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Abstract

Background: Deep neural networks (DNN) are a particular case of artificial neural networks (ANN) composed by
multiple hidden layers, and have recently gained attention in genome-enabled prediction of complex traits. Yet,
few studies in genome-enabled prediction have assessed the performance of DNN compared to traditional regression
models. Strikingly, no clear superiority of DNN has been reported so far, and results seem highly dependent on the
species and traits of application. Nevertheless, the relatively small datasets used in previous studies, most with fewer than
5000 observations may have precluded the full potential of DNN. Therefore, the objective of this study was to investigate
the impact of the dataset sample size on the performance of DNN compared to Bayesian regression models for genome-
enable prediction of body weight in broilers by sub-sampling 63,526 observations of the training set.

Results: Predictive performance of DNN improved as sample size increased, reaching a plateau at about 0.32 of
prediction correlation when 60% of the entire training set size was used (i.e., 39,510 observations). Interestingly,
DNN showed superior prediction correlation using up to 3% of training set, but poorer prediction correlation
after that compared to Bayesian Ridge Regression (BRR) and Bayes Cπ. Regardless of the amount of data used to
train the predictive machines, DNN displayed the lowest mean square error of prediction compared to all other
approaches. The predictive bias was lower for DNN compared to Bayesian models, across all dataset sizes, with
estimates close to one with larger sample sizes.
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Conclusions: DNN had worse prediction correlation compared to BRR and Bayes Cπ, but improved mean square
error of prediction and bias relative to both Bayesian models for genome-enabled prediction of body weight in
broilers. Such findings, highlights advantages and disadvantages between predictive approaches depending on
the criterion used for comparison. Furthermore, the inclusion of more data per se is not a guarantee for the DNN
to outperform the Bayesian regression methods commonly used for genome-enabled prediction. Nonetheless,
further analysis is necessary to detect scenarios where DNN can clearly outperform Bayesian benchmark models.
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Background
The identification and selection of individuals with su-
perior genetic merit is critical for the improvement of
complex traits in animals and plants. Genomic selection
was originally proposed by Meuwissen et al. (2001) [1],
and been used as a tool to accelerate the genetic im-
provement of complex traits by earlier and accurate se-
lection of genetically superior individuals compared to
traditional pedigree analysis [2, 3]. Advances in genotyp-
ing technologies allowed the production of high-density
genetic chips in a cost-effective manner, making gen-
omic selection a reality for animal [4–6] and plant [7, 8]
breeding programs.
Genomic selection relies on the information of a large

number of genetic markers, posing a statistical challenge
for genome-enabled prediction studies in which the
number of markers is often much larger than the num-
ber of observations. Methods such as G-BLUP [9], Bayes
A and Bayes B [1], Bayes C [10], Bayesian Lasso [11],
Single-step analysis [12], among others have been pro-
posed to cope with this challenge and also to improve
the performance of genome-enabled prediction. In
addition, machine learning (ML) techniques have also
been implemented in genome-enabled prediction in at-
tempt to improve predictive performance due to their
ability to accommodate nonlinear relationships between
predictors and response variables. ML methods such as
the Reproducing Kernel Hilbert Space [13, 14], Random
Forest [15], and Artificial Neural Networks (ANN)
[16, 17] have been used in genome-enabled prediction,
showing slightly better or similar results compared to
linear regression approaches. Recently, a particular
case of ANN with multiple hidden layers, namely,
Deep Neural Networks (DNN) has emerged as one of
the most powerful machines for pattern recognition,
being successfully applied in different fields such as
bioinformatics and computer vision. Applications in
the former field include the investigation of the regu-
latory role in DNA-binding protein [18, 19], estima-
tion of the effects of non-coding sequence variants
[20, 21], and improve DNA sequencing analysis [22],
while the latter field applications include image recog-
nition [23, 24] and object detection [25].

Deep neural networks are gaining prominence also in
genome-enabled prediction and they have been already
employed in different studies [26–30]. However, results
reported by these studies have shown no clear superior-
ity of DNN compared to traditional linear regression ap-
proaches, with results seem highly dependent on species
and traits of application. Nevertheless, the relatively
small datasets used in previous studies, most with fewer
than 5000 observations may have precluded the full po-
tential of DNN. For the most successful applications of
DNN, the dataset sample sizes had at least 70,000 obser-
vations (e.g., MNIST, ImageNet, and VoxCeleb). Thus,
large sample sizes could be crucial to unveil the poten-
tial of DNN in the genome-enabled field. Bellot et al.
(2018) [29] employed DNN for genome-enabled predic-
tion of complex traits in humans using a large dataset
composed of 102,221 observations, finding similar per-
formance of DNN and Bayesian regression models.
Hence the question remains if DNN cannot indeed out-
perform Bayesian regression models commonly used in
genome-enable prediction of complex traits, or if its per-
formance depends on the species and trait being consid-
ered, or if there is also a dependence on the dataset
sample size used for training the models. Here we try to
tackle this latter enquiry, by assessing the relative perform-
ance of DNN with varying sizes of training sets. Specifically,
we employ a sub-sampling scheme from a large dataset
sample of broiler chickens, and compare the results from
DNN and Bayesian regression models on genome-enabled
prediction of body weight of broilers.

Results
Genetic parameter estimates
Estimates of variance components for body weight were
4436.6 (SE = 281.07), 1026.0 (SE = 71.12), and 13,477.0
(SE = 163.01) g2 for additive genetic, maternal perman-
ent environmental, and residual effects, respectively.
These estimates resulted in a phenotypic variance of 18,
939.6 (SE = 146.59) g2. Estimate of direct heritability for
body weight was 0.23 (SE = 0.013), and the proportion of
the phenotypic variance due to maternal permanent en-
vironmental effect was 0.05 (SE = 0.003).
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Deep neural networks architecture search
The DNN architecture search was performed based on
the “random search” described in Goodfellow et al.
(2016) [31]. The searching process considered 200 different
DNN architectures that were tested for each sub-samplings
of the training set, considering the hyperparameters space
provided in Table 1. Deep neural networks were selected
based on their prediction correlation on the tuning set. Dif-
ferent architectures of the DNN were selected for each sub-
sampling of the training set (Table 2). Overall, DNN with
more than one hidden layer showed a greater predictive
performance considering up to 50% of the training set size,
while simple ANN architectures with one hidden layer and
approximately 300–800 units were selected afterwards. All
ANN had a L2 norm (ridge regularization) larger than zero,
and the dropout rate was smaller than 1, except for the
models using 1, 3, and 100% of the entire training set size.
The prediction correlation of all ANN is summarized in
Fig. 1a. Regardless of the ANN architecture, the prediction
correlation had an increased trend with larger sample sizes.
Interestingly, the distance between the worst to the median
prediction correlation of all ANN was greater than the dis-
tance between the best to the median prediction correlation
of all ANN for each sub-sample of the training set. The
MSEP for each ANN are summarized in Fig. 1b. Overall,
the MSEP had a decreased trend with larger sub-samples
sizes. Similarly, to the prediction correlation, the distance
between the worst to the median MSEP of all ANN was
greater than the distance between the best and the median
MSEP of all ANN for each sub-sample of the training set.

Models’ predictive performance
As expected, the prediction correlation increased with
larger training sample sizes, with a fast increment using
up to 50% of the available data, reaching a plateau of ap-
proximately 0.32 afterwards, for each genome-enabled
prediction approach (Fig. 2a). Deep neural networks had
the greatest prediction correlation using 1% (0.090) and
3% (0.137) of the training set size, while Bayesian Ridge
Regression (BRR) and Bayes Cπ fit without the tuning
set showed similar or better prediction correlation com-
pared to DNN when more than 5% of the entire training

set size was considered. The relative gain of prediction
correlation for DNN compared to BRR (Bayes Cπ) was
11% (13%) and 7% (7%), when 1 and 3% of the entire
training set size was used, respectively; it was however
worse afterwards, varying from − 13% to − 1%. After fit-
ting the Bayesian regression models with the additional
data from the tuning set in each sub-sampling of the
training set, the prediction correlation of Bayesian Ridge
Regression (BRR-WT) and Bayes Cπ (Bayes Cπ-WT)
were greater than the DNN, regardless of the amount of
data used. Moreover, the relative gain of DNN compared
to BRR-WT (Bayes Cπ-WT) decreased remarkably to −
116% (− 117%) and − 56% (− 56%) using 1 and 3% of the
training set size, respectively, but such difference in the
relative gain was attenuated with larger sample sizes.
Overall, the MSEP decreased along with the sample size
of the training set for all predictive approaches (Fig. 2b).
Deep neural networks showed the lowest mean square
error of prediction (MSEP) for each subset of the train-
ing set, ranging from 26,264.8 to 30,589.3. The relative
gain of MSEP was better for DNN compared to BRR
(Bayes Cπ), ranging from − 2% (− 2%) to − 8% (− 8%)
when 20% (20%) and 3% (3%) of the entire training set
size was used, respectively. Interestingly, the MSEP of
BRR-WT and Bayes Cπ-WT were greater than DNN for
each sub-sampling of the training set, except when 20%
of the training data was used.
Deep neural networks showed the smallest predictive

bias compared to all Bayesian regression models (Fig. 3).
Interestingly, the predictive bias of DNN was smaller
than one for all partitions of the training set, except
when using 30% of the data in the training set. Con-
versely, Bayesian regression models had a predictive bias
greater than one for almost all training set sub-samples,
starting after the sub-sampling of 10 and 5% of the train-
ing set for models fit with or without the tuning set, re-
spectively. Spearman rank correlations for body weight
prediction in broilers varied from 0.32 to 0.99 between
genome-enabled prediction approaches under different
training set sample sizes (Table 3). Correlations were
higher between Bayesian models, and lower between
DNN and Bayesian models. The agreement on the top

Table 1 Hyperparameters considered in the neural architecture search of deep neural networks (DNN)a

Hyperparameter Space

Number of units 1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000

Hidden layers 1, 2, 3, 4

Dropout rateb 0.5, 0.6, 0.7, 0.8, 0.9, 1

L2c 0.0000, 0.0025, 0.0050, 0.0075, 0.0100, 0.0125, 0.0150, 0.0175, 0.0200, 0.0225, 0.0250,
0.0275, 0.3000, 0.0325, 0.0350, 0.0375, 0.0400, 0.0425, 0.0450, 0.0475, 0.0500, 0.0525,
0.0550, 0.0575, 0.0600, 0.0625, 0.0650, 0.0675, 0.0700, 0.0725, 0.0750, 0.0775, 0.0800,
0.0825, 0.0850, 0.0875, 0.0900, 0.0925, 0.0950, 0.0975, 0.1000

aThe hyperparameters were randomly select and combined to find the optimal DNN architecture
bThe dropout rate was applied in all layers, except for the output layer
cL2 = ridge regularization
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10-ranked broilers selected across the genome-enabled
prediction approaches ranged from 26 to 96% under dif-
ferent training set sample sizes (Table 4). Similar to the
prediction correlation, estimates were higher between
BRR and Bayes Cπ, and lower between both of them and
the DNN.

Discussion
The heritability estimated for body weight in broiler
chickens from a pure line population was of moderate
magnitude, accounting for 23% of the phenotypic vari-
ance. This result indicates that the response to selection
should be effective in a short to medium term. The ratio
of maternal permanent environmental variance over the
phenotypic variance was low and contributed to 5% of
the body weight variation. Although the variance fraction
accounted for by the maternal permanent environment ef-
fect was relatively low, the inclusion of this effect in the
model is essential to avoid an inflation of the variance of
the additive genetic effect. Body weight estimates of herit-
ability and the fraction for maternal permanent environ-
mental variance were consistent with other studies using
the same trait in broilers from single pure lines [32, 33].
For the DNN implementation, the architecture search

was performed by selecting the hyperparameters at ran-
dom, leading to the selection of different models for
each subset of the training set. This result indicates that
the choice of the best DNN architecture was strongly

affected by the amount of data available during training.
Therefore, the neural network architecture search did
not provide a robust DNN structure to predict body
weight throughout the training set partitions, repre-
senting a disadvantage for DNN compared to the
Bayesian regression models. Recently, simulated anneal-
ing and genetic algorithms have been considered for
hyperparameter optimization in machine learning ap-
plications [34, 35]. Such approaches may provide a
more robust DNN architecture. However, Bellot et al.
(2018) [29] evaluated the performance of DNN on the
genome-enable prediction of complex traits in humans
using a genetic algorithm for hyperparameter optimization,
and also reported that DNN had similar results with
Bayesian regression models.
Hyperparameter optimization is a very difficult task,

which involves the exploration of various DNN architec-
tures to find an optimal parameter set within a specific
search space. Such component of the learning process is
crucial for the success of DNN and depends on the def-
inition of the search space, as well as computational re-
sources and time. The optimal search space is unknown
and many hyperparameters should be tested to find the
best DNN architecture. It is worth mentioning that cau-
tion should be taken when defining the search space.
Deep neural network architectures with a single unit in
the hidden layer may result in extreme information
compression, which can adversely affect predictive

Table 2 The best deep neural network architecture selected based on prediction correlation on the tuning set for each sub-
sampling of the training set

Size (%) Deep neural network architecture

Number of layers Number of units per layera L2b Dropout ratec Accuracy MSEPd

1 4 5000(1)-1(2)-600(3)-800(4) 0.0600 1.0 0.090 30,589.3

3 4 5000(1)-300(2)-200(3)-4000(4) 0.0675 1.0 0.137 29,649.9

5 3 400(1)-200(2) -900(3) 0.0100 0.5 0.145 30,408.7

7 2 500(1)-2000(2) 0.0450 0.8 0.166 29,062.4

10 2 800(1)-100(2) 0.0025 0.6 0.200 28,440.9

15 2 800(1)-900(2) 0.0050 0.5 0.236 27,755.0

20 4 600(1)-100(2)-500(3)-700(4) 0.0325 0.5 0.226 28,849.5

30 1 1000(1) 0.0100 0.7 0.274 27,025.5

40 1 2000(1) 0.0800 0.6 0.285 26,877.4

50 3 600(1)-4000(2) -100(3) 0.0975 0.5 0.285 27,250.3

60 1 300(1) 0.0800 0.8 0.304 26,622.3

70 1 400(1) 0.0800 0.5 0.309 26,506.4

80 1 800(1) 0.0925 0.7 0.308 26,484.5

90 1 400(1) 0.0800 0.5 0.307 26,710.1

100 1 500(1) 0.0600 1.0 0.322 26,264.8
aThe number in parenthesis represents the corresponding hidden layer
bL2 = ridge regularization
cDropout rate was applied in all layers, except for the output layer
dMSEP =mean square error of prediction
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performance. In our study, 20 out of 200 neural networks
architectures selected had at least one hidden layer with a
single unit. From these 20 architectures, only one was able
to display the best predictive performance, namely when
using 1% of the entire training set size. This result indi-
cates that such DNNs may indeed suffer from extreme in-
formation compression, as discussed in Szegedy et al.
(2014) [36]. The parallel computing as employed in our
study can be used to alleviate time issues, where each
DNN architecture is trained and evaluated independently
on different computers. However, parallel computing re-
quires expensive computational resources, which in most
situations is not available for many researchers. Despite
such challenges, hyperparameter optimization is critical to
obtain DNN architectures which could deliver greater pre-
dictive performance. For instance, in our study, the differ-
ence of predictive performance between the best and
worst DNN in each sub-sampling of the training set was
considerably large. Therefore, implementing DNN with
no hyperparameter optimization may inadvertently define

a DNN architecture that delivers a poor predictive per-
formance. Moreover, the hyperparameter optimization
cost is relatively minor compared to the cost to collect,
store, and analyze genomic data. Therefore, hyperpara-
meter optimization should be considered for genome-
enabled prediction applications in animal and plant breed-
ing programs.
The best models selected for each partition of the

training set have some type of regularization (i.e. L2 > 0
and dropout rate < 1) to improve model generalization.
The large number of inputs typically observed in
genome-enabled prediction, and the high correlation be-
tween markers due to linkage disequilibrium may nega-
tively affect the performance of DNN. Regularization
approaches such as dropout can prevent complex co-
adaptations between units [36], reducing the observed
association among inputs from adjacent layers. There-
fore, this result suggests that DNN with regularization
techniques are recommended to improve predictive per-
formance on new observations for genome-enabled

Fig. 1 Predictive performance for each of the 200 deep neural networks generated using the neural architecture search, in (a) prediction
correlation and (b) mean square error of prediction (MSEP). The continuous black line represents the median of the 200 deep neural networks for
each sub-sample of the training set
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prediction. A similar result was reported by McDowell
(2016) [26], who found better predictive performance for
DNN with some kind of regularization compared to
DNN without regularization for genome-enabled predic-
tion of complex traits in different plant species.
The selection of DNN hyperparameters considering

the predictive performance on a tuning set may not re-
flect the best predictive performance in the testing set.
For instance, for each sub-sampling of the training set at
least one DNN with different architecture had a greater
predictive performance on the testing set compared to
those DNN selected based on the lowest MSEP observed
in the tuning set. Therefore, selecting DNN architecture
by measuring the predictive performance on a tuning set
may not deliver optimized predictive performance on
new records. Nevertheless, DNN optimization based on
the predictive performance on a testing set provides

results that are optimistically biased since some informa-
tion from the testing set is considered a priori. Thus, in
our study the correct strategy was to select the DNN
architecture based on the predictive performance in the
tuning set.
Deep neural networks are gaining prominence in

genome-enabled prediction because of several advantages
including flexibility to accommodate complex relationships
between output variables and predictors, their high predict-
ive performance, and no parametric assumptions regarding
variable distributions [37]. Although DNN has emerged
with an enormous potential to transform genome-enable
prediction, recent studies showed no evident superiority of
DNN relative to traditional genome-enable prediction
models. For instance, Rachmatia et al. (2017) [27] used deep
belief networks to predict complex traits in maize and
found that DNN outperformed linear regression models in

Fig. 2 Predictive performance for Bayes Cπ, Bayesian Ridge Regression (BRR), Deep Neural Networks (DNN), Bayes Cπ fit with the tuning set
(Bayes Cπ-WT), and Bayesian Ridge Regression fit with the tuning set (BRR-WT) for each sub-sampling of the entire training set size, in (a)
prediction correlation and (b) mean square error of prediction (MSEP)
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only 2 out of 8 traits. McDowell (2016) [26] compared
DNN with 5 linear regression methods (i.e. ordinary least
squares, lasso, ridge regression, elastic net, and Bayesian
ridge regression) on 6 traits from 3 different species (i.e.
Arabidopsis, maize, and wheat). In this study DNN outper-
formed traditional regression methods in about 50% of the
time. In another study, Montesinos-Lopez et al. (2018) [28]
compared a multi-task DNN with Bayesian multi-trait and
multi-environment model using complex traits in maize
and wheat under different environments. The authors re-
ported a greater predictive performance of DNN when
genotype x environmental interactions were not included
in the analysis and a lower performance when such terms

were considered in the analysis. Bellot et al. (2018) [29]
compared convolution (CNN) and multiple layer percep-
tron (MLP) neural networks with Bayesian regression
models in the evaluation of five traits in human. These
authors reported no remarkable difference in the predictive
performance between Bayesian regression methods and
DNN, regardless of the DNN architecture used for
genome-enabled prediction. Similarly, Abdollahi-Arpanahi
et al. (2020) [30] reported lower predictive performance of
CNN and MLP compared to G-BLUP and Bayes B for
genome-enabled prediction of conception rate in Holstein.
However, those authors found that CNN and MLP had
superior predictive performance compared to G-BLUP and

Fig. 3 Predictive bias for Bayes Cπ, Bayesian Ridge Regression (BRR), Deep Neural Networks (DNN), Bayes Cπ fit with the tuning set (Bayes Cπ-WT),
and Bayesian Ridge Regression fit with the tuning set (BRR-WT) for each sub-sampling of the entire training set size

Table 3 Spearman rank correlations between predicted body weight from the different genome-enabled prediction approaches
and for the various sub-sampling of the entire training dataset

Predictive approach Training dataset size (%)

1 3 5 7 10 15 20 30 40 50 60 70 80 90 100

BRR x Bayes Cπ 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98

BRR x DNN 0.79 0.89 0.86 0.95 0.95 0.96 0.78 0.97 0.94 0.91 0.94 0.95 0.95 0.95 0.94

BRR x BRR-WT 0.33 0.52 0.64 0.69 0.78 0.83 0.87 0.91 0.94 0.95 0.96 0.96 0.96 0.97 0.97

BRR x Bayes Cπ-WT 0.33 0.52 0.63 0.69 0.79 0.83 0.85 0.90 0.93 0.93 0.95 0.95 0.95 0.96 0.96

Bayes Cπ x DNN 0.79 0.89 0.86 0.96 0.95 0.95 0.78 0.95 0.93 0.88 0.93 0.94 0.94 0.93 0.94

Bayes Cπ x BRR-WT 0.32 0.52 0.64 0.69 0.78 0.82 0.86 0.90 0.93 0.93 0.94 0.95 0.95 0.95 0.96

Bayes Cπ x Bayes Cπ-WT 0.32 0.52 0.63 0.69 0.80 0.82 0.85 0.90 0.93 0.94 0.95 0.95 0.96 0.97 0.97

DNN x BRR-WT 0.33 0.52 0.58 0.66 0.76 0.79 0.71 0.88 0.89 0.87 0.92 0.92 0.93 0.92 0.92

DNN x Bayes Cπ-WT 0.33 0.52 0.57 0.66 0.76 0.79 0.69 0.87 0.87 0.86 0.90 0.91 0.92 0.91 0.91

BRR-WT x Bayes Cπ-WT 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.99 0.98 0.98 0.98 0.98
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Bayes B when using simulated data with large amount of
non-additive effects and sample size. According to these
studies, the performance of DNN is strongly affected by
many factors including the genetic architecture of a trait,
the presence of non-additive effects, hyperparameter
optimization, and the DNN architecture (e.g., MLP, CNN,
and multi-task neural networks) considered for genome-
enabled prediction. These findings are consistent with our
study, in which Bayesian regression models showed similar
or greater prediction correlation than DNN, but worst
MSEP.
The lowest MSEP of DNN reflects the predictive bias

estimates in each sub-sampling of the training set. Deep
neural networks showed greater inflation on the predic-
tion of body weights compared to all Bayesian models
using up to 20% of the data, and less biased estimates
afterwards, indicating an advantage for DNN over Bayesian
models. The Spearman’s correlation and the agreement on
the top 10-ranked broilers suggested a re-ranking of
animals depending upon to the model used. Such difference
in the ranking of broilers is more pronounced between
Bayesian regression models fitted with the tuning set in
comparison to the other genome-enabled prediction ap-
proaches, whereas DNN presented a slightly lower re-
ranking of broilers relative to BRR and Bayes Cπ.
Interestingly enough, the predictive performance of

DNN was better than the BRR and Bayes Cπ when con-
sidering small sample sizes. This result is most likely be-
cause of the benefit of using in the training process a
tuning set exclusive for DNN. However, after re-fitting
the Bayesian regression models including also the tuning
set data, such an advantage was accounted for and the
superiority of DNN vanished. Strategies such as a k-fold
cross-validation within the training set could be consid-
ered to select DNN architectures. However, in our study,
implementing such an approach was extremely difficult
due to the computational cost of performing a k-fold

cross-validation in such a big data together with the
sub-sampling process in the training set for each
genome-enabled prediction approach.
Although DNN often show a greater predictive per-

formance when trained with large sample size, for
genome-enable prediction it seems that adding more
data per se is not a guarantee to outperform benchmark
models. The relative simple nature of the marker inputs
(i.e. three genotypes coded as 0, 1 or 2) and the complex
essence of quantitative traits may pose a challenge for
DNN applied to genome-enabled prediction compared
to other successful applications, such as in computer vi-
sion [29]. As pointed out by these authors, inputs used
in computer vision are more complex and less struc-
tured than those available for genome-enabled predic-
tion. Furthermore, the attribute (expected value of trait
or genetic risk) used in genome-enabled prediction is
often not directly observed, rather it is a function of gen-
etic and environmental factors [29]. Therefore, the char-
acteristics of the response variable and inputs may
explain in part the similar predictive performance of
DNN and Bayesian methods using large amount of data.
Furthermore, body weight inheritance is suggestive to be
mainly accounted for by genetic additive effects, with a
lower contribution of non-additive genetic effects.
Abdollahi-Arpanahi et al. (2016) [38] concluded that the
dominance effects had a minor contribution in the
phenotypic variation of body weight relative to additive
effects. Additive inheritance is often well fitted by trad-
itional linear models used for genome-enabled predic-
tion. On the other hand, ANN is better suited to capture
nonlinear relationships by using multiple layers and non-
linear activation functions. For instance, Dórea et al.
(2018) [39] reported greater predictive performance of
ANN compared to Partial Least Squares on the predic-
tion of dry matter intake in lactating dairy cows, con-
cluding that such a superiority is possibly explained by

Table 4 Agreement on the top 10-ranked broilers selected across the different genome-enabled prediction approaches and for the
various sub-sampling of the entire training dataset

Predictive Approach Training dataset size (%)

1 3 5 7 10 15 20 30 40 50 60 70 80 90 100

BRR x Bayes Cπ 91.5 94.5 95.0 94.4 95.9 93.9 93.2 90.8 90.3 87.6 86.6 89.1 87.6 87.9 88.6

BRR x DNN 57.8 66.9 64.9 79.3 78.4 82.6 55.5 79.8 76.6 73.1 72.9 77.1 78.5 75.9 76.5

BRR x BRR-WT 28.2 37.3 44.5 50.1 57.7 62.8 68.5 74.3 78.8 81.5 83.3 84.6 86.4 86.1 87.9

BRR x Bayes Cπ-WT 28.3 36.8 44.9 50.5 58.1 63.4 64.7 72.1 75.8 76.4 79.5 80.1 80.6 83.0 83.5

Bayes Cπ x DNN 57.6 65.7 64.2 78.8 77.9 80.9 55.3 76.9 74.8 69.4 71.6 74.9 75.2 72.2 74.2

Bayes Cπ x BRR-WT 28.5 37.3 44.0 50.7 56.4 62.5 67.6 73.3 76.8 79.1 79.8 82.2 82.0 81.8 82.6

Bayes Cπ x Bayes Cπ-WT 28.7 36.9 44.2 50.9 57.3 63.4 64.1 73.2 75.8 78.7 80.4 81.3 81.3 83.3 85.2

DNN x BRR-WT 28.2 37.5 38.0 47.3 55.3 58.8 47.4 66.5 68.5 68.3 69.7 72.8 73.6 72.2 72.3

DNN x Bayes Cπ-WT 28.1 36.5 38.1 47.4 55.4 58.8 46.3 64.4 67.8 65.2 67.7 71.0 71.0 71.2 70.1

BRR-WT x Bayes Cπ-WT 94.1 96.2 93.3 93.9 94.5 93.9 89.5 88.9 88.7 85.7 89.6 88.6 88.1 88.3 88.2
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the ability of ANN to accommodate nonlinear relation-
ships. Therefore, the additive genetic nature of body
weight may be another potential explanation for the
similar predictive performance between DNN and Bayes-
ian models. Moreover, it is important to mention that
the influence of sample size on the predictive perform-
ance of DNN compared to other traditional genome-
enabled prediction models needs to be investigated in
other species and traits of interest. For genome-enabled
prediction of body weight in broilers, our results did not
show any additional benefit of adding more data to train
DNN relatively to traditional models. In fact, the results
may have even highlighted the superiority of DNN with
smaller sample sizes.
It is important to point out some disadvantages of

DNN when applied to genome-enable prediction com-
pared to traditional linear regression models. The first
drawback has been previously discussed, and reflects the
importance of hyperparameter optimization in DNN
performance. The second disadvantage is the lack of bio-
logical interpretability of the results obtained with DNN.
For instance, extracting information from multiple hid-
den layers is very difficult, turning the algorithm into a
“black box” regarding biological interpretation. A prac-
tical example of this lack of interpretability is that the ef-
fect of each marker cannot be estimated separately,
while SNP effects are easily obtained in traditional linear
models used for genome-enabled prediction. Another
issue of DNN is that such a predictive approach is more
susceptible to overfitting than linear models. In our
study, we used early stopping, dropout, and a L2 norm
to tackle overfitting and the results indeed suggested
that such approaches helped to improve generalization.
Despite all of these limitations, DNN had a better per-
formance in terms of MSEP but worst prediction correl-
ation compared to the Bayesian regression models.
Therefore, DNN should be more explored in genome-
enable prediction to find scenarios in which DNN is
clearly superior. Common DNN strategies used in the
field of computer science including multi-task DNN (i.e.
similar to multi-trait analysis), novel algorithms for par-
ameter optimization, and different types of network
structures (e.g. convolution and multi-input networks)
can be easily adapted and implemented for further ana-
lysis in genome-enabled prediction.

Conclusions
Results have shown that the prediction correlation of
DNN was comparable to Bayesian regression models
with larger training set sizes, while DNN had the lowest
MSEP. The inclusion of more data in the training set
per se is not a guarantee for DNN to outperform trad-
itional linear regression models in genome-enabled pre-
diction applications. Overall, the use of DNN for

genome-enable prediction is promising but further re-
search investigating novel algorithms for hyperparameter
optimization, multi-trait analysis, and other DNN struc-
tures are fundamental to evaluate scenarios where DNN
can clearly outperform benchmark models.

Methods
Phenotypic and genomic information
The dataset was provided by Cobb-Vantress Inc. (Siloam
Springs, AR), and included 79,367 body weight observa-
tions (mean = 2141.8 g and SD = 238.17 g), measured at
6 weeks of age on broilers from a single purebred line.
The total number of birds in the pedigree was 342,383,
with 680 sires and 6216 dams. All broilers recorded for
body weight were genotyped with a 60 k single nucleo-
tide polymorphism (SNP) panel. The genotype quality
control was performed using the PLINK software [40]
with markers excluded based on the following criteria:
1) Located at non-autosome chromosomes; 2) Unknown
map position; 3) Minor allele frequency (MAF) < 0.01; 4)
Call rate < 95%; and 5) Departures from Hardy-Weinberg
equilibrium with P < 10− 10. Subsequently, missing geno-
types were imputed using the software FImpute [41]. Body
weight observations with ±3.5 standard deviations away
from the average of their contemporary group were
treated as outliers and removed from the analysis. After
these editing procedures, 77,476 broilers and 49,362 SNPs
were retained for genome-enabled prediction analysis.

Genome-enabled prediction analysis
Genome-enabled prediction of body weight in broilers
was performed in two steps. In the first step, variance
components were estimated using the AIRemlf90 soft-
ware [42], and body weight was pre-adjusted by fitting
the following linear mixed model:

y ¼ Xθþ ZuþWcþ e

where y is a vector of body weights; θ is a vector of fixed
effects; u and c are vectors of random additive genetic
and maternal permanent environmental effects, respect-
ively; X, Z, and W are known incidence matrices of
fixed, additive genetic, and maternal permanent environ-
mental effects, respectively; and e is the vector of resid-
uals. Fixed effects in the model were sex (2 levels) and
contemporary groups (500 levels). Random effects were
assumed to be independent from each other with distri-
butions u � Nð0;Aσ2uÞ, c � Nð0; Iσ2cÞ, and e � Nð0; Iσ2eÞ,
where A is the additive genetic relationship matrix
(342,383 × 342,383), I is an identity matrix of appropriate
order (i.e. 333 × 333 for maternal permanent environ-
mental and 77,476 × 77,476 for residuals), and σ2u , σ2c ,
and σ2e are the variance components for additive genetic,
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maternal permanent environmental and residual effects,
respectively. The pre-adjusted body weight was defined

as y� ¼ y −Xθ̂ −Wĉ . In the second step, the pre-
adjusted body weight was fit on the genetic markers by
using three predictive approaches: BRR, Bayes Cπ, and
DNN.

Bayesian regression models
The Bayesian regression analyses were implemented
with the R package BGLR [43]. The Markov Chain
Monte Carlo sampling process was performed for each
Bayesian model considering a chain of 30,000 iterations,
from which the first 20,000 cycles were discarded as a
warm-up period, keeping posterior samples for every 5
iterations. The general statistical model for BRR and
Bayes Cπ was:

y� ¼ 1μþ
Xk

j¼1

z jaj þ e

where y∗ is the n × 1 vector of pre-adjusted body
weights; μ is an overall intercept; k is the number of
markers; zj is a n × 1 vector denoting the genotypes of
the animals for marker j; aj is the effect of marker j, and
e is the vector of residuals. SNP genotypes were stan-
dardized to display mean 0 and variance 1. The vector of
residuals e was assumed to follow a Gaussian distribu-
tion with mean zero and variance σ2

e .

Bayesian Ridge Regression
In BRR, an independent prior Gaussian distribution with
mean zero and variance σ2a was assigned to each SNP, so

that pða1; a2;…; ak jσ2aÞ ¼
Qk

j¼1Nðajj0; σ2aÞ . The un-

known variance parameter σ2a is the same for all genetic
markers, and a scaled inverse chi-squared distribution
X − 2ðva; S2aÞ was specified as a prior distribution, where
S2a and va are a scale parameter and degrees of freedom,
respectively. A flat prior distribution was assigned for
the overall constant μ, and similarly to σ2a , a scaled in-
verse chi-square distribution X − 2ðve; S2eÞ was defined as
the prior distribution for the residual variance σ2e .

Bayes Cπ
The Bayes Cπ method was proposed by Habier et al.
(2011) [10], and assumed that the vast majority of gen-
etic markers have null effect, with a small proportion of
SNPs with non-null effect. The prior distribution of the
genetic markers (aj) depends on the variance σ2a j

and the

probability π of a marker having zero effect. These mix-
ture of distributions are described as follows:

aj j π; σ2a ¼
0 with probability π

� N 0; σ2a
� �

with probability 1 − πð Þ
�

A scale inverse chi-square distribution with parameters
va and S2a was assumed for σ2a , in which va = 4.2 and

S2a ¼ ~σ2
aðva − 2Þ

va
. The parameter ~σ2a is equal to

~σ 2
s

ð1 − πÞ
Pk

j¼1
p jð1 − p jÞ

, where ~σ2s is the variance explained by

all markers and pj is the allele frequency of the jth SNP.
In the Bayes Cπ method, π is treated as unknown and a
uniform prior distribution (0,1) was assigned to this par-
ameter. The inclusion/exclusion of each marker in the
model is modeled by an indicator variable δj, which is
equal to 1 if the marker j is fitted into the model, and
zero otherwise. The prior distribution for the overall
constant μ and the residual variance σ2

e were the same as
those specified in the BRR model.

Deep neural networks
Deep neural networks were implemented using a Multi-
layer Perceptron (MLPs) architecture, in which units
from adjacent layers are fully connected, and contained
a minimum of 3 layers (Fig. 4). The first layer was the
input layer composed by 49,361 units, with each unit
representing an SNP. Initially, the inputs for each unit
were coded as 0, 1, and 2, representing the number of
copies for the reference allele. The inputs were standard-
ized (mean = 0, variance = 1) to avoid numerical issues
during the training of DNN. In this setting, each unit
(i.e., SNP) has similar interpretation of a covariate in a
linear regression model. The last layer in the MPLs is
called output layer and provides the prediction (output)
of the pre-adjusted body weight. The layers between in-
put and output layers are defined as hidden layers. Con-
nections between units are established through a
structure referred to as weights. The training process of
DNN occurs in two steps: forward and backward propa-
gations. In the forward propagation, the information
flows from the input to the output layer, and each unit
transforms a linear combination of weights and inputs
from the previous layer with an activation function, and
outputs it to the units in the next layer. The output of
each unit is obtained as or ¼ gtð

Pz
s¼1wrsxsÞ , where gt(.)

is the activation function, wrs is the weight of the rth unit
to xs input of neuron s from the previous layer, and z is
the number of units in the previous layer. The informa-
tion propagates in a similar way through the DNN
layers, reaching the output layer that provides the pre-
diction for pre-adjusted body weight. A linear activation
function, i.e.

Pz
s¼1wrsxs , was applied to the output layer,

while rectified linear activation functions, i.e. maxðPz
s¼1

wrsxs; 0Þ , were considered for neurons in the hidden
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layers. In the backward propagation step, the weights of
the DNN are adjusted via a stochastic gradient descent
algorithm, which involves the use of partial derivatives
with the intent to minimize the loss function. Hence, the
main goal during the training of DNN is to find optimal
weights, such that the loss function is minimized. In the
present study, weights were initialized with a normal dis-
tribution with mean zero and variance 10− 4, and the loss
function included a ridge penalization (L2) which is rep-
resented in matrix notation as follows:

L y; ôð Þ ¼ y − ôð Þt y − ôð Þ þ λwtw

where Lðy; ôÞ is the penalized loss function, y is the vec-
tor of pre-corrected body weights, ô is vector of pre-
dicted body weights, w is a vector of DNN weights, and
λ is the regularization parameter. Moreover, the DNN
optimization was performed with the Adam algorithm,
which is an extension of the stochastic gradient descent
that accounts for the first and second moments of the
gradients [45]. Deep neural networks were trained with
a learning rate of 10− 4 and a mini-batch size of 256
instances.

A common challenge when modeling DNN is overfit-
ting. Besides to the ridge penalization, we implemented
DNN using two additional approaches to tackle potential
overfitting: early stopping and dropout [44]. In early
stopping, a part of the training set, referred to as tuning
set, was used exclusively to monitor the performance of
DNN. The mean square error (MSE) in the tuning set
was computed for every 5 epochs, and the learning
process stopped if no improvement was observed after 5
consecutive assessments of the MSE in the tuning set.
The maximum number of epochs allowed to train each
DNN was 1000. In the dropout approach, units from
DNN are randomly removed during training in a way
that in the forward propagation, units are not active, and
in the backward propagation their corresponding
weights are not updated. Either early stopping or drop-
out strategies are important approaches to improve
generalization of DNN models, and thus mitigate over-
fitting. Another critical step of DNN is to search for the
best architecture since it can drastically influence pre-
dictive performance. To address this problem, we have
searched for neural networks hyperparameters by taking
advantage of a parallel computing system available at

Fig. 4 Representation of a Multilayer Perceptron (MLPs) architecture. In (a) The structure of the deep neural network (DNN) and the training
process including forward and backward propagation are depicted. In the forward propagation information flows from the input to the output
layers by outputting the calculations of the activation function to the next layer. In the backward propagation, the output is assessed and a loss
function L(W) [i.e. mean square error] is used to minimize the overall error function, and consequently update the network weights using
stochastic gradient descent. In (b) The underlying calculations for each unit in order to provide the output to the next layer. In this process,
weight vectors [W(.)] and inputs are linearly combined and transformed based on an activation function, i.e., rectified linear which outputs the
maximum between zero and the linear combination of weights and inputs. This figure is based and adapted from the diagram proposed by
Angermueller et al. (2016) [44]
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University of Wisconsin-Madison through the Center
for High Throughput Computing (CHTC), in which 200
different architectures of DNN were tested simultan-
eously. Random combinations of all hyperparameters in-
cluded in the search space [i.e. number of hidden layers,
number of units per layer, ridge regularization (L2), and
a common dropout rate to each layer] were tested to se-
lect the best DNN model. More detailed information
about the hyperparameters used in the searching process
are depicted in Table 1. All DNN analyses were imple-
mented in Python using the TensorFlow library [46].

Assessment of predictive performance
The predictive performance of each method was
assessed by splitting the data into training and testing
sets, in which the chronological information of 18 ma-
ternal grandsire generations was used as a criterion to
divide the entire data. The former set included 67,741
broilers related to the oldest 16 generations of maternal
grandsire, while the latter set contained 9735 broilers
originated from the newest two generations of maternal
grandsire. This validation scheme was considered in our
study because, in practice, genomic breeding values of
selection candidates (younger individuals) are predicted
using marker effects estimated based on the information
of a reference population (older individuals). To investi-
gate the impact of the training sample size on predictive
performance, 15 subsets of the training set were created,
by sub-sampling 1, 3, 5, 7, 10, 15, 20, 30, 40, 50, 60, 70,
80, 90, and 100% of the original training set size. Broilers
were randomly assigned to each subset with the con-
straint that larger subsets contained all animals from
smaller sets (i.e., 1% ⊂ 3% ⊂ … ⊂ 100%). Furthermore, a
tuning set was created to implement the early stopping
approach for DNN. The tuning set included 4225
broilers descendants from the most recent generation of
maternal grandsire in the training set. Therefore, all pre-
dictive approaches were trained using broilers related to
the oldest 15 generations of maternal grandsire, and the
tuning set was used exclusively to monitor the predictive
performance in DNN. Keeping an exclusive data set to
fine-tune hyperparameters favors DNN compared to
Bayesian regression approaches as the latter do not re-
quired parameter optimization. To make comparisons
fairer, the Bayesian Ridge Regression and Bayes Cπ were
also refitted by including the tuning set of the DNN in
each sub-sampling of the training set. Therefore, these
new models (denoted by BRR-WT and the Bayes Cπ-
WT) correspond to the same BRR and Bayes Cπ models
previously described, but fitted with the addition of the
tuning set into each sub-sampling of the training set.
The criteria used to assess predictive performance

were the prediction correlation, i.e. correlation between

the pre-adjusted and the predicted body weights, and
the MSEP, given by:

MSEP ¼

Xntest

i¼1

y�i − ŷi
� �2

ntest
;

where y�i is the pre-adjusted body weight from the ith

broiler in the testing set, y
_
i is the predicted genomic

breeding value for body weight, and ntest is the number
of records in the testing set. Furthermore, improvements
in prediction correlation and MSEP of DNN compared
with Bayesian models were assessed using the relative
gain (RG), which was measured as follows:

RG ¼ r1 − r2ð Þ
r2

� 100;

where r1 and r2 are the predictive criterion (i.e. predic-
tion correlation or MSEP) for DNN and Bayesian ap-
proaches, respectively.
The predictive bias was also investigated for each

genome-enabled prediction approach as the deviation of
the regression coefficient between pre-adjusted and pre-
dicted body weight from the unit. In addition, the Spear-
man rank correlation between predicted body weights,
and the agreement on the top 10-ranked broilers were
used to assess the similarity between the different
genome-enabled prediction approaches.

Abbreviations
ANN: Artificial Neural Networks; Bayes Cπ-WT: Bayes Cπ fitted including the
tuning set in the training set; BRR: Bayesian Ridge Regression; BRR-
WT: Bayesian Ridge Regression fitted including the tuning set in the training
set; CNN: Convolution neural networks; DNN: Deep neural networks;
MLPs: Multilayer perceptron; MSE: Mean square error; MSEP: Mean square
error of prediction; RG: Relative gain; SNP: Single nucleotide polymorphism

Acknowledgements
The authors would like to acknowledge Cobb-Vantress Inc. for providing the
data used for this study. Furthermore, the authors are grateful to Christina
Koch for all of her assistance in using the Center for High Throughput Com-
puting (CHTC) at the University of Wisconsin-Madison.

Authors’ contributions
The study was conceived by TLP, FBL, JRRD, and GJMR; the supporting data
was provided by VB and RJH, who also helped to understand questions
related to the data collection process. Illustrations were drafted by TLP and
reviewed by all authors. Data analysis was performed by TLP and FBL.
Insightful suggestions and discussions regarding the development of the
deep neural networks was provided by MC. TLP wrote the paper and all
authors have read and approved the final version of the manuscript.

Funding
The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Brazil provided a full PhD fellowship (including stipends and university
tuitions) to the first author.”

Availability of data and materials
The data that support the findings of this study are available from Cobb
upon reasonable request with signed confidentiality agreement contract by
communicating with Rachel J. Hawken (rachel.hawken@cobb-vantress.com).

Passafaro et al. BMC Genomics          (2020) 21:771 Page 12 of 13

mailto:rachel.hawken@cobb-vantress.com


Ethics approval and consent to participate
Ethics approval and consent to participate, as well as Animal Care and Use
Committee approval was not obtained for this study because statistical
analysis were performed on a historical data which does not involve human
related data. Furthermore, no animal was handled directly.

Consent for publication
Not applicable.

Competing interests
The author(s) declare(s) that they have no competing interests.

Author details
1Department of Animal and Dairy Sciences, University of Wisconsin, Madison,
WI 53706, USA. 2Cobb-Vantress Inc., Siloam Springs, AR 72761, USA.
3Department of Biostatistics & Medical Informatics, University of Wisconsin,
Madison, WI 53706, USA. 4Department of Computer Sciences, University of
Wisconsin, Madison, WI 53706, USA.

Received: 23 January 2020 Accepted: 22 October 2020

References
1. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value

using genome-wide dense marker maps. Genetics. 2001;157:1819.
2. de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, MPL C. Whole-

genome regression and prediction methods applied to plant and animal
breeding. Genetics. 2013;193:327.

3. Meuwissen T, Hayes B, Goddard M. Accelerating improvement of livestock
with genomic selection. Annu Rev Anim Biosci. 2013;1:221.

4. García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell
CP. Changes in genetic selection differentials and generation intervals in US
Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci.
2016;113:E3995.

5. Knol EF, Nielsen B, Knap PW. Genomic selection in commercial pig
breeding. Anim Front. 2016;6:15.

6. Wolc A, Kranis A, Arango J, Settar P, Fulton JE, O’Sullivan NP, et al.
Implementation of genomic selection in the poultry industry. Anim Front.
2016;6:23.

7. He S, Schulthess AW, Mirdita V, Yusheng Z, Korzun V, Bothe R, et al.
Genomic selection in a commercial winter wheat population. Theor Appl
Genet. 2016;129:641.

8. Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D. de
los Campos G, et al. genomic selection in plant breeding: methods, models,
and perspectives. Trends Plant Sci. 2017;22:961.

9. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy
Sci. 2008;91:4414.

10. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian
alphabet for genomic selection. BMC Bioinform. 2011;12:186.

11. Park T, Casella G. The Bayesian lasso. J Am Stat Assoc. 2008;103:681.
12. Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evaluation

including phenotypic, full pedigree, and genomic information. J Dairy Sci.
2009;92:4648.

13. Gianola D, van Kaam JBCHM. Reproducing kernel Hilbert spaces regression
methods for genomic assisted prediction of quantitative traits. Genetics.
2008;178:2289.

14. de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J. Semi-
parametric genomic-enabled prediction of genetic values using
reproducing kernel Hilbert spaces methods. Genet Res (Camb). 2010;92:295.

15. Sarkar RK, Rao AR, Meher PK, Nepolean T, Mohapatra T. Evaluation of
random forest regression for prediction of breeding value from
genomewide SNPs. J Genet. 2015;94:187.

16. Gianola D, Okut H, Weigel KA, Rosa GJM. Predicting complex quantitative
traits with Bayesian neural networks: a case study with Jersey cows and
wheat. BMC Genet. 2011;12:87.

17. Ehret A, Hochstuhl D, Gianola D, Thaller G. Application of neural networks
with back-propagation to genome-enabled prediction of complex traits in
Holstein-Friesian and German Fleckvieh cattle. Genet Sel Evol. 2015;47:1.

18. Gupta A, Rush AM. Dilated convolutions for modeling long-distance
genomic dependencies. arXiv. 2017;1:1.

19. Cao Z, Zhang S. Simple tricks of convolutional neural network architectures
improve DNA-protein binding prediction. Bioinformatics. 2019;35:1837.

20. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep
learning–based sequence model. Nat Methods. 2015;12:931.

21. Meng W, Tai C, Weinan E, Wei L. Define: deep convolutional neural networks
accurately quantify intensities of transcription factor-dna binding and facilitate
evaluation of functional non-coding variants. Nucleic Acids Res. 2018;46:e69.

22. Yu L, Renmin H, Chongwei B, Mo L, Sheng W, Xin G. Deepsimulator: a deep
simulator for nanopore sequencing. Bioinformatics. 2018;34:2899.

23. He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image
recognition. arXiv. 2015;1512.03385v1:1.

24. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Commun ACM. 2017;60:84.

25. Ren S, He K, Girshick R, Sun J. Faster r-cnn: towards real-time object detection
with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;6:1137.

26. McDowell R. Genomic selection with deep neural networks. Ames, IA; 2016.
27. Rachmatia H, Kusuma WA, Hasibuan LS. Prediction of maize phenotype

based on whole-genome single nucleotide polymorphisms using deep
belief networks. J Phys Conf Ser. 2017;835:1.

28. Montesinos-López A, Crossa J, Gianola D, Hernández-Suárez CM, Martín-
Vallejo J. Multi-trait, multi-environment deep learning modeling for
genomic-enabled prediction of plant traits. G3. 2018;8:3829.

29. Bellot P, de los Campos G, Pérez-enciso M. Can deep learning improve
genomic prediction of complex human traits? Genetics. 2018;210:809.

30. Abdollahi-Arpanahi R, Gianola D, Peñagaricano F. Deep learning versus
parametric and ensemble methods for genomic prediction of complex
phenotypes. Genet Sel Evol. 2020;52:12.

31. Goodfellow I, Bengio Y, Courville A. Deep learning. 1st ed. Cambridge: MIT
Press; 2016.

32. Chen CY, Misztal I, Aguilar I, Legarra A, Muir WM. Effect of different genomic
relationship matrices on accuracy and scale. J Anim Sci. 2011;89:2673.

33. Wang H, Misztal I, Aguilar I, Legarra A, Fernando RL, Vitezica Z, et al.
Genome-wide association mapping including phenotypes from relatives
without genotypes in a single-step (ssGWAS) for 6-week body weight in
broiler chickens. Front Genet. 2014;5:1.

34. Young SR, Rose DC, Karnowski TP, Lim S-H, Patton RM. Optimizing deep
learning hyper-parameters through an evolutionary algorithm. In:
Proceedings of the workshop on machine learning in high-performance
computing environments - MLHPC ‘15. New York: ACM Press; 2015. p. 1–5.

35. Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon O, et al.
Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural
Networks and Brain Computing. Elsevier Inc; 2017. p. 293–312.

36. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going
deeper with convolutions. arXiv. 2014;1409.4842v1:1.

37. Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for
computational biology. Mol Syst Biol. 2016;12:878.

38. Abdollahi-Arpanahi R, Morota G, Valente BD, Kranis A, Rosa GJM, Gianola D.
Differential contribution of genomic regions to marked genetic variation and
prediction of quantitative traits in broiler chickens. Genet Sel Evol. 2016;48:1.

39. Dórea JRR, Rosa GJM, Weld KA, Armentano LE. Mining data from milk
infrared spectroscopy to improve feed intake predictions in lactating dairy
cows. J Dairy Sci. 2018;101:5878.

40. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.
PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007;81:559.

41. Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype
imputation using information from relatives. BMC Genomics. 2014;15:478.

42. Misztal I, Tsuruta S, Lourenco D, Aguilar I, Legarra A, Vitezica Z. Manual for
BLUPF90 family of programs. Athens: University of Georgia; 2015.

43. Perez P, de los Campos G. BGLR : a statistical package for whole genome
regression and prediction. Genetics. 2014;198:483.

44. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929.

45. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv. 2014;
1631:58.

46. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a
system for large-scale machine learning. Methods Enzymol. 2016;101:582.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Passafaro et al. BMC Genomics          (2020) 21:771 Page 13 of 13


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Genetic parameter estimates
	Deep neural networks architecture search
	Models’ predictive performance

	Discussion
	Conclusions
	Methods
	Phenotypic and genomic information
	Genome-enabled prediction analysis
	Bayesian regression models
	Bayesian Ridge Regression
	Bayes Cπ
	Deep neural networks
	Assessment of predictive performance
	Abbreviations

	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

