variants
with quality score ≥ 100 were selected for further analysis.

Variant effect prediction
Annotation of the genes mentioned in the paper and the

annotation of the existence of the variants in database

such as dbSNP, GnomeAD, 1 KGP was carried out using
Variant Effect Predictor70 using the default parameters.

Familial relationship and principal component analysis
PLINK (v1.9)71 and KING (v2.1.5)72 was applied to detect

the kinship relatedness between each pair of the indivi-
duals. 48 patients from 16 families were detected as related
to each other. For several allele frequency-based approach,
we exclude the related patients and thus the sample size
was restricted to 284. PCA was performed using a subset of
autosomal bi-allelic SNPs on the unrelated patients using
PLINK (v1.9). The PC-AiR module (PCA in related sam-
ples) in the Genesis R package was used to conduct PCA
analysis for the 332 patients including the related family
members. Several restrictions were employed to select the
final 614,963 SNPs for PCA analysis, including MAF ≥ 1%
(common and low-frequency variants), genotyping rate ≥
90%, Hardy–Weinberg-Equilibrium P > 0.000001, and
removing one SNP from each pair with r2 ≥ 0.5 (in win-
dows of 50 SNPs with steps of 5 SNPs).

Genotype–phenotype association tests
We have applied both the rvtest73 and the SAIGE74

approaches to carry out logistic regression, linear regres-
sion, burden test, the SKAT and the optimal SKAT-O
algorithm for the genotype–phenotype association tests
using the default parameters. For all the association tests,
we have used the gender, the age and the top 20 principal
components from the principal component analysis as the
covariates. Exception is for the GWAS between the 1 KGP
and the COVID-19 patients as age is not available for the
1 KGP data set. Independent loci were defined as sig-
nificant variants clustered in a 1Mbp window. The lead
SNP was defined as the SNP in the 1Mbp window that
has most significant, i.e., smallest p value. The genomic
inflation factor, GC lambda, attenuation ratio, LD score
regression intercept and the SNP heritability were esti-
mated using the LD score regression approach75. The
qqman R package was applied to generate the manhattan
and qqplot. We defined genome-wide significance for
single variant association test as 5e–8, suggestive sig-
nificance as 1e–5 and for gene-based association test as
1e–6.

HLA typing
When performing HLA typing, we first extracted reads

which aligned to HLA region of GRCh38 and unmapped
reads from individual bam files. Then using xHLA algo-
rithm22 typing HLA class I(A B C gene) and II(DRB1
DQB1 DPB1) genes. DQA1 gene was typed using SOAP-
HLA algorithm53 for xHLA does not include this gene.
We performed the association analysis between HLA
types and the binary severe and mild groups using PLINK
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(version 1.90) using a logistic regression model, adjusted
for age, gender, and top 20 PCs.
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