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Abstract 

Background:  Heavy tobacco smoking, a hallmark feature of lung cancer, is drastically predominant in Middle Eastern 
populations. The precise links between nicotine dependence and the functional contribution of the oral microbiota 
remain unknown in these populations.

Methods:  We evaluated the composition and functional capabilities of oral microbiota with relation to cigarette 
smoking in 105 adults through shotgun metagenomics using buccal swabs.

Results:  The oral microbiota composition in our study subjects was dominated by the phyla Firmicutes, Proteobacte-
ria, Actinobacteria, and Bacteroidetes, in addition to the genera Prevotella and Veillonella, similar to previously described 
westernized cohorts. Furthermore, the smoker’s oral microbiota represented a significant abundance of Veillonella 
dispar, Leptotrichia spp. and Prevotella pleuritidis when compared to non-smokers. Within the smoking groups, differen‑
tial relative abundance testing unveiled relative abundance of Streptobacillus hongkongensis, Fusobacterium massil-
iense, Prevotella bivia in high nicotine dependent compared to low nicotine dependent profiles based on Fagerström 
Test for Nicotine Dependence. Functional profiling showed marked differences between smokers and non-smokers. 
Smokers exhibited an enrichment of Tricarballylate utilization and Lactate racemization when compared to the non-
smokers. According to their nicotine dependence, enrichment of Xanthosine utilization, p-Aminobenzoyl-Glutamate 
utilization, and multidrug efflux pump in Campylobacter jejuni biosynthesis modules were detected in the high nico‑
tine dependent group.

Conclusions:  These compositional and functional differences may provide critical insight on how variations in the 
oral microbiota could predispose to respiratory illnesses and smoke cessation relapse in cigarette smokers. In particu‑
lar, the observed enrichment of Fusobacterium and Prevotella in the oral microbiota possibly suggests an intriguing 
linkage to gut and lung cancers.
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Introduction
The oral microbiota is the second most complex micro-
bial ecosystem after the gut flora, consisting of a dynamic 
spectrum of microorganisms residing in the oral cav-
ity and its interaction with host genetics, diet, immune 
system, and many other factors [1]. The bacterial micro-
biome is the predominant component, with species 
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consisting mainly of obligate aerobes such as Neisseria 
and Rothia, facultative aerobes such as Streptococcus 
and Actinomyces, and obligate anaerobes including Fir-
micutes, Bacteroidetes, and Spirochaetes [2]. The commu-
nity composition, although similar amongst the buccal 
mucosa, gingiva, and hard palate; yet is different from the 
soft surfaces, saliva, and gingival plaques [3]. Saprophytic 
protozoa such as Entamoeba gingivalis and Trichomonas 
tenax and fungi such as Candida albicans and Saccharo-
myces cerevisiae are also native residents of oral micro-
biota [1].

Despite the similarities in the core microbial compo-
sition existing within oral cavities, the species may vary 
depending on the host’s diet and nutrition, genetic pre-
disposition, hormonal factors, antibiotic exposure, alco-
hol consumption, and repeated infections by pathogenic 
bacteria. This variation, if pathogenic, is termed dysbio-
sis, which can cause several alterations to the host’s oral 
and systemic health through multiple pathophysiologi-
cal processes [4, 5]. Dysbiosis has been reported to be 
involved in the etiology of oral diseases such as dental 
caries, gingivitis, and periodontitis; and systemic diseases 
spanning from infections to cancers, such as respiratory 
tract infections, gastric ulcers, irritable bowel disease, 
rheumatoid arthritis, infective endocarditis, and cancers 
[1, 4, 6].

Tobacco smoking is a well-known preventable cause of 
death and affects nearly every organ system of the body 
[7]. The oral cavity is one of the first regions exposed 
to cigarette smoke and is at a prime disadvantage for 
increased carcinogenesis, impaired mucosal immunity, 
and alteration of the oral microbiome [8–10]. In turn, 
smoking increases colonization of the oral cavity by path-
ogenic bacteria and reduces colonization by commensal 
bacteria [11, 12]. Smoking enhances biofilm formation 
and results in greater epithelial adherence by certain 
pathogens, including Streptococcus pneumonia, Staphylo-
coccus aureus, Streptococcus mutans; thereby, increasing 
susceptibility to respiratory infections and dental caries 
respectively in those smokers [8, 10, 12]. Furthermore, 
smoking contributes to the alteration in the oxygen ten-
sion of the oral and upper gastrointestinal microenvi-
ronment that encourages persistence of microaerophilic 
bacteria replacing the commensal beneficial species [12, 
13]. Previous studies have shown an increased prevalence 
of the genera Atopobium, Campylobacter, and Prevotella 
among smokers and selective depletion of certain phyla, 
including Proteobacteria [12, 14–16]. Thus, tobacco 
smoking creates a unique dysbiotic environment in the 
oral cavity, influencing the microbiota composition with 
far-reaching consequences in the local and systemic 
health of the host [8]. In this study, we intend to decipher 
our understanding of the oral microbiota’s composition 

and its alteration due to tobacco smoking and smoking 
severity (nicotine dependence level). Further, we evalu-
ated the metabolic capabilities of the oral microbiota 
using shotgun metagenomic sequencing to determine 
microbial biodiversity and functional capabilities that 
associate with tobacco smoking in the oral cavity.

Materials and methods
Study population
In this case–control study, we recruited participants over 
an eight-month period between June 2019 and Febru-
ary 2020 in the emirates of Dubai, Sharjah, and Ajman 
in the United Arab Emirates. Participants completed 
self-administered questionnaires that included com-
prehensive demographic, social, and medical history, 
among other lifestyle information. Tobacco smokers 
were defined as those individuals that reported as exclu-
sively cigarette smokers for 5 years or more. Non-smoker 
controls were defined as individuals who did not report 
smoking cigarettes or any other tobacco products and 
were otherwise healthy. We excluded those who reported 
antibiotic or prescribed probiotic use in the past three 
months, and those with a preexisting respiratory ill-
ness such as asthma and chronic obstructive pulmonary 
disease.

We have also assessed nicotine dependence by col-
lecting participants’ self-administered Fagerström Test 
for Nicotine Dependence (FTND) scale, as previously 
described [17]. Briefly, yes or no items are scored with 
0 or 1, and multiple-choice items are scored from 0 to 
3. The items are summed to yield a total score of 0–10. 
Higher FTND scores indicate greater physical depend-
ence on nicotine. For further validation, participants also 
completed the Short Nicotine Dependence Syndrome 
Scale [18, 19].

We conducted sample size calculation for unmatched 
case–control with two-sided confidence level of 95 and 
power of 80 with ratio of controls to cases of 1. Hypo-
thetical proportion of cases with smoking exposure of 50 
resulted in minimum of 12 sample size (cases) and a min-
imum of 12 sample size (controls), total sample size of 24 
[20, 21]. During the data collection phase, we collected 
539 buccal swabs from 428 non-smokers and 111 smok-
ers, using Isohelix DNA/RNA Buccal Swabs (Isohelix Ltd. 
Harrietsham, United Kingdom) following the manufac-
turer’s instruction (Isohelix Ltd.). Case–control matching 
of tobacco smokers and non-smokers group yielded 105 
participants consisting of 50 non-smokers and 55 smok-
ers. The swabs were then collected in a sterile container, 
stored immediately into liquid nitrogen, and then trans-
ferred to a − 80  °C freezer until further analysis. Swabs 
from these 105 participants were further processed for 
analysis. All participants in the study read and signed an 
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informed consent, and the Research Ethics Committee at 
the University of Sharjah approved the study protocol.

DNA extraction and library preparation
DNA was extracted using the Qiagen MagAttract Power-
Soil DNA KF kit (Formerly MO Bio PowerSoil DNA Kit) 
using a KingFisher robot. DNA quality was evaluated vis-
ually via gel electrophoresis and quantified using a Qubit 
3.0 fluorometer (Thermo-Fischer, Waltham, MA, USA). 
Libraries were prepared with the Illumina Nextera library 
preparation kit using an in-house protocol (Illumina, San 
Diego, CA, USA).

Sequencing, data curation, and sequence processing
Paired-end sequencing (150  bp × 2) was done on a 
NextSeq 500 in medium-output mode. Next, shotgun 
metagenomic sequence reads were processed with the 
Sunbeam pipeline [22]. Initial quality evaluation was 
done using FastQC v0.11.5 (Bioinformatics Group at 
the Babraham Institute. Software available at: https​://
www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​
c/. Processing took part in four steps: adapter removal, 
read trimming, low-complexity reads removal, and 
host-sequence read removal. First, adapter removal was 
done using Cutadapt v2.6 [23]. Next, trimming was done 
with Trimmomatic v0.36 [24] using custom parameters 
(LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:36). Then, low-complexity sequences were 
detected with Komplexity v0.3.6 [22]. Spurious Opera-
tional Taxonomic Units (OTUs) reads were determined 
and removed because they matched one of the pre-spec-
ified host/contaminant genomes or due to low complex-
ity or quality. At the end of quality control, the median 
and range number of quality-filtered reads per sample 
was 5,062,550 and 606,459, respectively. The remaining 
reads were taxonomically classified using Kraken2 with 
the MiniKraken2_v1 database [25] and with the Genome 
Taxonomy Database (v. 89).

For functional profiling, high-quality (filtered) reads 
were aligned against the SEED database via translated 
homology search and annotated to Subsystems, or func-
tional levels, 1–3 using Super-Focus [26].

Statistical analysis
We assessed the alpha diversity with Shannon and Chao1 
indices after filtering out spurious OTUs, and then the 
significance of diversity changes was tested with the 
Mann Whitney test. Next, we evaluated the beta diver-
sity, underscoring differences across samples; a non-
metric multidimensional scaling analysis was used to 
visualize microbiome similarities. Permutational analy-
sis of variance (PERMANOVA) was used to test for the 
significance of overall microbiome differences. To assess 

possible compositional differences in the bacterial com-
munity, binomial models (DESEq2 R package) of the 
form ∼group ∼dependence of taxonomic and subsys-
tem level 3 features were used. P values were calculated 
with Likelihood Ratio Tests. False Discovery Rate (FDR) 
p-value adjustments using the Benjamini and Hochberg 
method were made to correct for multiple testing. An 
adjusted p-value of less than 0.05 was considered signifi-
cant. All analyses were conducted in the R environment.

Results
Bacterial summary taxonomic composition
We analyzed buccal swab samples from 105 participants 
for taxonomic composition, differential abundance, and 
functional profiling of their oral microbiota. The subjects’ 
characteristics in this study, such as age, gender, body 
mass index (BMI), ethnicity, and medical history, have 
been provided (Table 1).

First, we evaluated the taxonomic composition gener-
ated from high-quality reads and classified them using 
the MiniKraken2_v1 database [25] as the reference data-
base for bacteria. We aggregated taxa abundances into 
genera and plotted the relative abundances of the most 
abundant ones (Additional file  1: Fig. S1). Furthermore, 
we plotted the relative abundances of the most abundant 
taxa within the smokers’ group based on their FTND 
score (nicotine dependence); 1−2 (low dependence), 3−4 
(low to moderate dependence), 5 – 7 (moderate depend-
ence), and ≥ 8 (high dependence) (Additional file    1: Fig. 
S2). Nicotine dependence was further evaluated using the 
Short Nicotine Dependence Syndrome Scale (NDSS-S) 
[18, 19]. Pearson correlation suggested a significant posi-
tive correlation between FTND and NDDS-S for smok-
ers (r = 0.646) (p-value < 0.01) (Data not shown). Next, 
we estimated alpha diversity (richness and evenness) 
from taxonomic profiles using Shannon’s diversity index 
and Chao1 richness estimator. No significant differences 
across different groups were found (Additional file 1: Fig. 
S3). Last, to assess the overall microbial community com-
positional changes, PERMANOVA was used to model 
the effects of smoking and nicotine dependence on oral 
microbiota composition. We observed a significant tax-
onomy difference between smoker and non-smoker 
groups (p-value < 0.04) and a non-significant difference 
based on nicotine dependence among the smoker group 
(p-value < 0.09).

Bacterial differential abundance based on smoking 
and nicotine dependence levels
In order to further assess possible compositional differ-
ences in the bacterial community, as suggested in Addi-
tional file  1: Figure S1, we conducted negative binomial 
models as mentioned in methods. First, comparison of 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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the average relative abundance between smokers and 
non-smokers groups revealed that profiles obtained 
from smokers have a statistically significant abundance 
of Veillonella dispar (Log2FoldChange 2.327, P. adjusted 
value < 0.0000003), Leptotrichia sp000469385 (Log2Fold-
Change 1.913, P. adjusted value < 0.0013), and Prevo-
tella pleuritidis (Log2FoldChange 1.896, P. adjusted 
value < 0.00019). On the other hand, there was a statisti-
cally significant under-representation of Haemophilus_A 
(Log2FoldChange − 2.33, P. adjusted value < 0.00007), 
Gemella cuniculi (Log2FoldChange − 1.976, P. adjusted 
value < 0.00019), Neisseria subflava_B (Log2Fold-
Change − 1.87, P. adjusted value < 0.00006), Gemella 
haemolysans_B (Log2FoldChange − 1.75, P. adjusted 
value < 0.00085), Neisseria perflava (Log2FoldChange − 
1.73, P. adjusted value < 0.0012), Streptococcus oralis_BA 
(Log2FoldChange − 1.56, P. adjusted value < 0.0004), 
and Streptococcus mitis_AT (Log2FoldChange − 1.39, 

P. adjusted value < 0.0013) in smokers (Fig.  1). We fur-
ther evaluated the average relative abundance among 
smokers based on nicotine dependence (Fagerström 
score), which revealed that profiles obtained from more 
nicotine dependent smokers have a statistically sig-
nificant abundance of Streptobacillus hongkongensis 
(Log2FoldChange 4.78, P. adjusted value < 0.00004), Fuso-
bacterium massiliense (Log2FoldChange 4.63, P. adjusted 
value < 0.00000004), Prevotella sp000163055 (Log2Fold-
Change 4.42, P. adjusted value < 0.00008), and Prevotella 
bivia (Log2FoldChange 2.46, P. adjusted value < 0.00024) 
(Fig. 2).

Functional profiling of oral microbiota in smoker vs. 
non‑smokers
We used shotgun metagenomic sequencing to deter-
mine the functional contribution of the oral microbiota 
in smokers vs. non-smokers using the SEED hierarchical 

Table 1  Demographics of Study Cohort

a  Independent t-test
b  Chi-squared test

Characteristics Smokers Non-smokers p-value
(n = 55) (n = 50)

Age, years 30.40 (9.508, 21–62) 30.30 (11.196, 21–60) 0.961a

Mean (SD, range)

Gender (M%, F%) 92.7%, 7.3% 90.0%, 10.0% 0.618b

Ethnicity (%)

 MENA 78.20% 76.00% 0.798b

 Asians 20.00% 20.00%

 Africans 1.80% 4.00%

 BMI (Kg/m2)
 Mean, (IQR)

24.97, (21.22–28.91) 24.92, (21.99–27.52) 0.948a

 Prescribed probiotics use (yes%) 0.00% 0.00% –

 Exercise (yes%) 61.10% 72.00% 0.24b

 Animal exposure (yes%) 14.50% 20.00% 0.459b

 Antibiotics use (past 3 months) (yes%) 0% 0.00% –

Family history

 Cancer 12.70% 6.00% 0.241b

 HTN 41.80% 30.00% 0.208b

 Diabetes 50.90% 30.00% 0.03b

 Asthma 5.50% 2.00% 0.356b

Household Smoker (yes%) 61.80% 30.00% 0.001b

Family Smoker (yes%) 65.50% 36.00% 0.003b

Smoking Duration
Mean (SD, range)

11.80 (8.065, 5–40)

FTND 4.82 (2.427, 1–10)

Mean (SD, range)

Low dependence 18.2%

Low to moderate dependence 32.7%

Moderate dependence 32.7%

High dependence 16.4%
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categorization. Functional profiling showed significant 
enrichment of Tricarballylate utilization (Log2Fold-
Change 2.52, P. adjusted value < 0.0013), Aminogly-
coside adenylyltransferases (Log2FoldChange 2.39, 
P. adjusted value < 0.002), Bacteriocins in Lactobacilli 
(Log2FoldChange 2.29, P. adjusted value < 0.0012), Lac-
tate racemization (Log2FoldChange 1.003, P. adjusted 
value < 0.0001), and Methionine salvage (Log2Fold-
Change 0.7, P. adjusted value < 0.0004) in smokers. It 
also revealed a significant depletion of Two-component 
Response Regulator of Virulence ResDE (Log2Fold-
Change − 1.28, P. adjusted value < 0.0009), Listeria 
Pathogenicity Island LIPI-1 extended (Log2FoldChange 
− 0.888, P. adjusted value < 0.00006), and CarD (Log-
2FoldChange − 0.139, P. adjusted value < 0.0007) in 
smokers (Fig. 3).

Functional profiling of oral microbiota based on nicotine 
dependence severity
Finally, we examined differentially abundant gene func-
tions based on the Fagerström score for nicotine depend-
ence among smokers. Pairwise functional differences 
determined a significant difference between low and 

more nicotine dependent groups (p-value < 0.02, p-value 
FDR < 0.05). For example, we show enrichment of Xan-
thosine utilization (xap region) (Log2FoldChange 3.38, 
P. adjusted value < 0.00007), p-Aminobenzoyl-Gluta-
mate utilization (Log2FoldChange 1.33, P. adjusted 
value < 0.00056), Multidrug efflux pump in Campy-
lobacter jejuni (CmeABC operon) (Log2FoldChange 
1.14, P. adjusted value < 0.00007), Glycine biosynthesis 
(Log2FoldChange 1.02, P. adjusted value < 0.00062), Iso-
leucine degradation (Log2FoldChange 0.989, P. adjusted 
value < 0.00021). We also noted depletion of Type VI 
secretion systems (Log2FoldChange − 1.99, P. adjusted 
value < 0.00027), Rrf2 family transcriptional regulators 
(Log2FoldChange − 0.598, P. adjusted value < 0.00067), 
and ABC transporter oligopeptide (TC 3.A.1.5.1) (Log-
2FoldChange -0.351, P. adjusted value < 0.00001) in the 
more nicotine dependence group (Fig. 4).

Discussion
The mouth is a highly heterogeneous ecological system 
with dynamic interplay between the host and oral micro-
biome [27]. The collective function of microbial commu-
nities is a major determinant of homeostasis or dysbiosis, 

Fig. 1  Differentially abundant taxa between smokers and non-smokers group. Panel shows relative abundance of normalized counts for the top 10 
taxa. Results were calculated by negative binomial models (DESEq2 R package) of the form ∼group for differential abundance testing of taxonomic 
and subsystem level 3 features. P values were calculated with Likelihood Ratio Tests method. All of the above comparison are significant. Smoker 
and non-smoker corresponding abundance are colored in blue and red, respectively
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and host factors such as inflammation and dietary sugars 
may ultimately favor health or disease such as dental car-
ies and periodontitis [28]. In this report, we attempted to 
explore oral microbial profiles and functions that influ-
ence host homeostasis in the background of cigarette 
smoking. We explored the oral microbiota of chronic 
tobacco smokers in the Middle-Eastern population and 
described, for the first time, the functional contribu-
tion of the oral bacterial community based on nicotine 
dependence assessed by the Fagerström scale [17]. A 
final study population of 105 subjects, with an average 
age of 30  years, recruited in northern emirates of UAE 
was used for shotgun metagenomics analysis. We used 
buccal swabs, a more specific sampling method for the 
bio-adherent bacteria as compared to mouth wash sam-
pling previously conducted in a UAE based-study [29]. 
Consistent with several previous reports, we detected a 
significant taxonomic difference between smoker and 
non-smoker groups, but no significant differences in 
terms of microbial diversity and richness, as shown in 
Additional file 1: Figure S3 [30–32]. Interestingly, a previ-
ous study conducted in the UAE determined only a mar-
ginal significance of the overall oral microbial differences 

in smokers compared with non-smokers, underscor-
ing the geographic and ethnic contribution [29]. How-
ever, our findings were not consistent with other groups 
reporting a significant change in richness and diversity 
[33, 34]. The observed fluctuations in oral microbiota 
richness and diversity reporting by several groups are not 
unusual and further assert the high complexity and sig-
nificant effects of several factors such as diet, geography, 
ethnicity, and host factors. That said, the oral microbiota 
in our study exhibit comparable dominance of phyla Fir-
micutes, Proteobacteria, Actinobacteria, Bacteroidetes, 
and genera Prevotella and  Veillonella to that of oral 
microbiota in other populations across the globe [16, 34, 
35].

Differential abundance testing of bacterial communities 
based on nicotine dependence scores revealed a relative 
abundance of Streptobacillus hongkongensis among more 
nicotine dependent smokers (high Fagerström score). 
Previous studies reported the isolation of S. hongkon-
gensis from patients with quinsy, pneumonia, and sep-
tic arthritis [36, 37], which was later reported as part of 
the human oropharynx natural reservoir [38]. Increased 
risk of developing serious respiratory illnesses might be 

Fig. 2  Differentially abundant taxa based on FNTD nicotine dependence score. Panel shows relative abundance of normalized counts for the 
top 10 taxa. Results were calculated by negative binomial models (DESEq2 R package) of the form ∼group for differential abundance testing of 
taxonomic and subsystem level 3 features. P values were calculated with Likelihood Ratio Tests method. All of the above comparison are significant. 
Nicotine dependence FTND scores; low, low to moderate, moderate, and high are colored in red, green, blue and pink, respectively
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Fig. 3  Differentially abundant gene functions of smokers vs. non-smokers group. Panel shows relative abundance of normalized counts for 
functional genes using SEED hierarchical categorization. All of the above comparison are significant. Smoker and non-smoker corresponding 
abundance are colored in blue and red, respectively

Fig. 4  Differentially abundant gene functions based on FNTD nicotine dependence score. Panel shows relative abundance of normalized counts 
for functional genes using SEED hierarchical categorization. All of the above comparison are significant. Smoking dependence, low, low to 
moderate, moderate, and high are colored in red, green, blue and pink, respectively
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partly attributed to more nicotine dependent smokers. 
That said, we acknowledge that the overall number of 
reads attributed to this species is generally very low and 
requires further validation. Furthermore, complications 
of streptobacilliary infections may include endocarditis, 
brain abscesses, amnionitis, as well as persistent severe 
arthritis [39].

Smoking tobacco is the single largest risk factor for 
the development of lung cancers. Several studies estab-
lished that Fusobacterium nucleatum plays a major role 
in colorectal carcinogenesis via Fap2 mediated binding 
to tumor-overexpressed Gal-GalNAc-binding lectin 
[40–42]. Therefore, F. nucleatum was deemed useful as 
a microbial biomarker for colorectal cancer detection 
[43]. Interestingly, we discovered that the phylogeneti-
cally similar Fusobacterium massiliense, which exhib-
ited substantial sequence similarity with F. nucleatum, 
has a significant relative abundance among more nico-
tine dependent smokers. Furthermore, protein–protein 
BLAST analysis of the Fap2 surface protein of F. nucle-
atum ATCC 23,726 produced a significant sequence 
alignment with pyridoxal phosphate-dependent ami-
notransferase of F. massiliense [41, 44], the active form 
of vitamin B6. A previous study examined over 44,000 
individuals and evaluated their smoking history and B6 
vitamin supplement use over 10 years, this study found 
that high dosages of vitamin B6 supplements were asso-
ciated with 3–4 folds increase in lung cancer risk among 
smokers at baseline, although the exact mechanism of 
this association is not yet known [45]. Fusobacterium, 
similar to Bacteroides, Bifidobacterium, Actinobacteria, 
and Proteobacteria, possess a vitamin B6 biosynthesis 
pathway. Bacteroidetes and Proteobacteria likely pro-
duce vitamin B6, starting from deoxyxylulose 5-phos-
phate and 4-phosphohydroxy-l-threonine [29]. Several 
prevailing hypotheses may explain the link. First, sev-
eral B vitamins, including B6, B9 (folate), and B12 inter-
act with homocysteine and methionine in this complex 
one-carbon metabolism pathway, and disruption of 
this process may promote carcinogenesis [46]. Second, 
a study reported that among B6 metabolism markers, 
it was the inflammation-related changes in a vitamin 
B6 catabolism marker, the 4-pyridoxic acid/pyridoxal 
plus pyridoxal 5′-phosphate ratio, which was linked to 
increased lung cancer risk [47]. Third, excessive supple-
mentation of folic acid and vitamin B12 was found to be 
associated with changes in DNA methylation of several 
genes that could be reactivated or deregulated during 
carcinogenesis [48]. Altogether, perhaps enrichment of 
F. massiliense among more nicotine dependent smok-
ers suggest a possible linkage to lung cancer in a pyri-
doxal phosphate-dependent manner. Tobacco smoking, 

colorectal cancer, and a high relative abundance of 
gut Prevotella were linked to each other in an intrigu-
ing association [49]. Here, we also noted an increase in 
the relative abundance of Prevotella sp000163055 and 
Prevotella bivia in oral microbiota of heavy smokers, 
thereby suggesting a possible downstream effect on the 
development of colorectal cancers.

The metabolic capabilities of oral microbiota were 
evaluated using a shotgun metagenomic sequencing 
approach to determine microbial biodiversity and func-
tional capabilities associated with tobacco smoking in 
the oral cavity. Functional profiling showed significant 
enrichment of Tricarballylate utilization among smok-
ers vs. non-smokers group, a good chelator of mag-
nesium that could lead to magnesium deficiency [50]. 
Magnesium plays a vital role in tobacco addiction by 
inhibiting several essential steps of nicotine addiction, 
such as dopamine secretion, NMDA receptor stimula-
tion by glutamate, and the synthesis of substance P and 
nitric oxide [51, 52]. A previous study showed a sig-
nificant decrease in the number of cigarettes smoked 
and Fagerström scores after 28  days of magnesium 
therapy [53]. This observation of enriched bacterial 
genes involved in Tricarballylate utilization among 
smokers suggests an intriguing role of oral dysbiosis 
in maintaining nicotine addiction. Moreover, a signifi-
cant increase in the nickel-dependent lactate racemase 
enzymes was observed in smokers, consistent with the 
toxic nickel exposure from tobacco smoking [54, 55].

Finally, we examined the differentially abundant gene 
functions in correlation with the Fagerström score 
for nicotine dependence among smokers. Significant 
enrichment of xanthosine utilization was observed 
among more nicotine dependent smokers, which is a 
catabolite of purine nucleotides that leads to caffeine 
synthesis [56]. This enrichment could be linked to the 
positive association between smoking and coffee con-
sumption, in which heavy smokers require greater cof-
fee consumption than others to obtain an equivalent 
satisfactory effect of caffeine, as reported in a study of 
two European cohorts [57]. Lastly, we noted an enrich-
ment of the Multidrug efflux pump in Campylobacter 
jejuni (CmeABC operon) biosynthesis module in the 
heavy smokers’ group, an important component of bac-
terial virulence that can predispose heavy smokers to 
additional risk of tobacco-related morbidity and mor-
tality [58]. It is important to mention that our findings 
need further validation on a larger cohort. The data 
obtained from self-administered questionnaires was 
subject to self-reporting bias; however, a study staff 
was available during the questionnaire to answer any 
questions.
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Conclusions
We used the shotgun metagenomics approach to shed 
new light on the complex functional profiles of the oral 
microbiota in tobacco smokers from the Middle East. 
To the best of our knowledge, this is the first report 
on oral microbiota role in heavy smoking among Mid-
dle Eastern populations based on nicotine dependence 
assessed by the Fagerström test. Our data identified 
significant compositional and functional variations in 
oral microbial communities, especially among the more 
nicotine dependent (heavy smokers) that have been 
linked to several respiratory illnesses and smoking ces-
sation relapse. We hope this information may help us to 
understand the oral microbiome compositional changes 
in smokers and their impact on respiratory health and 
tobacco control strategies.
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